Enum HOWTO

Release 3.11.0a0

Guido van Rossum
and the Python development team

September 02, 2021

Python Software Foundation
Email: docs@python.org

Contents
1 Basic Enum Tutorial 2
2 Programmatic access to enumeration members and their attributes 4
3 Duplicating enum members and values 5
4 Ensuring unique enumeration values 5
5 Using automatic values 6
6 Iteration 6
7 Comparisons 7
8 Allowed members and attributes of enumerations 7
9 Restricted Enum subclassing 8
10 Pickling 8
11 Functional API 9
12 Derived Enumerations 10
121 IntEnum . . . . . oo e e e e e e e e 10
122 StrEnum . . . . oL e e e e e e e e e 11
123 IntFlag . . . . . . e e e e e 11
124 Flag . . . . o e e 13
12.5 Others . . . . . o e e e e e e e e e e 14
13 When to use __new__ () vs. __init__ () 14
13.1 Finer Points . . . . . . . . . o e e e e e e e e e e e e 15
14 How are Enums different? 19
14.1 Enum Classes . . . . . o v v i e e e e e e e e e e e e e e e e 19
14.2 Enum Members (aka inStances) . . . . . . v v v v v i i e e e e e e e e e e e e e e e e e e 19
14.3 Omitting values . . . . . . o v v et e e e e e e e e e e e e e e e e e e e e e e 19
14.4 OrderedEnum . . . . . . . . . L e e e 21
14.5 DuplicateFreeEnum . . . . . . . . . . ... e 22
14.6 Planet . . . . . . . . e e e e e e e 22



14.7 TimePeriod . . . . . . . . . e e e e e e e 23
14.8 Conforminginputto Flag . . . . . . . . . . . o e 23

15 Subclassing EnumType 23

Author Ethan Furman <ethan at stoneleaf dot us>

1 Basic Enum Tutorial

An Enum is a set of symbolic names bound to unique values. They are similar to global variables, but they offer a
more useful repr (), grouping, type-safety, and a few other features.

They are most useful when you have a variable that can take one of a limited selection of values. For example, the
days of the week:

>>> from enum import Enum

>>> class Weekday (Enum) :
MONDAY = 1
TUESDAY = 2
WEDNESDAY = 3
THURSDAY 4
FRIDAY =
SATURDAY = 6
SUNDAY =

ol

~J

As you can see, creating an Enum is as simple as writing a class that inherits from Enum itself.

Note: Case of Enum Members

Because Enums are used to represent constants we recommend using UPPER_CASE names for members, and will
be using that style in our examples.

Depending on the nature of the enum a member’s value may or may not be important, but either way that value can
be used to get the corresponding member:

>>> Weekday (3)
Weekday .WEDNESDAY

As you can see, the repr () of a member shows the enum name and the member name. The str () on a member
shows only its name:

>>> print (Weekday.THURSDAY)
THURSDAY

The type of an enumeration member is the enum it belongs to:

>>> type (Weekday.MONDAY)

<enum 'Weekday'>

>>> isinstance (Weekday.FRIDAY, Weekday)
True

Enum members have an attribute that contains just their name:

>>> print (Weekday.TUESDAY.name)
TUESDAY

Likewise, they have an attribute for their value:




>>> Weekday.WEDNESDAY.value
3

Unlike many languages that treat enumerations solely as name/value pairs, Python Enums can have behavior added.
For example, datet ime . date has two methods for returning the weekday: weekday () and i soweekday ().
The difference is that one of them counts from 0-6 and the other from 1-7. Rather than keep track of that ourselves
we can add a method to the Weekday enum to extract the day from the date instance and return the matching
enum member:

@classmethod
def from_date(cls, date):
return cls (date.isoweekday())

The complete Weekday enum now looks like this:

>>> class Weekday (Enum) :
MONDAY = 1
TUESDAY = 2
WEDNESDAY = 3
THURSDAY = 4
FRIDAY = 5
SATURDAY
SUNDAY = 7
#
@classmethod
def from_date(cls, date):

return cls (date.isoweekday())

I
o

Now we can find out what today is! Observe:

>>> from datetime import date
>>> Weekday.from_date (date.today())
Weekday.TUESDAY

Of course, if you're reading this on some other day, you’ll see that day instead.

This Weekday enum is great if our variable only needs one day, but what if we need several? Maybe we’re writing
a function to plot chores during a week, and don’t want to use a 1ist — we could use a different type of Enum:

>>> from enum import Flag

>>> class Weekday (Flag) :
MONDAY = 1
TUESDAY = 2
WEDNESDAY = 4
THURSDAY = 8
FRIDAY = 16
SATURDAY = 32
SUNDAY = 64

We’ve changed two things: we're inherited from F1ag, and the values are all powers of 2.

