
What’s New in Python
Release 3.11.0a6

A. M. Kuchling

April 05, 2022
Python Software Foundation

Email: docs@python.org

Contents

1 Summary – Release highlights 2

2 New Features 2
2.1 Enhanced error locations in tracebacks . 2

3 Other Language Changes 4

4 Other CPython Implementation Changes 4

5 New Modules 4

6 Improved Modules 4
6.1 asyncio . 4
6.2 fractions . 5
6.3 hashlib . 5
6.4 IDLE and idlelib . 5
6.5 inspect . 5
6.6 math . 5
6.7 operator . 5
6.8 os . 6
6.9 re . 6
6.10 shutil . 6
6.11 socket . 6
6.12 sqlite3 . 6
6.13 sys . 6
6.14 sysconfig . 7
6.15 threading . 7
6.16 time . 7
6.17 unicodedata . 7
6.18 venv . 7
6.19 zipfile . 7
6.20 fcntl . 8

7 Optimizations 8

8 CPython bytecode changes 8

9 Deprecated 9

1

10 Removed 10

11 Porting to Python 3.11 11
11.1 Changes in the Python API . 11

12 Build Changes 11

13 C API Changes 12
13.1 New Features . 12
13.2 Porting to Python 3.11 . 13
13.3 Deprecated . 17
13.4 Removed . 17

Index 19

Release 3.11.0a6
Date April 05, 2022

This article explains the new features in Python 3.11, compared to 3.10.
For full details, see the changelog.

Note: Prerelease users should be aware that this document is currently in draft form. It will be updated substantially
as Python 3.11 moves towards release, so it’s worth checking back even after reading earlier versions.

1 Summary – Release highlights

New syntax features:
• PEP 654: Exception Groups and except*. (Contributed by Irit Katriel in bpo-45292.)

New typing features:
• PEP 673: Self Type. (Contributed by James Hilton-Balfe and Pradeep Kumar in bpo-30924.)

2 New Features

2.1 Enhanced error locations in tracebacks

When printing tracebacks, the interpreter will now point to the exact expression that caused the error instead of just
the line. For example:

Traceback (most recent call last):
File "distance.py", line 11, in <module>
print(manhattan_distance(p1, p2))

^^^^^^^^^^^^^^^^^^^^^^^^^^
File "distance.py", line 6, in manhattan_distance
return abs(point_1.x - point_2.x) + abs(point_1.y - point_2.y)

^^^^^^^^^
AttributeError: 'NoneType' object has no attribute 'x'

Previous versions of the interpreter would point to just the line making it ambiguous which object was None. These
enhanced errors can also be helpful when dealing with deeply nested dictionary objects and multiple function calls,

2

https://www.python.org/dev/peps/pep-0654
https://bugs.python.org/issue45292
https://www.python.org/dev/peps/pep-0673
https://bugs.python.org/issue30924

Traceback (most recent call last):
File "query.py", line 37, in <module>
magic_arithmetic('foo')
^^^^^^^^^^^^^^^^^^^^^^^

File "query.py", line 18, in magic_arithmetic
return add_counts(x) / 25

^^^^^^^^^^^^^
File "query.py", line 24, in add_counts
return 25 + query_user(user1) + query_user(user2)

^^^^^^^^^^^^^^^^^
File "query.py", line 32, in query_user
return 1 + query_count(db, response['a']['b']['c']['user'], retry=True)

~~~~~~~~~~~~~~~~~~^^^^^
TypeError: 'NoneType' object is not subscriptable

as well as complex arithmetic expressions:

Traceback (most recent call last):
File "calculation.py", line 54, in <module>
result = (x / y / z) * (a / b / c)

~~~~~~^~~
ZeroDivisionError: division by zero

See PEP 657 for more details. (Contributed by Pablo Galindo, Batuhan Taskaya and Ammar Askar in bpo-43950.)

Note: This feature requires storing column positions in code objects which may result in a small increase
of disk usage of compiled Python files or interpreter memory usage. To avoid storing the extra information
and/or deactivate printing the extra traceback information, the -X no_debug_ranges command line flag or the
PYTHONNODEBUGRANGES environment variable can be used.

Column information for code objects

The information used by the enhanced traceback feature is made available as a general API that can be used to
correlate bytecode instructions with source code. This information can be retrieved using:

• The codeobject.co_positions() method in Python.
• The PyCode_Addr2Location() function in the C-API.

The -X no_debug_ranges option and the environment variable PYTHONNODEBUGRANGES can be used to
disable this feature.
See PEP 657 for more details. (Contributed by Pablo Galindo, Batuhan Taskaya and Ammar Askar in bpo-43950.)

Exceptions can be enriched with a string __note__

The __note__ field was added to BaseException. It is None by default but can be set to a string which is
added to the exception’s traceback. (Contributed by Irit Katriel in bpo-45607.)

3

https://www.python.org/dev/peps/pep-0657
https://bugs.python.org/issue43950
https://www.python.org/dev/peps/pep-0657
https://bugs.python.org/issue43950
https://bugs.python.org/issue45607

3 Other Language Changes

• Starred expressions can be used in for statements. (See bpo-46725 for more details.)
• Asynchronous comprehensions are now allowed inside comprehensions in asynchronous functions. Outer com-
prehensions implicitly become asynchronous. (Contributed by Serhiy Storchaka in bpo-33346.)

• A TypeError is now raised instead of an AttributeError in contextlib.ExitStack.
enter_context() and contextlib.AsyncExitStack.enter_async_context() for ob-
jects which do not support the context manager or asynchronous context manager protocols correspondingly.
(Contributed by Serhiy Storchaka in bpo-44471.)

• A TypeError is now raised instead of an AttributeError in with and async with statements for
objects which do not support the context manager or asynchronous context manager protocols correspondingly.
(Contributed by Serhiy Storchaka in bpo-12022.)

4 Other CPython Implementation Changes

• Special methods complex.__complex__() and bytes.__bytes__() are implemented to support
typing.SupportsComplex and typing.SupportsBytes protocols. (Contributed by Mark Dick-
inson and Dong-hee Na in bpo-24234.)

