Contents

10

11

12

13

14

Summary - Release highlights

New Features
2.1 Enhanced error locations in tracebacks

Other Language Changes
Other CPython Implementation Changes
New Modules

Improved Modules

6.1 fractions
6.2 math
6.3 0S
6.4 sqlite3

Removed

Optimizations

CPython bytecode changes
Build Changes
Deprecated

Removed

Porting to Python 3.11

13.1 Changes in the Python API

C API Changes

14.1 New Features
14.2 Porting to Python 3.11.
14.3 Deprecated
144 Removed

What’s New in Python

Release 3.11.0a0

A. M. Kuchling

September 02, 2021

Python Software Foundation
Email: docs@python.org

Index 8

Release 3.11.0a0
Date September 02, 2021
This article explains the new features in Python 3.11, compared to 3.10.

For full details, see the changelog.

Note: Prerelease users should be aware that this document is currently in draft form. It will be updated substantially
as Python 3.11 moves towards release, so it’s worth checking back even after reading earlier versions.

1 Summary — Release highlights

2 New Features

2.1 Enhanced error locations in tracebacks

When printing tracebacks, the interpreter will now point to the exact expression that caused the error instead of just
the line. For example:

Traceback (most recent call last):
File "distance.py", line 11, in <module>
print (manhattan_distance (pl, p2))
File "distance.py", line 6, in manhattan_distance
return abs (point_1.x - point_2.x) + abs(point_1.y - point_2.y)

AAAAAAAAA

AttributeError: 'NoneType' object has no attribute 'x'

Previous versions of the interpreter would point to just the line making it ambiguous which object was None. These
enhanced errors can also be helpful when dealing with deeply nested dictionary objects and multiple function calls,

Traceback (most recent call last):
File "query.py", line 37, in <module>
magic_arithmetic('foo')
File "query.py", line 18, in magic_arithmetic
return add_counts (x) / 25
File "query.py", line 24, in add_counts
return 25 + query_user (userl) + query_user (user2)
File "query.py", line 32, in query_user
return 1 + query_count (db, response['a']l['b']['c']['user'], retry=True)

TypeError: 'NoneType' object is not subscriptable

as well as complex arithmetic expressions:

Traceback (most recent call last):
File "calculation.py", line 54, in <module>
result = (x /vy / z) * (a / b/ c)

ZeroDivisionError: division by zero

See PEP 657 for more details. (Contributed by Pablo Galindo, Batuhan Taskaya and Ammar Askar in bpo-43950.)

Note: This feature requires storing column positions in code objects which may result in a small increase
of disk usage of compiled Python files or interpreter memory usage. To avoid storing the extra information
and/or deactivate printing the extra traceback information, the -X no_debug_ranges command line flag or the
PYTHONNODEBUGRANGES environment variable can be used.

Column information for code objects
The information used by the enhanced traceback feature is made available as a general API that can be used to
correlate bytecode instructions with source code. This information can be retrieved using:

e The codeobject.co_positions () method in Python.

¢ The PyCode_Addr2Location () function in the C-API.

The -X no_debug_ranges option and the environment variable PYTHONNODEBUGRANGES can be used to
disable this feature.

See PEP 657 for more details. (Contributed by Pablo Galindo, Batuhan Taskaya and Ammar Askar in bpo-43950.)

3 Other Language Changes

¢ Asynchronous comprehensions are now allowed inside comprehensions in asynchronous functions. Outer com-
prehensions implicitly become asynchronous. (Contributed by Serhiy Storchaka in bpo-33346.)

e A TypeError is now raised instead of an AttributeError in contextlib.ExitStack.
enter_context () and contextlib.AsyncExitStack.enter_async_context () for ob-
jects which do not support the context manager or asynchronous context manager protocols correspondingly.
(Contributed by Serhiy Storchaka in bpo-44471.)

e A TypeError is now raised instead of an Att ributeError inwith and async with statements for
objects which do not support the context manager or asynchronous context manager protocols correspondingly.
(Contributed by Serhiy Storchaka in bpo-12022.)

4 Other CPython Implementation Changes

» Special methods complex._complex_ () and bytes.__bytes__ () are implemented to support
typing.SupportsComplex and typing.SupportsBytes protocols. (Contributed by Mark Dick-
inson and Dong-hee Na in bpo-24234.)