Just like the original Weekday enum above, we can have a single selection:

>>> first_week_day = Weekday.MONDAY
>>> first_week_day
Weekday .MONDAY

But F1ag also allows us to combine several members into a single variable:

>>> weekend = Weekday.SATURDAY | Weekday.SUNDAY
>>> weekend
Weekday.SATURDAY | Weekday . SUNDAY




You can even iterate over a F'1ag variable:

>>> for day in weekend:
c.. print (day)
SATURDAY
SUNDAY

Okay, let’s get some chores set up:

>>> chores_for_ethan = {
'feed the cat': Weekday.MONDAY | Weekday.WEDNESDAY | Weekday.FRIDAY,
'do the dishes': Weekday.TUESDAY | Weekday.THURSDAY,
'answer SO questions': Weekday.SATURDAY,
}

And a function to display the chores for a given day:

>>> def show_chores (chores, day):
for chore, days in chores.items() :
if day in days:
C.. print (chore)
>>> show_chores (chores_for_ethan, Weekday.SATURDAY)
answer SO questions

In cases where the actual values of the members do not matter, you can save yourself some work and use auto ()
for the values:

>>> from enum import auto

>>> class Weekday (Flag) :
MONDAY = auto ()
TUESDAY = auto()
WEDNESDAY = auto()
THURSDAY = auto ()
FRIDAY = auto()
SATURDAY = auto()
SUNDAY = auto()

2 Programmatic access to enumeration members and their at-
tributes

Sometimes it’s useful to access members in enumerations programmatically (i.e. situations where Color . RED won’t
do because the exact color is not known at program-writing time). Enum allows such access:

>>> Color (1)
Color.RED
>>> Color (3)
Color.BLUE

If you want to access enum members by name, use item access:

>>> Color['RED']
Color.RED

>>> Color['GREEN']
Color.GREEN

If you have an enum member and need its name or value:

>>> member = Color.RED
>>> member.name

(continues on next page)




(continued from previous page)

'RED'
>>> member.value
1

3 Duplicating enum members and values

Having two enum members with the same name is invalid:

>>> class Shape (Enum) :
SQUARE = 2
SQUARE = 3

Traceback (most recent call last):

TypeError: 'SQUARE' already defined as: 2

However, an enum member can have other names associated with it. Given two entries A and B with the same value
(and A defined first), B is an alias for the member A. By-value lookup of the value of A will return the member A.
By-name lookup of A will return the member A. By-name lookup of B will also return the member A:

>>> class Shape (Enum) :

SQUARE = 2
DIAMOND = 1
CIRCLE = 3

ALIAS_FOR_SQUARE = 2

>>> Shape.SQUARE
Shape.SQUARE

>>> Shape.ALIAS_FOR_SQUARE
Shape.SQUARE

>>> Shape (2)

Shape.SQUARE

Note: Attempting to create a member with the same name as an already defined attribute (another member, a
method, etc.) or attempting to create an attribute with the same name as a member is not allowed.

4 Ensuring unique enumeration values

By default, enumerations allow multiple names as aliases for the same value. When this behavior isn’t desired, you
can use the unique () decorator:

>>> from enum import Enum, unique
>>> @unique
class Mistake (Enum) :

ONE = 1
TWO = 2
THREE = 3
FOUR = 3

Traceback (most recent call last):

ValueError: duplicate values found in <enum 'Mistake'>: FOUR -> THREE




5 Using automatic values

If the exact value is unimportant you can use auto:

>>> from enum import Enum, auto
>>> class Color (Enum) :

RED = auto ()

BLUE = auto ()

GREEN = auto ()

>>> [member.value for member in Color]
(1, 2, 3]

The values are chosen by _generate_next_value_ (), which can be overridden:

>>> class AutoName (Enum) :
def _generate_next_value_ (name, start, count, last_values):
return name

>>> class Ordinal (AutoName) :
NORTH = auto()
SOUTH = auto ()
EAST = auto ()
WEST auto ()

>>> [member.value for member in Ordinal]
['NORTH', 'SOUTH', 'EAST', 'WEST']

Note: The _generate_next_value_ () method must be defined before any members.