• siphash13 is added as a new internal hashing algorithms. It has similar security properties as siphash24
but it is slightly faster for long inputs. str, bytes, and some other types now use it as default algorithm
for hash(). PEP 552 hash-based pyc files now use siphash13, too. (Contributed by Inada Naoki in
bpo-29410.)

• When an active exception is re-raised by a raise statement with no parameters, the traceback attached to
this exception is now always sys.exc_info()[1].__traceback__. This means that changes made
to the traceback in the current except clause are reflected in the re-raised exception. (Contributed by Irit
Katriel in bpo-45711.)

• The interpreter state’s representation of handled exceptions (a.k.a exc_info, or _PyErr_StackItem) now has
only the exc_value field, exc_type and exc_traceback have been removed as their values can be
derived from exc_value. (Contributed by Irit Katriel in bpo-45711.)

• A new command line option for the Windows installer AppendPath has been added. It behaves similiar to
PrependPath but appends the install and scripts directories instead of prepending them. (Contributed by
Bastian Neuburger in bpo-44934.)

5 New Modules

• A new module, tomllib, was added for parsing TOML. (Contributed by Taneli Hukkinen in bpo-40059.)

6 Improved Modules

6.1 asyncio

• Add raw datagram socket functions to the event loop: sock_sendto(), sock_recvfrom() and
sock_recvfrom_into(). (Contributed by Alex Grönholm in bpo-46805.)

4

https://bugs.python.org/issue46725
https://bugs.python.org/issue33346
https://bugs.python.org/issue44471
https://bugs.python.org/issue12022
https://bugs.python.org/issue24234
https://www.python.org/dev/peps/pep-0552
https://bugs.python.org/issue29410
https://bugs.python.org/issue45711
https://bugs.python.org/issue45711
https://bugs.python.org/issue44934
https://bugs.python.org/issue40059
https://bugs.python.org/issue46805

6.2 fractions

• Support PEP 515-style initialization of Fraction from string. (Contributed by Sergey B Kirpichev in bpo-
44258.)

• Fraction now implements an __int__ method, so that an isinstance(some_fraction,
typing.SupportsInt) check passes. (Contributed by Mark Dickinson in bpo-44547.)

6.3 hashlib

• hashlib.blake2b() and hashlib.blake2s() now prefer libb2 over Python’s vendored copy. (Con-
tributed by Christian Heimes in bpo-47095.)

• The internal _sha3 module with SHA3 and SHAKE algorithms now uses tiny_sha3 instead of the Keccak
Code Package to reduce code and binary size. The hashlib module prefers optimized SHA3 and SHAKE
implementations fromOpenSSL. The change affects only installations without OpenSSL support. (Contributed
by Christian Heimes in bpo-47098.)

6.4 IDLE and idlelib

• Apply syntax highlighting to .pyi files. (Contributed by Alex Waygood and Terry Jan Reedy in bpo-45447.)

6.5 inspect

• Add inspect.getmembers_static(): return all members without triggering dynamic lookup via the
descriptor protocol. (Contributed by Weipeng Hong in bpo-30533.)

• Add inspect.ismethodwrapper() for checking if the type of an object is a MethodWrapperType.
(Contributed by Hakan Çelik in bpo-29418.)

6.6 math

• Add math.exp2(): return 2 raised to the power of x. (Contributed by Gideon Mitchell in bpo-45917.)
• Add math.cbrt(): return the cube root of x. (Contributed by Ajith Ramachandran in bpo-44357.)
• The behaviour of two math.pow() corner cases was changed, for consistency with the IEEE 754 specifi-
cation. The operations math.pow(0.0, -math.inf) and math.pow(-0.0, -math.inf) now
return inf. Previously they raised ValueError. (Contributed by Mark Dickinson in bpo-44339.)

• The math.nan value is now always available. (Contributed by Victor Stinner in bpo-46917.)

6.7 operator

• A new function operator.call has been added, such that operator.call(obj, *args,
**kwargs) == obj(*args, **kwargs). (Contributed by Antony Lee in bpo-44019.)

5

https://www.python.org/dev/peps/pep-0515
https://bugs.python.org/issue44258
https://bugs.python.org/issue44258
https://bugs.python.org/issue44547
https://www.blake2.net/
https://bugs.python.org/issue47095
https://bugs.python.org/issue47098
https://bugs.python.org/issue45447
https://bugs.python.org/issue30533
https://bugs.python.org/issue29418
https://bugs.python.org/issue45917
https://bugs.python.org/issue44357
https://bugs.python.org/issue44339
https://bugs.python.org/issue46917
https://bugs.python.org/issue44019

6.8 os

• On Windows, os.urandom() now uses BCryptGenRandom(), instead of CryptGenRandom()
which is deprecated. (Contributed by Dong-hee Na in bpo-44611.)

6.9 re

• Atomic grouping ((?>...)) and possessive quantifiers (*+, ++, ?+, {m,n}+) are now supported in regular
expressions. (Contributed by Jeffrey C. Jacobs and Serhiy Storchaka in bpo-433030.)

6.10 shutil

• Add optional parameter dir_fd in shutil.rmtree(). (Contributed by Serhiy Storchaka in bpo-46245.)

6.11 socket

• Add CAN Socket support for NetBSD. (Contributed by Thomas Klausner in bpo-30512.)

6.12 sqlite3

• You can now disable the authorizer by passing None to set_authorizer(). (Contributed by Erlend E.
Aasland in bpo-44491.)

• Collation name create_collation() can now contain any Unicode character. Collation names with in-
valid characters now raise UnicodeEncodeError instead of sqlite3.ProgrammingError. (Con-
tributed by Erlend E. Aasland in bpo-44688.)

• sqlite3 exceptions now include the SQLite extended error code as sqlite_errorcode and the SQLite
error name as sqlite_errorname. (Contributed by Aviv Palivoda, Daniel Shahaf, and Erlend E. Aasland
in bpo-16379 and bpo-24139.)

• Add setlimit() and getlimit() to sqlite3.Connection for setting and getting SQLite limits
by connection basis. (Contributed by Erlend E. Aasland in bpo-45243.)