5 New Modules

* None yet.

https://www.python.org/dev/peps/pep-0657
https://bugs.python.org/issue43950
https://www.python.org/dev/peps/pep-0657
https://bugs.python.org/issue43950
https://bugs.python.org/issue33346
https://bugs.python.org/issue44471
https://bugs.python.org/issue12022
https://bugs.python.org/issue24234

6 Improved Modules

6.1 fractions

Support PEP 515-style initialization of Fract ion from string. (Contributed by Sergey B Kirpichev in bpo-44258.)

6.2 math

¢ Addmath.cbrt (): return the cube root of x. (Contributed by Ajith Ramachandran in bpo-44357.)

¢ The behaviour of two math.pow () corner cases was changed, for consistency with the IEEE 754 specifi-
cation. The operations math.pow (0.0, -math.inf) and math.pow(-0.0, -math.inf) now
return inf. Previously they raised ValueError. (Contributed by Mark Dickinson in bpo-44339.)

6.3 os

¢ On Windows, os .urandom () uses BCryptGenRandom () instead of CryptGenRandom () which is
deprecated. (Contributed by Dong-hee Na in bpo-44611.)

6.4 sqlite3
* You can now disable the authorizer by passing None to set_authorizer (). (Contributed by Erlend E.
Aasland in bpo-44491.)

¢ Collation name create_collation () can now contain any Unicode character. Collation names with in-
valid characters now raise UnicodeEncodeError instead of sglite3.ProgrammingError. (Con-
tributed by Erlend E. Aasland in bpo-44688.)

* sglite3 exceptions now include the SQLite error code as sglite_errorcode and the SQLite error
name as sglite_errorname. (Contributed by Aviv Palivoda, Daniel Shahaf, and Erlend E. Aasland in
bpo-16379.)

7 Removed

* smtpd.MailmanProxy is now removed as it is unusable without an external module, mailman. (Con-
tributed by Dong-hee Na in bpo-35800.)

8 Optimizations

* Compiler now optimizes simple C-style formatting with literal format containing only format codes % s, $r and
%a and makes it as fast as corresponding f-string expression. (Contributed by Serhiy Storchaka in bpo-28307.)

» “Zero-cost” exceptions are implemented. The cost of t ry statements is almost eliminated when no exception
is raised. (Contributed by Mark Shannon in bpo-40222.)

¢ Method calls with keywords are now faster due to bytecode changes which avoid creating bound method in-
stances. Previously, this optimization was applied only to method calls with purely positional arguments.
(Contributed by Ken Jin and Mark Shannon in bpo-26110, based on ideas implemented in PyPy.)

* .pdbrc is now read with 'ut £-8"' encoding.

https://www.python.org/dev/peps/pep-0515
https://bugs.python.org/issue44258
https://bugs.python.org/issue44357
https://bugs.python.org/issue44339
https://bugs.python.org/issue44611
https://bugs.python.org/issue44491
https://bugs.python.org/issue44688
https://bugs.python.org/issue16379
https://bugs.python.org/issue35800
https://bugs.python.org/issue28307
https://bugs.python.org/issue40222
https://bugs.python.org/issue26110

9 CPython bytecode changes

e Added a new CALL_METHOD_KW opcode. Calls a method in a similar fashion as CALL_METHOD, but also
supports keyword arguments. Works in tandem with LOAD_METHOD.

10 Build Changes
11 Deprecated

12 Removed

* The @Gasyncio.coroutine decorator enabling legacy generator-based coroutines to be compatible with
async/await code. The function has been deprecated since Python 3.8 and the removal was initially scheduled
for Python 3.10. Use async def instead. (Contributed by Illia Volochii in bpo-43216.)

e asyncio.coroutines.CoroWrapper used for wrapping legacy generator-based coroutine objects in
the debug mode. (Contributed by Illia Volochii in bpo-43216.)

13 Porting to Python 3.11

This section lists previously described changes and other bugfixes that may require changes to your code.

13.1 Changes in the Python API

e Prohibited passing non-concurrent.futures.ThreadPoolExecutor executors to loop.
set_default_executor () following a deprecation in Python 3.8. (Contributed by Illia Volochii in
bpo-43234.)

14 C API Changes

* Addanew PyType_GetName () function to get type’s short name. (Contributed by Hai Shi in bpo-42035.)

¢ Add a new PyType_GetQualName () function to get type’s qualified name. (Contributed by Hai Shi in
bpo-42035.)