6 Iteration

Iterating over the members of an enum does not provide the aliases:

>>> list (Shape)
[Shape.SQUARE, Shape.DIAMOND, Shape.CIRCLE]

The special attribute __members___ is a read-only ordered mapping of names to members. It includes all names
defined in the enumeration, including the aliases:

>>> for name, member in Shape._ _members__.items () :
name, member

('"SQUARE', Shape.SQUARE)
('DIAMOND', Shape.DIAMOND)
('CIRCLE', Shape.CIRCLE)
('"ALIAS_FOR_SQUARE', Shape.SQUARE)

The __members___ attribute can be used for detailed programmatic access to the enumeration members. For
example, finding all the aliases:

>>> [name for name, member in Shape.__members__.items () if member.name != name]
["ALIAS_FOR_SQUARE']




7 Comparisons

Enumeration members are compared by identity:

>>> Color.RED is Color.RED

True

>>> Color.RED is Color.BLUE
False

>>> Color.RED is not Color.BLUE
True

Ordered comparisons between enumeration values are not supported. Enum members are not integers (but see /n-
tEnum below):

>>> Color.RED < Color.BLUE
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: '<' not supported between instances of 'Color' and 'Color'

Equality comparisons are defined though:

>>> Color.BLUE == Color.RED
False

>>> Color.BLUE != Color.RED
True

>>> Color.BLUE == Color.BLUE
True

Comparisons against non-enumeration values will always compare not equal (again, Int Enum was explicitly designed
to behave differently, see below):

>>> Color.BLUE ==
False

8 Allowed members and attributes of enumerations

Most of the examples above use integers for enumeration values. Using integers is short and handy (and provided by
default by the Functional API), but not strictly enforced. In the vast majority of use-cases, one doesn’t care what the
actual value of an enumeration is. But if the value is important, enumerations can have arbitrary values.

Enumerations are Python classes, and can have methods and special methods as usual. If we have this enumeration:

>>> class Mood (Enum) :
FUNKY = 1
HAPPY = 3

def describe(self):
# self is the member here
return self.name, self.value

def @ str__ (self):
return 'my custom str! '.format (self.value)

@classmethod

def favorite_mood(cls):
# cls here is the enumeration
return cls.HAPPY

Then:




>>> Mood.favorite_mood ()
Mood.HAPPY

>>> Mood.HAPPY.describe ()
('"HAPPY', 3)

>>> str (Mood.FUNKY)

'my custom str! 1°'

The rules for what is allowed are as follows: names that start and end with a single underscore are reserved by enum
and cannot be used; all other attributes defined within an enumeration will become members of this enumeration,
with the exception of special methods (__str__ (),__add__ (), etc.), descriptors (methods are also descriptors),
and variable names listed in _ignore_.

Note: if your enumeration defines __new___ () and/or __init__ () then any value(s) given to the enum member
will be passed into those methods. See Planet for an example.

9 Restricted Enum subclassing

A new Enum class must have one base enum class, up to one concrete data type, and as many object-based mixin
classes as needed. The order of these base classes is:

class EnumName ([mix—-in, ...,] [data-type,] base-enum):
pass

Also, subclassing an enumeration is allowed only if the enumeration does not define any members. So this is forbidden:

>>> class MoreColor (Color) :
PINK = 17

Traceback (most recent call last):

TypeError: MoreColor: cannot extend enumeration 'Color'

But this is allowed:

>>> class Foo (Enum) :
def some_behavior (self) :
pass

>>> class Bar (Foo) :
HAPPY = 1
SAD = 2

Allowing subclassing of enums that define members would lead to a violation of some important invariants of types
and instances. On the other hand, it makes sense to allow sharing some common behavior between a group of
enumerations. (See OrderedEnum for an example.)

10 Pickling

Enumerations can be pickled and unpickled:

>>> from test.test_enum import Fruit

>>> from pickle import dumps, loads

>>> Fruit.TOMATO is loads (dumps (Fruit.TOMATO))
True

The usual restrictions for pickling apply: picklable enums must be defined in the top level of a module, since unpickling
requires them to be importable from that module.




Note: With pickle protocol version 4 it is possible to easily pickle enums nested in other classes.

It is possible to modify how enum members are pickled/unpickled by defining _reduce_ex__ () in the enumer-
ation class.

11 Functional API

The Enum class is callable, providing the following functional API:

>>> Animal = Enum('Animal', 'ANT BEE CAT DOG'")
>>> Animal

<enum 'Animal'>

>>> Animal.ANT

Animal.ANT

>>> Animal.ANT.value

1

>>> list (Animal)

[Animal.ANT, Animal.BEE, Animal.CAT, Animal.DOG]

The semantics of this API resemble namedtuple. The first argument of the call to Enum is the name of the
enumeration.

The second argument is the source of enumeration member names. It can be a whitespace-separated string of names,
a sequence of names, a sequence of 2-tuples with key/value pairs, or a mapping (e.g. dictionary) of names to values.
The last two options enable assigning arbitrary values to enumerations; the others auto-assign increasing integers
starting with 1 (use the start parameter to specify a different starting value). A new class derived from Enum is
returned. In other words, the above assignment to Animal is equivalent to:

>>> class Animal (Enum) :

ANT = 1
BEE = 2
CAT = 3
DOG = 4

The reason for defaulting to 1 as the starting number and not O is that 0 is False in a boolean sense, but by default
enum members all evaluate to True.