• sqlite3 now sets sqlite3.threadsafety based on the default threading mode the underlying SQLite
library has been compiled with. (Contributed by Erlend E. Aasland in bpo-45613.)

• sqlite3 C callbacks now use unraisable exceptions if callback tracebacks are enabled. Users can now
register an unraisable hook handler to improve their debug experience. (Contributed by Erlend E.
Aasland in bpo-45828.)

• Fetch across rollback no longer raises InterfaceError. Instead we leave it to the SQLite library to handle
these cases. (Contributed by Erlend E. Aasland in bpo-44092.)

6.13 sys

• sys.exc_info() now derives the type and traceback fields from the value (the exception instance),
so when an exception is modified while it is being handled, the changes are reflected in the results of subsequent
calls to exc_info(). (Contributed by Irit Katriel in bpo-45711.)

• Add sys.exception() which returns the active exception instance (equivalent to sys.
exc_info()[1]). (Contributed by Irit Katriel in bpo-46328.)

6

https://bugs.python.org/issue44611
https://bugs.python.org/issue433030
https://bugs.python.org/issue46245
https://bugs.python.org/issue30512
https://bugs.python.org/issue44491
https://bugs.python.org/issue44688
https://bugs.python.org/issue16379
https://bugs.python.org/issue24139
https://bugs.python.org/issue45243
https://bugs.python.org/issue45613
https://bugs.python.org/issue45828
https://bugs.python.org/issue44092
https://bugs.python.org/issue45711
https://bugs.python.org/issue46328

6.14 sysconfig

• Two new installation schemes (posix_venv, nt_venv and venv) were added and are used when Python creates
new virtual environments or when it is running from a virtual environment. The first two schemes (posix_venv
and nt_venv) are OS-specific for non-Windows and Windows, the venv is essentially an alias to one of them
according to the OS Python runs on. This is useful for downstream distributors who modify sysconfig.
get_preferred_scheme(). Third party code that creates new virtual environments should use the new
venv installation scheme to determine the paths, as does venv. (Contributed by Miro Hrončok in bpo-45413.)

6.15 threading

• On Unix, if the sem_clockwait() function is available in the C library (glibc 2.30 and newer), the
threading.Lock.acquire() method now uses the monotonic clock (time.CLOCK_MONOTONIC)
for the timeout, rather than using the system clock (time.CLOCK_REALTIME), to not be affected by system
clock changes. (Contributed by Victor Stinner in bpo-41710.)

6.16 time

• On Unix, time.sleep() now uses the clock_nanosleep() or nanosleep() function, if available,
which has a resolution of 1 nanosecond (10-9 seconds), rather than using select() which has a resolution
of 1 microsecond (10-6 seconds). (Contributed by Benjamin Szőke and Victor Stinner in bpo-21302.)

• On Windows 8.1 and newer, time.sleep() now uses a waitable timer based on high-resolution timers
which has a resolution of 100 nanoseconds (10-7 seconds). Previously, it had a resolution of 1 millisecond
(10-3 seconds). (Contributed by Benjamin Szőke, Dong-hee Na, Eryk Sun and Victor Stinner in bpo-21302
and bpo-45429.)

6.17 unicodedata

• The Unicode database has been updated to version 14.0.0. (bpo-45190).

6.18 venv

• When new Python virtual environments are created, the venv sysconfig installation scheme is used to determine
the paths inside the environment. When Python runs in a virtual environment, the same installation scheme is
the default. That means that downstream distributors can change the default sysconfig install scheme without
changing behavior of virtual environments. Third party code that also creates new virtual environments should
do the same. (Contributed by Miro Hrončok in bpo-45413.)

6.19 zipfile

• Added support for specifying member name encoding for reading metadata in the zipfile’s directory and file
headers. (Contributed by Stephen J. Turnbull and Serhiy Storchaka in bpo-28080.)

7

https://bugs.python.org/issue45413
https://bugs.python.org/issue41710
https://bugs.python.org/issue21302
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/high-resolution-timers
https://bugs.python.org/issue21302
https://bugs.python.org/issue45429
https://bugs.python.org/issue45190
https://bugs.python.org/issue45413
https://bugs.python.org/issue28080

6.20 fcntl

• On FreeBSD, the F_DUP2FD and F_DUP2FD_CLOEXEC flags respectively are supported, the former equals
to dup2 usage while the latter set the FD_CLOEXEC flag in addition.

7 Optimizations

• Compiler now optimizes simple C-style formatting with literal format containing only format codes %s, %r and
%a and makes it as fast as corresponding f-string expression. (Contributed by Serhiy Storchaka in bpo-28307.)

• “Zero-cost” exceptions are implemented. The cost of try statements is almost eliminated when no exception
is raised. (Contributed by Mark Shannon in bpo-40222.)

• Method calls with keywords are now faster due to bytecode changes which avoid creating bound method in-
stances. Previously, this optimization was applied only to method calls with purely positional arguments.
(Contributed by Ken Jin and Mark Shannon in bpo-26110, based on ideas implemented in PyPy.)

• Pure ASCII strings are now normalized in constant time by unicodedata.normalize(). (Contributed
by Dong-hee Na in bpo-44987.)

• math functions comb() and perm() are now up to 10 times or more faster for large arguments (the speed
up is larger for larger k). (Contributed by Serhiy Storchaka in bpo-37295.)

• Dict don’t store hash value when all inserted keys are Unicode objects. This reduces dict size. For exam-
ple, sys.getsizeof(dict.fromkeys("abcdefg")) becomes 272 bytes from 352 bytes on 64bit
platform. (Contributed by Inada Naoki in bpo-46845.)

8 CPython bytecode changes

• Replaced all numeric BINARY_* and INPLACE_* instructions with a single BINARY_OP implementation.
• Replaced the three call instructions: CALL_FUNCTION, CALL_FUNCTION_KW and CALL_METHOD with
PUSH_NULL, PRECALL, CALL, and KW_NAMES. This decouples the argument shifting for methods from
the handling of keyword arguments and allows better specialization of calls.

• Removed COPY_DICT_WITHOUT_KEYS and GEN_START.
• MATCH_CLASS and MATCH_KEYS no longer push an additional boolean value indicating whether the match
succeeded or failed. Instead, they indicate failure withNone (where a tuple of extracted values would otherwise
be).