14.1 New Features
14.2 Porting to Python 3.11

e The old trashcan macros (Py_TRASHCAN_SAFE_BEGIN/Py_TRASHCAN_SAFE_END) are now depre-
cated. They should be replaced by the new macros Py_ TRASHCAN_BEGIN and Py_TRASHCAN_END.

A tp_dealloc function that has the old macros, such as:

static void

mytype_dealloc (mytype *p)

{
PyObject_GC_UnTrack (p);
Py_TRASHCAN_SAFE_BEGIN (p) ;

(continues on next page)

https://bugs.python.org/issue43216
https://bugs.python.org/issue43216
https://bugs.python.org/issue43234
https://bugs.python.org/issue42035
https://bugs.python.org/issue42035

(continued from previous page)

Py_TRASHCAN_SAFE_END

should migrate to the new macros as follows:

static void

mytype_dealloc (mytype *p)

{
PyObject_GC_UnTrack (p);
Py_TRASHCAN_BEGIN (p, mytype_dealloc)

Py_TRASHCAN_END

Note that Py_ TRASHCAN_BEGIN has a second argument which should be the deallocation function it is in.

To support older Python versions in the same codebase, you can define the following macros and use them
throughout the code (credit: these were copied from the mypy codebase):

#1f PY MAJOR_VERSION >= 3 && PY MINOR_VERSION >= 8

define CPy_TRASHCAN_BEGIN (op, dealloc) Py TRASHCAN_BEGIN (op, dealloc)
define CPy TRASHCAN_END (op) Py_TRASHCAN_END

#else

define CPy_TRASHCAN_BEGIN (op, dealloc) Py TRASHCAN_SAFE_BEGIN (op)

define CPy TRASHCAN_END (op) Py TRASHCAN_SAFE_END (op)

#endif

e The PyType_Ready () function now raises an error if a type is defined with the Py_ TPFLAGS_HAVE_GC
flag set but has no traverse function (PyTypeObject .tp_traverse). (Contributed by Victor Stinner in
bpo-44263.)

* Heap types with the Py_ TPFLAGS_IMMUTABLETYPE flag can now inherit the PEP 590 vectorcall protocol.
Previously, this was only possible for static types. (Contributed by Erlend E. Aasland in bpo-43908)

14.3 Deprecated

14.4 Removed

e PyFrame_BlockSetup () and PyFrame_BlockPop () have been removed. (Contributed by Mark
Shannon in bpo-40222.)

* Deprecate the following functions to configure the Python initialization:

PySys_AddWarnOptionUnicode ()

PySys_AddWarnOption ()

— PySys_AddXOption ()

— PySys_HasWarnOptions ()

- Py_SetPath()

— Py_SetProgramName ()

— Py_SetPythonHome ()

— Py_SetStandardStreamEncoding ()
— _Py_SetProgramFullPath ()

Use the new PyConfig API of the Python Initialization Configuration instead (PEP 587). (Contributed by
Victor Stinner in bpo-44113.)

https://bugs.python.org/issue44263
https://www.python.org/dev/peps/pep-0590
https://bugs.python.org/issue43908
https://bugs.python.org/issue40222
https://www.python.org/dev/peps/pep-0587
https://bugs.python.org/issue44113

e The following deprecated functions and methods are removed in the gettext module: lgettext (),
ldgettext (), Ingettext () and 1dngettext ().

Function bind_textdomain_codeset (), methods output_charset () and
set_output_charset (), and the codeset parameter of functions translation () and install ()
are also removed, since they are only used for the 1 *gettext () functions. (Contributed by Dong-hee Na
and Serhiy Storchaka in bpo-44235.)

* The behavior of returning a value from a TestCase and IsolatedAsyncioTestCase test methods
(other than the default None value), is now deprecated.

https://bugs.python.org/issue44235

Index
E

environment variable
PYTHONNODEBUGRANGES, 3

P

Python Enhancement Proposals
PEP 515,4
PEP 587,6
PEP 590,6
PEP 657,3
PYTHONNODEBUGRANGES, 3

	Summary – Release highlights
	New Features
	Enhanced error locations in tracebacks

	Other Language Changes
	Other CPython Implementation Changes
	New Modules
	Improved Modules
	fractions
	math
	os
	sqlite3

	Removed
	Optimizations
	CPython bytecode changes
	Build Changes
	Deprecated
	Removed
	Porting to Python 3.11
	Changes in the Python API

	C API Changes
	New Features
	Porting to Python 3.11
	Deprecated
	Removed

	Index