Pickling enums created with the functional API can be tricky as frame stack implementation details are used to try and
figure out which module the enumeration is being created in (e.g. it will fail if you use a utility function in a separate
module, and also may not work on IronPython or Jython). The solution is to specify the module name explicitly as
follows:

>>> Animal = Enum('Animal', 'ANT BEE CAT DOG', module=__ name_ )

Warning: If module is not supplied, and Enum cannot determine what it is, the new Enum members will not
be unpicklable; to keep errors closer to the source, pickling will be disabled.

The new pickle protocol 4 also, in some circumstances, relies on __qualname___ being set to the location where
pickle will be able to find the class. For example, if the class was made available in class SomeData in the global
scope:

>>> Animal = Enum('Animal', 'ANT BEE CAT DOG', qualname='SomeData.Animal')

The complete signature is:




Enum (
value="'NewEnumName',

names=<...>,

*

r
module="...",
qualname="'...",
type=<mixed-in class>,
start=1,

)

value What the new enum class will record as its name.

names The enum members. This can be a whitespace- or comma-separated string (values will start at
1 unless otherwise specified):

"RED GREEN BLUE' | 'RED,GREEN,BLUE' | 'RED, GREEN, BLUE' ‘

or an iterator of names:

’['RED', "GREEN', 'BLUE'] ‘

or an iterator of (name, value) pairs:

’[('CYAN', 4), ('MAGENTA', 5), ('YELLOW', 6)] ‘

or a mapping:

’{'CHARTREUSE': 7, 'SEA_GREEN': 11, 'ROSEMARY': 42} ‘

module name of module where new enum class can be found.
qualname where in module new enum class can be found.
type type to mix in to new enum class.

start number to start counting at if only names are passed in.

Changed in version 3.5: The start parameter was added.

12 Derived Enumerations

12.1 IntEnum

The first variation of Enum that is provided is also a subclass of int. Members of an IntEnum can be compared
to integers; by extension, integer enumerations of different types can also be compared to each other:

>>> from enum import IntEnum
>>> class Shape (IntEnum) :
CIRCLE = 1
SQUARE = 2

>>> class Request (IntEnum) :
POST = 1
GET = 2

Il
1
[EN

>>> Shape
False

>>> Shape.CIRCLE == 1

True

>>> Shape.CIRCLE == Request.POST
True

10




However, they still can’t be compared to standard Enum enumerations:

>>> class Shape (IntEnum) :
CIRCLE = 1
SQUARE = 2

>>> class Color (Enum) :
RED = 1
GREEN = 2

>>> Shape.CIRCLE == Color.RED
False

IntEnum values behave like integers in other ways you'd expect:

>>> int (Shape.CIRCLE)

1

>>> ['a', 'b', 'c'][Shape.CIRCLE]
lbl

>>> [1 for i in range (Shape.SQUARE) ]
[0, 1]

12.2 StrEnum

The second variation of Enum that is provided is also a subclass of str. Members of a St rEnum can be compared
to strings; by extension, string enumerations of different types can also be compared to each other. St rEnum exists
to help avoid the problem of getting an incorrect member:

>>> from enum import StrEnum

>>> class Directions (StrEnum) :
NORTH = 'north', # notice the trailing comma
SOUTH = 'south'

Before St rEnum, Directions.NORTH would have been the tuple ('north',).

New in version 3.10.

12.3 IntFlag

The next variation of Enum provided, IntFlag, is also based on int. The difference being IntF1lag members
can be combined using the bitwise operators (&, |, », ~) and the result is still an IntF1lag member, if possible.
However, as the name implies, IntF1ag members also subclass int and can be used wherever an int is used.

Note: Any operation on an IntFlag member besides the bit-wise operations will lose the IntF1ag membership.

Bit-wise operations that result in invalid IntFlag values will lose the IntFlag membership. See
FlagBoundary for details.

New in version 3.6.
Changed in version 3.10.

Sample IntFlag class:

>>> from enum import IntFlag
>>> class Perm(IntFlagqg):

R =4
W = 2
X =1

(continues on next page)

11




(continued from previous page)

>>> Perm.R | Perm.W
Perm.R|Perm.W

>>> Perm.R + Perm.W

6

>>> RW = Perm.R | Perm.W
>>> Perm.R in RW

True

It is also possible to name the combinations:

>>> class Perm(IntFlag):
R =4
W = 2
X =1
Ce RWX = 7
>>> Perm.RWX
Perm.RWX
>>> ~Perm.RWX
Perm (0)
>>> Perm(7)
Perm.RWX

Note: Named combinations are considered aliases. Aliases do not show up during iteration, but can be returned
from by-value lookups.