• Replace several stack manipulation instructions (DUP_TOP, DUP_TOP_TWO, ROT_TWO, ROT_THREE,
ROT_FOUR, and ROT_N) with new COPY and SWAP instructions.

• Add POP_JUMP_IF_NOT_NONE and POP_JUMP_IF_NONE opcodes to speed up conditional jumps.
• Replaced JUMP_IF_NOT_EXC_MATCH by CHECK_EXC_MATCH which performs the check but does not
jump.

• Replaced JUMP_ABSOLUTE by the relative JUMP_BACKWARD.

8

https://bugs.python.org/issue28307
https://bugs.python.org/issue40222
https://bugs.python.org/issue26110
https://bugs.python.org/issue44987
https://bugs.python.org/issue37295
https://bugs.python.org/issue46845

9 Deprecated

• The lib2to3 package and 2to3 tool are now deprecated and may not be able to parse Python 3.10 or newer.
See the PEP 617 (New PEG parser for CPython). (Contributed by Victor Stinner in bpo-40360.)

• Undocumented modules sre_compile, sre_constants and sre_parse are now deprecated. (Con-
tributed by Serhiy Storchaka in bpo-47152.)

• webbrowser.MacOSX is deprecated and will be removed in Python 3.13. It is untested and undocumented
and also not used by webbrowser itself. (Contributed by Dong-hee Na in bpo-42255.)

• The behavior of returning a value from a TestCase and IsolatedAsyncioTestCase test methods
(other than the default None value), is now deprecated.

• Deprecated the following unittest functions, scheduled for removal in Python 3.13:
– unittest.findTestCases()

– unittest.makeSuite()

– unittest.getTestCaseNames()

Use TestLoader method instead:
– unittest.TestLoader.loadTestsFromModule()

– unittest.TestLoader.loadTestsFromTestCase()

– unittest.TestLoader.getTestCaseNames()

(Contributed by Erlend E. Aasland in bpo-5846.)
• The turtle.RawTurtle.settiltangle() is deprecated since Python 3.1, it now emits a deprecation
warning and will be removed in Python 3.13. Use turtle.RawTurtle.tiltangle() instead (it was
earlier incorrectly marked as deprecated, its docstring is now corrected). (Contributed by Hugo van Kemenade
in bpo-45837.)

• The delegation of int() to __trunc__() is now deprecated. Calling int(a) when type(a) imple-
ments __trunc__() but not __int__() or __index__() now raises a DeprecationWarning.
(Contributed by Zackery Spytz in bpo-44977.)

• The following have been deprecated in configparser since Python 3.2. Their deprecation warnings have
now been updated to note they will removed in Python 3.12:
– the configparser.SafeConfigParser class
– the configparser.ParsingError.filename property
– the configparser.ParsingError.readfp() method

(Contributed by Hugo van Kemenade in bpo-45173.)
• The locale.getdefaultlocale() function is deprecated and will be removed in Python
3.13. Use locale.setlocale(), locale.getpreferredencoding(False) and locale.
getlocale() functions instead. (Contributed by Victor Stinner in bpo-46659.)

• The asynchat, asyncore and smtpd modules have been deprecated since at least Python 3.6. Their
documentation and deprecation warnings have now been updated to note they will removed in Python 3.12
(PEP 594). (Contributed by Hugo van Kemenade in bpo-47022.)

9

https://www.python.org/dev/peps/pep-0617
https://bugs.python.org/issue40360
https://bugs.python.org/issue47152
https://bugs.python.org/issue42255
https://bugs.python.org/issue5846
https://bugs.python.org/issue45837
https://bugs.python.org/issue44977
https://bugs.python.org/issue45173
https://bugs.python.org/issue46659
https://www.python.org/dev/peps/pep-0594
https://bugs.python.org/issue47022

10 Removed

• smtpd.MailmanProxy is now removed as it is unusable without an external module, mailman. (Con-
tributed by Dong-hee Na in bpo-35800.)

• The binhex module, deprecated in Python 3.9, is now removed. The following binascii functions, dep-
recated in Python 3.9, are now also removed:

– a2b_hqx(), b2a_hqx();
– rlecode_hqx(), rledecode_hqx().

The binascii.crc_hqx() function remains available.
(Contributed by Victor Stinner in bpo-45085.)

• The distutils bdist_msi command, deprecated in Python 3.9, is now removed. Use bdist_wheel (wheel
packages) instead. (Contributed by Hugo van Kemenade in bpo-45124.)

• Due to significant security concerns, the reuse_address parameter of asyncio.loop.
create_datagram_endpoint(), disabled in Python 3.9, is now entirely removed. This is because
of the behavior of the socket option SO_REUSEADDR in UDP. (Contributed by Hugo van Kemenade in
bpo-45129.)

• Removed __getitem__()methods of xml.dom.pulldom.DOMEventStream, wsgiref.util.
FileWrapper and fileinput.FileInput, deprecated since Python 3.9. (Contributed by Hugo van
Kemenade in bpo-45132.)

• The following deprecated functions and methods are removed in the gettext module: lgettext(),
ldgettext(), lngettext() and ldngettext().
Function bind_textdomain_codeset(), methods output_charset() and
set_output_charset(), and the codeset parameter of functions translation() and install()
are also removed, since they are only used for the l*gettext() functions. (Contributed by Dong-hee Na
and Serhiy Storchaka in bpo-44235.)

• The @asyncio.coroutine decorator enabling legacy generator-based coroutines to be compatible with
async/await code. The function has been deprecated since Python 3.8 and the removal was initially scheduled
for Python 3.10. Use async def instead. (Contributed by Illia Volochii in bpo-43216.)

• asyncio.coroutines.CoroWrapper used for wrapping legacy generator-based coroutine objects in
the debug mode. (Contributed by Illia Volochii in bpo-43216.)

• Removed the deprecated split() method of _tkinter.TkappType. (Contributed by Erlend E.
Aasland in bpo-38371.)

• Removed from the inspect module:
– the getargspec function, deprecated since Python 3.0; use inspect.signature() or
inspect.getfullargspec() instead.

– the formatargspec function, deprecated since Python 3.5; use the inspect.signature()
function and Signature object directly.

– the undocumented Signature.from_builtin and Signature.from_function functions,
deprecated since Python 3.5; use the Signature.from_callable() method instead.

(Contributed by Hugo van Kemenade in bpo-45320.)
• Remove namespace package support from unittest discovery. It was introduced in Python 3.4 but has been
broken since Python 3.7. (Contributed by Inada Naoki in bpo-23882.)

• Remove __class_getitem__ method from pathlib.PurePath, because it was not used and added
by mistake in previous versions. (Contributed by Nikita Sobolev in bpo-46483.)

• Remove the undocumented private float.__set_format__() method, previously known as float.
__setformat__() in Python 3.7. Its docstring said: “You probably don’t want to use this function. It
exists mainly to be used in Python’s test suite.” (Contributed by Victor Stinner in bpo-46852.)

10

https://bugs.python.org/issue35800
https://bugs.python.org/issue45085
https://bugs.python.org/issue45124
https://bugs.python.org/issue45129
https://bugs.python.org/issue45132
https://bugs.python.org/issue44235
https://bugs.python.org/issue43216
https://bugs.python.org/issue43216
https://bugs.python.org/issue38371
https://bugs.python.org/issue45320
https://bugs.python.org/issue23882
https://bugs.python.org/issue46483
https://bugs.python.org/issue46852

11 Porting to Python 3.11

This section lists previously described changes and other bugfixes that may require changes to your code.

11.1 Changes in the Python API

• Prohibited passing non-concurrent.futures.ThreadPoolExecutor executors to loop.
set_default_executor() following a deprecation in Python 3.8. (Contributed by Illia Volochii in
bpo-43234.)

• open(), io.open(), codecs.open() and fileinput.FileInput no longer accept 'U' (“uni-
versal newline”) in the file mode. This flag was deprecated since Python 3.3. In Python 3, the “universal
newline” is used by default when a file is open in text mode. The newline parameter of open() controls how
universal newlines works. (Contributed by Victor Stinner in bpo-37330.)

• The pdb module now reads the .pdbrc configuration file with the 'utf-8' encoding. (Contributed by
Srinivas Reddy Thatiparthy (���������� ������ ���������) in bpo-41137.)

• When sorting using tuples as keys, the order of the result may differ from earlier releases if the tuple elements
don’t define a total ordering (see expressions-value-comparisons for information on total ordering). It’s gener-
ally true that the result of sorting simply isn’t well-defined in the absence of a total ordering on list elements.

• calendar: The calendar.LocaleTextCalendar and calendar.LocaleHTMLCalendar
classes now use locale.getlocale(), instead of using locale.getdefaultlocale(), if no lo-
cale is specified. (Contributed by Victor Stinner in bpo-46659.)

• Global inline flags (e.g. (?i)) can now only be used at the start of the regular expressions. Using them not at
the start of expression was deprecated since Python 3.6. (Contributed by Serhiy Storchaka in bpo-47066.)

• re module: Fix a few long-standing bugs where, in rare cases, capturing group could get wrong result. So the
result may be different than before. (Contributed by Ma Lin in bpo-35859.)

• The population parameter of random.sample() must be a sequence. Automatic conversion of sets to
lists is no longer supported. If the sample size is larger than the population size, a ValueError is raised.
(Contributed by Raymond Hettinger in bpo-40465.)

12 Build Changes

• Building Python now requires a C11 compiler without optional C11 features. (Contributed by Victor Stinner
in bpo-46656.)

• Building Python now requires support of IEEE 754 floating point numbers. (Contributed by Victor Stinner in
bpo-46917.)

• CPython can now be built with the ThinLTO option via --with-lto=thin. (Contributed by Dong-hee
Na and Brett Holman in bpo-44340.)

• libpython is no longer linked against libcrypt. (Contributed by Mike Gilbert in bpo-45433.)
• Building Python now requires a C99 <math.h> header file providing the following functions: copysign(),
hypot(), isfinite(), isinf(), isnan(), round(). (Contributed by Victor Stinner in bpo-
45440.)

• Building Python now requires a C99 <math.h> header file providing a NAN constant, or the
__builtin_nan() built-in function. (Contributed by Victor Stinner in bpo-46640.)

• Building Python now requires support for floating point Not-a-Number (NaN): remove the Py_NO_NAN
macro. (Contributed by Victor Stinner in bpo-46656.)

• Freelists for object structs can now be disabled. A new configure option --without-freelists can
be used to disable all freelists except empty tuple singleton. (Contributed by Christian Heimes in bpo-45522)

11

https://bugs.python.org/issue43234
https://bugs.python.org/issue37330
https://bugs.python.org/issue41137
https://bugs.python.org/issue46659
https://bugs.python.org/issue47066
https://bugs.python.org/issue35859
https://bugs.python.org/issue40465
https://bugs.python.org/issue46656
https://bugs.python.org/issue46917
https://bugs.python.org/issue44340
https://bugs.python.org/issue45433
https://bugs.python.org/issue45440
https://bugs.python.org/issue45440
https://bugs.python.org/issue46640
https://bugs.python.org/issue46656
https://bugs.python.org/issue45522

• Modules/Setup and Modules/makesetup have been improved and tied up. Extension modules can
now be built through makesetup. All except some test modules can be linked statically into main binary
or library. (Contributed by Brett Cannon and Christian Heimes in bpo-45548, bpo-45570, bpo-45571, and
bpo-43974.)

• Build dependencies, compiler flags, and linker flags for most stdlib extension modules are now detected by
configure. libffi, libnsl, libsqlite3, zlib, bzip2, liblzma, libcrypt, Tcl/Tk libs, and uuid flags are detected
by pkg-config (when available). (Contributed by Christian Heimes and Erlend Egeberg Aasland in bpo-
45847, bpo-45747, and bpo-45763.)

Note: Use the environment variables TCLTK_CFLAGS and TCLTK_LIBS to manually specify the lo-
cation of Tcl/Tk headers and libraries. The configure options --with-tcltk-includes and
--with-tcltk-libs have been removed.