Changed in version 3.10.

Another important difference between IntFlag and Enum is that if no flags are set (the value is 0), its boolean
evaluation is False:

>>> Perm.R & Perm.X

Perm (0)

>>> pbool (Perm.R & Perm.X)
False

Because IntFlag members are also subclasses of int they can be combined with them (but may lose IntFlag
membership:

>>> Perm.X | 4
Perm.R|Perm.X

>>> Perm.X | 8
9

Note: The negation operator, ~, always returns an IntF1lag member with a positive value:

>>> (~Perm.X) .value == (Perm.R|Perm.W).value == 6
True

IntFlag members can also be iterated over:

>>> list (RW)
[Perm.R, Perm.W]

New in version 3.10.

12




12.4 Flag

The last variation is Flag. Like IntFlag, F1lag members can be combined using the bitwise operators (&, |, #,
~). Unlike IntFlag, they cannot be combined with, nor compared against, any other F 1 ag enumeration, nor int.
While it is possible to specify the values directly it is recommended to use aut o as the value and let F1ag select an
appropriate value.

New in version 3.6.

Like IntFlag, if a combination of F1ag members results in no flags being set, the boolean evaluation is False:

>>> from enum import Flag, auto
>>> class Color (Flag):

RED = auto ()

BLUE = auto()

GREEN = auto ()

>>> Color.RED & Color.GREEN
Color (0)

>>> bool (Color.RED & Color.GREEN)
False

Individual flags should have values that are powers of two (1, 2, 4, 8, ...), while combinations of flags won’t:

>>> class Color (Flag):
RED = auto()
BLUE = auto()
GREEN = auto ()
WHITE = RED | BLUE | GREEN

>>> Color.WHITE
Color.WHITE

Giving a name to the “no flags set” condition does not change its boolean value:

>>> class Color (Flag):
BLACK = 0
RED = auto ()
BLUE = auto ()
GREEN = auto ()

>>> Color.BLACK
Color.BLACK

>>> bool (Color.BLACK)
False

F1lag members can also be iterated over:

>>> purple = Color.RED | Color.BLUE
>>> list (purple)
[Color.RED, Color.BLUE]

New in version 3.10.

Note: For the majority of new code, Enum and F 1ag are strongly recommended, since IntEnumand IntFlag
break some semantic promises of an enumeration (by being comparable to integers, and thus by transitivity to other
unrelated enumerations). IntEnum and IntFlag should be used only in cases where Enum and F1lag will not
do; for example, when integer constants are replaced with enumerations, or for interoperability with other systems.

13




12.5 Others

While IntEnum is part of the enum module, it would be very simple to implement independently:

class IntEnum(int, Enum) :
pass

This demonstrates how similar derived enumerations can be defined; for example a St rEnum that mixes in str
instead of int.

Some rules:

1. When subclassing Enum, mix-in types must appear before Enum itself in the sequence of bases, as in the
IntEnum example above.

2. While Enum can have members of any type, once you mix in an additional type, all the members must have
values of that type, e.g. int above. This restriction does not apply to mix-ins which only add methods and
don’t specify another type.

3. When another data type is mixed in, the value attribute is not the same as the enum member itself, although
it is equivalent and will compare equal.

4. %-style formatting: %s and %r call the Enum class’s __str__ () and __repr__ () respectively; other
codes (such as %i or %h for IntEnum) treat the enum member as its mixed-in type.

5. Formatted string literals, str. format (), and format () will use the mixed-in type’s __format__ ()
unless __str__ () or___format__ () is overridden in the subclass, in which case the overridden methods
or Enum methods will be used. Use the !s and !r format codes to force usage of the Enumclass’s__str__ ()
and ___repr__ () methods.

13 Whentouse _new_ () vs. __init__ ()

__new___ () must be used whenever you want to customize the actual value of the Enum member. Any other
modifications may go in either __new__ () or __init__ (),with__init__ () being preferred.

For example, if you want to pass several items to the constructor, but only want one of them to be the value:

>>> class Coordinate (bytes, Enum) :

mmn

Coordinate with binary codes that can be indexed by the int code.
def _ new__ (cls, value, label, unit):

obj = bytes.__new__ (cls, [value])

obj._value_ = value

obj.label = label

obj.unit = unit
return obj
PX = (0, 'P.X', 'km')
PY = (1, 'P.Y', 'km')

VX = (2, 'V.X', 'km/s')
VY (3, 'V.Y', 'km/s")

>>> print (Coordinate['PY"'])
PY

>>> print (Coordinate (3))
vY

14




13.1 Finer Points

Supported __dunder__ names

__members___isaread-only ordered mapping of member_name:member items. It is only available on the class.

__new___(),if specified, must create and return the enum members; it is also a very good idea to set the member’s
_value_ appropriately. Once all the members are created it is no longer used.

Supported _sunder_nhames

e _name_ — name of the member
e _value_ —value of the member; can be set / modified in __new___
e _missing_ — alookup function used when a value is not found; may be overridden

e _ignore_ —alist of names, either as a 1ist ora str, that will not be transformed into members, and will
be removed from the final class

e _order_ —used in Python 2/3 code to ensure member order is consistent (class attribute, removed during
class creation)

* _generate_next_value_ —used by the Functional API and by auto to get an appropriate value for an
enum member; may be overridden

Note: For standard Enum classes the next value chosen is the last value seen incremented by one.

For F1ag classes the next value chosen will be the next highest power-of-two, regardless of the last value seen.

New in version 3.6: _missing_,_order_, _generate_next_value_
New in version 3.7: _ignore_

To help keep Python 2 / Python 3 code in sync an _order_ attribute can be provided. It will be checked against
the actual order of the enumeration and raise an error if the two do not match:

>>> class Color (Enum) :
_order_ = 'RED GREEN BLUE'
RED = 1
BLUE = 3
GREEN = 2

Traceback (most recent call last):
TypeError: member order does not match _order_:

['RED', 'BLUE', 'GREEN']
['RED', 'GREEN', 'BLUE']

Note: In Python 2 code the _order__ attribute is necessary as definition order is lost before it can be recorded.

15




_Private__names

Private names are not converted to enum members, but remain normal attributes.

Changed in version 3.10.

Enum member type

Enum members are instances of their enum class, and are normally accessed as EnumClass .member. In Python

versions 3.5 to 3. 9 you could access members from other members — this practice was discouraged, and in 3.12
Enum will return to not allowing it, while in 3. 10 and 3. 11 it will raise a DeprecationWarning:

>>> class FieldTypes (Enum) :

name = 0
value = 1
size = 2

>>> FieldTypes.value.size

DeprecationWarning: accessing one member from another is not supported,
and will be disabled in 3.12

<FieldTypes.size: 2>

Changed in version 3.5.
Changed in version 3.10.
Creating members that are mixed with other data types

When subclassing other data types, such as int or st r, with an Enum, all values after the = are passed to that data
type’s constructor. For example:

>>> class MyEnum (IntEnum) :

example = '11', 16 # '11'" will be interpreted as a hexadecimal
R # number
>>> MyEnum.example.value
17

Boolean value of Enum classes and members

Enum classes that are mixed with non-Enum types (such as int, str, etc.) are evaluated according to the mixed-in
type’s rules; otherwise, all members evaluate as True. To make your own enum’s boolean evaluation depend on the
member’s value add the following to your class:

def _ bool__ (self):
return bool (self.value)

Plain Enum classes always evaluate as True.

16




Enum classes with methods

If you give your enum subclass extra methods, like the Planet class below, those methods will show upina dir ()
of the member, but not of the class:

>>> dir (Planet)

['EARTH', 'JUPITER', 'MARS', 'MERCURY', 'NEPTUNE', 'SATURN', 'URANUS', 'VENUS', '_
—~class__ ', '__doc__ ', '__members_ ', '_ _module_ ']

>>> dir (Planet.EARTH)

['"_class__', '__doc__'", '_module__', 'mass', 'name', 'radius', 'surface_gravity',

— 'value']

Combining members of Flag

Iterating over a combination of F1ag members will only return the members that are comprised of a single bit:

>>> class Color (Flag):
RED = auto ()
GREEN = auto ()
BLUE = auto ()
MAGENTA = RED | BLUE
YELLOW = RED | GREEN
CYAN = GREEN | BLUE

>>> Color (3) # named combination

Color.YELLOW
>>> Color (7) # not named combination

Color.RED|Color.GREEN|Color.BLUE

StrEnum and str.__str__ ()

An important difference between St rEnum and other Enums is the __str__ () method; because St rEnum
members are strings, some parts of Python will read the string data directly, while others will call str (). To make
those two operations have the same result, St rEnum.__str__ () will be the same as str.__str__ () so that
str (StrEnum.member) == StrEnum.member is true.