• CPython now has experimental support for cross compiling to WebAssembly platform
wasm32-emscripten. The effort is inspired by previous work like Pyodide. (Contributed by
Christian Heimes and Ethan Smith in bpo-40280.)

• CPython will now use 30-bit digits by default for the Python int implementation. Previously, the default was
to use 30-bit digits on platforms with SIZEOF_VOID_P >= 8, and 15-bit digits otherwise. It’s still possible
to explicitly request use of 15-bit digits via either the--enable-big-digits option to the configure script
or (for Windows) the PYLONG_BITS_IN_DIGIT variable in PC/pyconfig.h, but this option may be
removed at some point in the future. (Contributed by Mark Dickinson in bpo-45569.)

• The tkinter package now requires Tcl/Tk version 8.5.12 or newer. (Contributed by Serhiy Storchaka in
bpo-46996.)

13 C API Changes

• PyErr_SetExcInfo() no longer uses the type and traceback arguments, the interpreter now derives
those values from the exception instance (the value argument). The function still steals references of all three
arguments. (Contributed by Irit Katriel in bpo-45711.)

• PyErr_GetExcInfo() now derives the type and traceback fields of the result from the exception
instance (the value field). (Contributed by Irit Katriel in bpo-45711.)

• _frozen has a new is_package field to indicate whether or not the frozen module is a package. Previ-
ously, a negative value in the size field was the indicator. Now only non-negative values be used for size.
(Contributed by Kumar Aditya in bpo-46608.)

13.1 New Features

• Add a new PyType_GetName() function to get type’s short name. (Contributed by Hai Shi in bpo-42035.)
• Add a new PyType_GetQualName() function to get type’s qualified name. (Contributed by Hai Shi in
bpo-42035.)

• Add new PyThreadState_EnterTracing() and PyThreadState_LeaveTracing() functions
to the limitedCAPI to suspend and resume tracing and profiling. (Contributed byVictor Stinner in bpo-43760.)

• Added the Py_Version constant which bears the same value as PY_VERSION_HEX. (Contributed by
Gabriele N. Tornetta in bpo-43931.)

• Py_buffer and APIs are now part of the limited API and the stable ABI:
– PyObject_CheckBuffer()

– PyObject_GetBuffer()

– PyBuffer_GetPointer()

12

https://bugs.python.org/issue45548
https://bugs.python.org/issue45570
https://bugs.python.org/issue45571
https://bugs.python.org/issue43974
https://bugs.python.org/issue45847
https://bugs.python.org/issue45847
https://bugs.python.org/issue45747
https://bugs.python.org/issue45763
https://bugs.python.org/issue40280
https://bugs.python.org/issue45569
https://bugs.python.org/issue46996
https://bugs.python.org/issue45711
https://bugs.python.org/issue45711
https://bugs.python.org/issue46608
https://bugs.python.org/issue42035
https://bugs.python.org/issue42035
https://bugs.python.org/issue43760
https://bugs.python.org/issue43931

– PyBuffer_SizeFromFormat()

– PyBuffer_ToContiguous()

– PyBuffer_FromContiguous()

– PyBuffer_CopyData()

– PyBuffer_IsContiguous()

– PyBuffer_FillContiguousStrides()

– PyBuffer_FillInfo()

– PyBuffer_Release()

– PyMemoryView_FromBuffer()

– bf_getbuffer and bf_releasebuffer type slots
(Contributed by Christian Heimes in bpo-45459.)

• Added the PyType_GetModuleByDef function, used to get the module in which a method was defined,
in cases where this information is not available directly (via PyCMethod). (Contributed by Petr Viktorin in
bpo-46613.)

• Add new functions to pack and unpack C double (serialize and deserialize): PyFloat_Pack2(),
PyFloat_Pack4(), PyFloat_Pack8(), PyFloat_Unpack2(), PyFloat_Unpack4() and
PyFloat_Unpack8(). (Contributed by Victor Stinner in bpo-46906.)

• Add new functions to get frame object attributes: PyFrame_GetBuiltins(),
PyFrame_GetGenerator(), PyFrame_GetGlobals().

13.2 Porting to Python 3.11

• The old trashcan macros (Py_TRASHCAN_SAFE_BEGIN/Py_TRASHCAN_SAFE_END) are now depre-
cated. They should be replaced by the new macros Py_TRASHCAN_BEGIN and Py_TRASHCAN_END.
A tp_dealloc function that has the old macros, such as:

static void
mytype_dealloc(mytype *p)
{

PyObject_GC_UnTrack(p);
Py_TRASHCAN_SAFE_BEGIN(p);
...
Py_TRASHCAN_SAFE_END

}

should migrate to the new macros as follows:

static void
mytype_dealloc(mytype *p)
{

PyObject_GC_UnTrack(p);
Py_TRASHCAN_BEGIN(p, mytype_dealloc)
...
Py_TRASHCAN_END

}

Note that Py_TRASHCAN_BEGIN has a second argument which should be the deallocation function it is in.
To support older Python versions in the same codebase, you can define the following macros and use them
throughout the code (credit: these were copied from the mypy codebase):

13

https://bugs.python.org/issue45459
https://bugs.python.org/issue46613
https://bugs.python.org/issue46906

#if PY_MAJOR_VERSION >= 3 && PY_MINOR_VERSION >= 8
define CPy_TRASHCAN_BEGIN(op, dealloc) Py_TRASHCAN_BEGIN(op, dealloc)
define CPy_TRASHCAN_END(op) Py_TRASHCAN_END
#else
define CPy_TRASHCAN_BEGIN(op, dealloc) Py_TRASHCAN_SAFE_BEGIN(op)
define CPy_TRASHCAN_END(op) Py_TRASHCAN_SAFE_END(op)
#endif

• The PyType_Ready() function now raises an error if a type is defined with the Py_TPFLAGS_HAVE_GC
flag set but has no traverse function (PyTypeObject.tp_traverse). (Contributed by Victor Stinner in
bpo-44263.)