Flag and IntFlag minutia

Using the following snippet for our examples:

>>> class Color (IntFlag):

BLACK = 0
RED = 1
GREEN = 2
BLUE = 4

PURPLE = RED | BLUE
WHITE = RED | GREEN | BLUE

the following are true:
* single-bit flags are canonical
» multi-bit and zero-bit flags are aliases

* only canonical flags are returned during iteration:

>>> list (Color.WHITE)
[Color.RED, Color.GREEN, Color.BLUE]

17



* negating a flag or flag set returns a new flag/flag set with the corresponding positive integer value:

>>> Color.BLUE
Color.BLUE

>>> ~Color.BLUE
Color.RED|Color.GREEN

» names of pseudo-flags are constructed from their members’ names:

>>> (Color.RED | Color.GREEN) .name
'RED | GREEN"'

« multi-bit flags, aka aliases, can be returned from operations:

>>> Color.RED | Color.BLUE
Color.PURPLE

>>> Color (7) # or Color(-1)
Color.WHITE

>>> Color (0)
Color.BLACK

¢ membership / containment checking has changed slightly — zero-valued flags are never considered to be con-
tained:

>>> Color.BLACK in Color.WHITE
False

otherwise, if all bits of one flag are in the other flag, True is returned:

>>> Color.PURPLE in Color.WHITE
True

There is a new boundary mechanism that controls how out-of-range / invalid bits are handled: STRICT, CONFORU,
EJECT, and KEEP:

» STRICT —> raises an exception when presented with invalid values
¢ CONFORM —> discards any invalid bits
* EJECT —> lose Flag status and become a normal int with the given value
* KEEP —> keep the extra bits
— keeps Flag status and extra bits
— extra bits do not show up in iteration
— extra bits do show up in repr() and str()

The default for Flag is STRICT, the default for IntFlagis EJECT, and the default for _convert_ is KEEP (see
ssl.Options for an example of when KEEP is needed).

18



14 How are Enums different?

Enums have a custom metaclass that affects many aspects of both derived Enum classes and their instances (members).

14.1 Enum Classes

The EnumType metaclass is responsible for providing the __contains__ (),__dir__ (),__iter_ () and
other methods that allow one to do things with an Enum class that fail on a typical class, such as list(Color) or
some_enum_var in Color. EnumType is responsible for ensuring that various other methods on the final Enum class
are correct (suchas __new__ (),__getnewargs__ (),__str__ () and__repr__ ()).

14.2 Enum Members (aka instances)

The most interesting thing about enum members is that they are singletons. EnumType creates them all while it
is creating the enum class itself, and then puts a custom __new___ () in place to ensure that no new ones are ever
instantiated by returning only the existing member instances.

While Enum, IntEnum, StrEnum, Flag, and IntFlag are expected to cover the majority of use-cases, they
cannot cover them all. Here are recipes for some different types of enumerations that can be used directly, or as
examples for creating one’s own.

14.3 Omitting values
In many use-cases, one doesn’t care what the actual value of an enumeration is. There are several ways to define this
type of simple enumeration:

* use instances of auto for the value

¢ use instances of object as the value

* use a descriptive string as the value

* use a tuple as the value and a custom __new___ () to replace the tuple with an int value

Using any of these methods signifies to the user that these values are not important, and also enables one to add,
remove, or reorder members without having to renumber the remaining members.

Using auto

Using auto would look like:

>>> class Color (Enum) :
RED = auto ()
BLUE = auto ()
GREEN = auto ()

>>> Color.GREEN
<Color.GREEN>

19




Using object

Using object would look like:

>>> class Color (Enum) :
RED = object ()
GREEN = object ()
BLUE = object ()

>>> Color.GREEN
<Color.GREEN>

Using a descriptive string

Using a string as the value would look like:

>>> class Color (Enum) :

RED = 'stop'
GREEN = 'go'
BLUE = 'too fast!'

>>> Color.GREEN
<Color.GREEN>

>>> Color.GREEN.value
lgol

Using a custom __new__ ()

Using an auto-numbering ___new___ () would look like:

>>> class AutoNumber (Enum) :
def _ new_ (cls):

value = len(cls._ _members_ ) + 1
obj = object.__new__ (cls)
obj._value_ = value

return obj

>>> class Color (AutoNumber) :
RED = ()
GREEN = ()
BLUE = ()

>>> Color.GREEN
<Color.GREEN>

>>> Color.GREEN.value
2

To make a more general purpose Aut oNumber, add *args to the signature:

>>> class AutoNumber (Enum) :

def _ _new__ (cls, *args): # this is the only change from above
value = len(cls.__members_ ) + 1
obj = object.__new__ (cls)
obj._value_ = value

return obj

Then when you inherit from Aut oNumber you can write your own __init__ to handle any extra arguments:

20




>>> class Swatch (AutoNumber) :

def __init__ (self, pantone='unknown'):
self.pantone = pantone
AUBURN = '3497"
SEA_GREEN = '1246"
BLEACHED_CORAL = () # New color, no Pantone code yet!

>>> Swatch.SEA_GREEN
<Swatch.SEA_GREEN>

>>> Swatch.SEA_GREEN.pantone
'1246"

>>> Swatch.BLEACHED_CORAL.pantone
'unknown'

Note: The _ new__ () method, if defined, is used during creation of the Enum members; it is then replaced by
Enum’s __new__ () which is used after class creation for lookup of existing members.

14.4 OrderedEnum

An ordered enumeration that is not based on Int Enum and so maintains the normal Enum invariants (such as not
being comparable to other enumerations):

>>> class OrderedEnum (Enum) :
def _ _ge_ (self, other):
if self. class_ is other. class
return self.value >= other.value
return NotImplemented
def _ gt_ (self, other):
if self. class_ is other. class_
return self.value > other.value
return NotImplemented
def _ le_ (self, other):
if self. class__ is other._ class_
return self.value <= other.value
return NotImplemented
def _ 1t (self, other):
if self. class_ is other. class
return self.value < other.value
return NotImplemented

>>> class Grade (OrderedEnum) :

A =5
B =

c =3
D =2
F =1

>>> Grade.C < Grade.A
True

21




14.5 DuplicateFreeEnum

Raises an error if a duplicate member name is found instead of creating an alias:

>>> class DuplicateFreeEnum (Enum) :

def __init__ (self, *args):
cls = self. class_
if any(self.value == e.value for e in cls):
a = self.name
e = cls(self.value) .name
raise ValueError (
"aliases not allowed in DuplicateFreeEnum: $%r —-> 3r"
5 (a, e))

>>> class Color (DuplicateFreeEnum) :

RED = 1

GREEN = 2
BLUE = 3
GRENE = 2

Traceback (most recent call last):

ValueError: aliases not allowed in DuplicateFreeEnum: 'GRENE' --> 'GREEN'

Note: This is a useful example for subclassing Enum to add or change other behaviors as well as disallowing aliases.
If the only desired change is disallowing aliases, the unique () decorator can be used instead.

14.6 Planet

If __new_ () or__init__ () isdefined, the value of the enum member will be passed to those methods:

>>> class Planet (Enum) :

MERCURY = (3.303e+23, .4397e6)

2
VENUS = (4.869e+24, 6.0518e6)
EARTH = (5.976e+24, 6.37814e06)
MARS = (6.421e+23, 3.3972e06)
JUPITER = (1.9e+27, 7.1492e7)
SATURN = (5.688e+26, 6.0268e7)
URANUS = (8.686e+25, 2.5559e7)
NEPTUNE = (1.024e+26, 2.4746e7)
def _ init__ (self, mass, radius):
self.mass = mass # in kilograms
self.radius = radius # in meters
@property

def surface_gravity(self):
# universal gravitational constant (m3 kg-1 s-2)
G = 6.67300E-11
return G * self.mass / (self.radius * self.radius)

>>> Planet.EARTH.value
(5.976e+24, 6378140.0)

>>> Planet.EARTH.surface_gravity
9.802652743337129

22




14.7 TimePeriod

An example to show the _ignore_ attribute in use:

>>> from datetime import timedelta
>>> class Period(timedelta, Enum) :
"different lengths of time"
_ignore_ = 'Period 1i'
Period = vars()
for i in range(367):
Period['day_2d' % i] = i

>>> list (Period) [:2]
[Period.day_0, Period.day_1]

>>> list (Period) [-2:]
[Period.day_365, Period.day_366]

14.8 Conforming input to Flag

To create a F 1 ag enum that is more resilient to out-of-bounds results from mathematical operations, you can use the
FlagBoundary.CONFORM setting:

>>> from enum import Flag, CONFORM, auto
>>> class Weekday (Flag, boundary=CONFORM) :
MONDAY = auto ()
TUESDAY = auto()
WEDNESDAY = auto ()
THURSDAY = auto ()
FRIDAY = auto()
SATURDAY = auto()
e SUNDAY = auto ()
>>> today = Weekday.TUESDAY
>>> Weekday (today + 22) # what day is three weeks from tomorrow?
>>> Weekday.WEDNESDAY

15 Subclassing EnumType

‘While most enum needs can be met by customizing Enum subclasses, either with class decorators or custom functions,
EnumType can be subclassed to provide a different Enum experience.

23




	Basic Enum Tutorial
	Programmatic access to enumeration members and their attributes
	Duplicating enum members and values
	Ensuring unique enumeration values
	Using automatic values
	Iteration
	Comparisons
	Allowed members and attributes of enumerations
	Restricted Enum subclassing
	Pickling
	Functional API
	Derived Enumerations
	IntEnum
	StrEnum
	IntFlag
	Flag
	Others

	When to use __new__() vs. __init__()
	Finer Points

	How are Enums different?
	Enum Classes
	Enum Members (aka instances)
	Omitting values
	OrderedEnum
	DuplicateFreeEnum
	Planet
	TimePeriod
	Conforming input to Flag

	Subclassing EnumType