• Heap types with the Py_TPFLAGS_IMMUTABLETYPE flag can now inherit thePEP 590 vectorcall protocol.
Previously, this was only possible for static types. (Contributed by Erlend E. Aasland in bpo-43908)

• Since Py_TYPE() is changed to a inline static function, Py_TYPE(obj) = new_typemust be replaced
with Py_SET_TYPE(obj, new_type): see the Py_SET_TYPE() function (available since Python
3.9). For backward compatibility, this macro can be used:

#if PY_VERSION_HEX < 0x030900A4 && !defined(Py_SET_TYPE)
static inline void _Py_SET_TYPE(PyObject *ob, PyTypeObject *type)
{ ob->ob_type = type; }
#define Py_SET_TYPE(ob, type) _Py_SET_TYPE((PyObject*)(ob), type)
#endif

(Contributed by Victor Stinner in bpo-39573.)
• Since Py_SIZE() is changed to a inline static function, Py_SIZE(obj) = new_sizemust be replaced
with Py_SET_SIZE(obj, new_size): see the Py_SET_SIZE() function (available since Python
3.9). For backward compatibility, this macro can be used:

#if PY_VERSION_HEX < 0x030900A4 && !defined(Py_SET_SIZE)
static inline void _Py_SET_SIZE(PyVarObject *ob, Py_ssize_t size)
{ ob->ob_size = size; }
#define Py_SET_SIZE(ob, size) _Py_SET_SIZE((PyVarObject*)(ob), size)
#endif

(Contributed by Victor Stinner in bpo-39573.)
• <Python.h> no longer includes the header files <stdlib.h>, <stdio.h>, <errno.h> and
<string.h> when the Py_LIMITED_API macro is set to 0x030b0000 (Python 3.11) or higher. C
extensions should explicitly include the header files after #include <Python.h>. (Contributed by Vic-
tor Stinner in bpo-45434.)

• The non-limited API files cellobject.h, classobject.h, context.h, funcobject.h,
genobject.h and longintrepr.h have been moved to the Include/cpython directory. More-
over, the eval.h header file was removed. These files must not be included directly, as they are already
included in Python.h: Include Files. If they have been included directly, consider including Python.h
instead. (Contributed by Victor Stinner in bpo-35134.)

• The PyUnicode_CHECK_INTERNED() macro has been excluded from the limited C API. It was never
usable there, because it used internal structures which are not available in the limited C API. (Contributed by
Victor Stinner in bpo-46007.)

• The PyFrameObject structure member has been moved to the internal C API headers.
While the documentation notes that the PyFrameObject fields are subject to change at any time, they have
been stable for a long time and were used in several popular extensions.
In Python 3.11, the frame struct was reorganized to allow performance optimizations. Some fields were re-
moved entirely, as they were details of the old implementation.
PyFrameObject fields:

– f_back: use PyFrame_GetBack().

14

https://bugs.python.org/issue44263
https://www.python.org/dev/peps/pep-0590
https://bugs.python.org/issue43908
https://bugs.python.org/issue39573
https://bugs.python.org/issue39573
https://bugs.python.org/issue45434
https://bugs.python.org/issue35134
https://bugs.python.org/issue46007

– f_blockstack: removed.
– f_builtins: use PyFrame_GetBuiltins().
– f_code: use PyFrame_GetCode().
– f_gen: use PyFrame_GetGenerator().
– f_globals: use PyFrame_GetGlobals().
– f_iblock: removed.
– f_lasti: use PyObject_GetAttrString((PyObject*)frame, "f_lasti"). Code
using f_lasti with PyCode_Addr2Line() should use PyFrame_GetLineNumber() in-
stead.

– f_lineno: use PyFrame_GetLineNumber()
– f_locals: use PyFrame_GetLocals().
– f_stackdepth: removed.
– f_state: no public API (renamed to f_frame.f_state).
– f_trace: no public API.
– f_trace_lines: use PyObject_GetAttrString((PyObject*)frame,
"f_trace_lines").

– f_trace_opcodes: use PyObject_GetAttrString((PyObject*)frame,
"f_trace_opcodes").

– f_localsplus: no public API (renamed to f_frame.localsplus).
– f_valuestack: removed.

The Python frame object is now created lazily. A side effect is that the f_backmember must not be accessed
directly, since its value is now also computed lazily. The PyFrame_GetBack() function must be called
instead.
Debuggers that accessed the f_locals directly must call PyFrame_GetLocals() instead. They no
longer need to call PyFrame_FastToLocalsWithError() or PyFrame_LocalsToFast(), in
fact they should not call those functions. The necessary updating of the frame is now managed by the vir-
tual machine.
Code defining PyFrame_GetCode() on Python 3.8 and older:

#if PY_VERSION_HEX < 0x030900B1
static inline PyCodeObject* PyFrame_GetCode(PyFrameObject *frame)
{

Py_INCREF(frame->f_code);
return frame->f_code;

}
#endif

Code defining PyFrame_GetBack() on Python 3.8 and older:

#if PY_VERSION_HEX < 0x030900B1
static inline PyFrameObject* PyFrame_GetBack(PyFrameObject *frame)
{

Py_XINCREF(frame->f_back);
return frame->f_back;

}
#endif

Or use the pythoncapi_compat project to get these two functions on older Python versions.
• Changes of the PyThreadState structure members:

15

https://github.com/python/pythoncapi_compat

– frame: removed, use PyThreadState_GetFrame() (function added to Python 3.9 by bpo-
40429). Warning: the function returns a strong reference, need to call Py_XDECREF().

– tracing: changed, use PyThreadState_EnterTracing() and
PyThreadState_LeaveTracing() (functions added to Python 3.11 by bpo-43760).

– recursion_depth: removed, use (tstate->recursion_limit -
tstate->recursion_remaining) instead.

– stackcheck_counter: removed.
Code defining PyThreadState_GetFrame() on Python 3.8 and older:

#if PY_VERSION_HEX < 0x030900B1
static inline PyFrameObject* PyThreadState_GetFrame(PyThreadState *tstate)
{

Py_XINCREF(tstate->frame);
return tstate->frame;

}
#endif

Code defining PyThreadState_EnterTracing() and PyThreadState_LeaveTracing() on
Python 3.10 and older:

#if PY_VERSION_HEX < 0x030B00A2
static inline void PyThreadState_EnterTracing(PyThreadState *tstate)
{

tstate->tracing++;
#if PY_VERSION_HEX >= 0x030A00A1

tstate->cframe->use_tracing = 0;
#else

tstate->use_tracing = 0;
#endif
}

static inline void PyThreadState_LeaveTracing(PyThreadState *tstate)
{

int use_tracing = (tstate->c_tracefunc != NULL || tstate->c_profilefunc !=␣
↪→NULL);

tstate->tracing--;
#if PY_VERSION_HEX >= 0x030A00A1

tstate->cframe->use_tracing = use_tracing;
#else

tstate->use_tracing = use_tracing;
#endif
}
#endif

Or use the pythoncapi_compat project to get these functions on old Python functions.
• Distributors are encouraged to build Python with the optimized Blake2 library libb2.
• Move the private undocumented _PyEval_EvalFrameDefault() function to the internal C API. The
function now uses the _PyInterpreterFrame type which is part of the internal C API. (Contributed by
Victor Stinner in bpo-46850.)

• Move the private_PyFrameEvalFunction type, and private_PyInterpreterState_GetEvalFrameFunc()
and _PyInterpreterState_SetEvalFrameFunc() functions to the internal C API. The
_PyFrameEvalFunction callback function type now uses the _PyInterpreterFrame type which
is part of the internal C API. (Contributed by Victor Stinner in bpo-46850.)

16

https://bugs.python.org/issue40429
https://bugs.python.org/issue40429
https://bugs.python.org/issue43760
https://github.com/python/pythoncapi_compat
https://www.blake2.net/
https://bugs.python.org/issue46850
https://bugs.python.org/issue46850

13.3 Deprecated

• Deprecate the following functions to configure the Python initialization:
– PySys_AddWarnOptionUnicode()

– PySys_AddWarnOption()

– PySys_AddXOption()

– PySys_HasWarnOptions()

– Py_SetPath()

– Py_SetProgramName()

– Py_SetPythonHome()

– Py_SetStandardStreamEncoding()

– _Py_SetProgramFullPath()

Use the new PyConfig API of the Python Initialization Configuration instead (PEP 587). (Contributed by
Victor Stinner in bpo-44113.)

• Deprecate the ob_shash member of the PyBytesObject. Use PyObject_Hash() instead. (Con-
tributed by Inada Naoki in bpo-46864.)

13.4 Removed

• PyFrame_BlockSetup() and PyFrame_BlockPop() have been removed. (Contributed by Mark
Shannon in bpo-40222.)

• Remove the following math macros using the errno variable:
– Py_ADJUST_ERANGE1()

– Py_ADJUST_ERANGE2()

– Py_OVERFLOWED()

– Py_SET_ERANGE_IF_OVERFLOW()

– Py_SET_ERRNO_ON_MATH_ERROR()

(Contributed by Victor Stinner in bpo-45412.)
• Remove Py_UNICODE_COPY() and Py_UNICODE_FILL() macros, deprecated since Python 3.3. Use
PyUnicode_CopyCharacters() or memcpy() (wchar_t* string), and PyUnicode_Fill()
functions instead. (Contributed by Victor Stinner in bpo-41123.)

• Remove the pystrhex.h header file. It only contains private functions. C extensions should only include
the main <Python.h> header file. (Contributed by Victor Stinner in bpo-45434.)

• Remove the Py_FORCE_DOUBLE() macro. It was used by the Py_IS_INFINITY() macro. (Con-
tributed by Victor Stinner in bpo-45440.)

• The following items are no longer available when Py_LIMITED_API is defined:
– PyMarshal_WriteLongToFile()

– PyMarshal_WriteObjectToFile()

– PyMarshal_ReadObjectFromString()

– PyMarshal_WriteObjectToString()

– the Py_MARSHAL_VERSION macro
These are not part of the limited API.
(Contributed by Victor Stinner in bpo-45474.)

17

https://www.python.org/dev/peps/pep-0587
https://bugs.python.org/issue44113
https://bugs.python.org/issue46864
https://bugs.python.org/issue40222
https://bugs.python.org/issue45412
https://bugs.python.org/issue41123
https://bugs.python.org/issue45434
https://bugs.python.org/issue45440
https://bugs.python.org/issue45474

• Exclude PyWeakref_GET_OBJECT() from the limited C API. It never worked since the
PyWeakReference structure is opaque in the limited C API. (Contributed by Victor Stinner in
bpo-35134.)

• Remove the PyHeapType_GET_MEMBERS() macro. It was exposed in the public C API by mistake, it
must only be used by Python internally. Use the PyTypeObject.tp_members member instead. (Con-
tributed by Victor Stinner in bpo-40170.)

• Remove the HAVE_PY_SET_53BIT_PRECISION macro (moved to the internal C API). (Contributed by
Victor Stinner in bpo-45412.)

18

https://bugs.python.org/issue35134
https://bugs.python.org/issue40170
https://bugs.python.org/issue45412

Index
E
environment variable

PYTHONNODEBUGRANGES, 3

P
Python Enhancement Proposals

PEP 515, 5
PEP 552, 4
PEP 587, 17
PEP 590, 14
PEP 594, 9
PEP 617, 9
PEP 654, 2
PEP 657, 3
PEP 673, 2

PYTHONNODEBUGRANGES, 3

19

	Summary – Release highlights
	New Features
	Enhanced error locations in tracebacks
	Column information for code objects
	Exceptions can be enriched with a string __note__

	Other Language Changes
	Other CPython Implementation Changes
	New Modules
	Improved Modules
	asyncio
	fractions
	hashlib
	IDLE and idlelib
	inspect
	math
	operator
	os
	re
	shutil
	socket
	sqlite3
	sys
	sysconfig
	threading
	time
	unicodedata
	venv
	zipfile
	fcntl

	Optimizations
	CPython bytecode changes
	Deprecated
	Removed
	Porting to Python 3.11
	Changes in the Python API

	Build Changes
	C API Changes
	New Features
	Porting to Python 3.11
	Deprecated
	Removed

	Index

