
What’s New in Python
Release 3.10.0rc1

A. M. Kuchling

September 07, 2021
Python Software Foundation

Email: docs@python.org

Contents

1 Summary – Release highlights 3

2 New Features 4
2.1 Parenthesized context managers . 4
2.2 Better error messages . 4
2.3 PEP 626: Precise line numbers for debugging and other tools . 8
2.4 PEP 634: Structural Pattern Matching . 8
2.5 Optional EncodingWarning and encoding="locale" option 13

3 New Features Related to Type Hints 13
3.1 PEP 604: New Type Union Operator . 13
3.2 PEP 612: Parameter Specification Variables . 14
3.3 PEP 613: TypeAlias . 14
3.4 PEP 647: User-Defined Type Guards . 14

4 Other Language Changes 15

5 New Modules 16

6 Improved Modules 16
6.1 asyncio . 16
6.2 argparse . 16
6.3 array . 16
6.4 asynchat, asyncore, smtpd . 16
6.5 base64 . 16
6.6 bdb . 16
6.7 codecs . 16
6.8 collections.abc . 17
6.9 contextlib . 17
6.10 curses . 17
6.11 dataclasses . 17
6.12 distutils . 18
6.13 doctest . 18
6.14 encodings . 19

1

6.15 fileinput . 19
6.16 faulthandler . 19
6.17 gc . 19
6.18 glob . 19
6.19 hashlib . 19
6.20 hmac . 19
6.21 IDLE and idlelib . 20
6.22 importlib.metadata . 20
6.23 inspect . 20
6.24 linecache . 21
6.25 os . 21
6.26 os.path . 21
6.27 pathlib . 21
6.28 platform . 21
6.29 pprint . 21
6.30 py_compile . 22
6.31 pyclbr . 22
6.32 shelve . 22
6.33 statistics . 22
6.34 site . 22
6.35 socket . 22
6.36 ssl . 22
6.37 sqlite3 . 23
6.38 sys . 23
6.39 _thread . 23
6.40 threading . 23
6.41 traceback . 23
6.42 types . 24
6.43 typing . 24
6.44 unittest . 24
6.45 urllib.parse . 25
6.46 xml . 25
6.47 zipimport . 25

7 Optimizations 25

8 Deprecated 26

9 Removed 28

10 Porting to Python 3.10 29
10.1 Changes in the Python syntax . 29
10.2 Changes in the Python API . 29
10.3 Changes in the C API . 30

11 CPython bytecode changes 31

12 Build Changes 31

13 C API Changes 31
13.1 PEP 652: Maintaining the Stable ABI . 31
13.2 New Features . 32
13.3 Porting to Python 3.10 . 33
13.4 Deprecated . 34
13.5 Removed . 34

2

Index 36

Release 3.10.0rc1
Date September 07, 2021
Editor Pablo Galindo Salgado

This article explains the new features in Python 3.10, compared to 3.9.
For full details, see the changelog.

Note: Prerelease users should be aware that this document is currently in draft form. It will be updated substantially as
Python 3.10 moves towards release, so it’s worth checking back even after reading earlier versions.

1 Summary – Release highlights

New syntax features:
• PEP 634, Structural Pattern Matching: Specification
• PEP 635, Structural Pattern Matching: Motivation and Rationale
• PEP 636, Structural Pattern Matching: Tutorial
• bpo-12782, Parenthesized context managers are now officially allowed.

New features in the standard library:
• PEP 618, Add Optional Length-Checking To zip.

Interpreter improvements:
• PEP 626, Precise line numbers for debugging and other tools.

New typing features:
• PEP 604, Allow writing union types as X | Y
• PEP 613, Explicit Type Aliases
• PEP 612, Parameter Specification Variables

Important deprecations, removals or restrictions:
• PEP 644, Require OpenSSL 1.1.1 or newer
• PEP 632, Deprecate distutils module.
• PEP 623, Deprecate and prepare for the removal of the wstr member in PyUnicodeObject.
• PEP 624, Remove Py_UNICODE encoder APIs
• PEP 597, Add optional EncodingWarning

3

https://www.python.org/dev/peps/pep-0634
https://www.python.org/dev/peps/pep-0635
https://www.python.org/dev/peps/pep-0636
https://bugs.python.org/issue12782
https://www.python.org/dev/peps/pep-0618
https://www.python.org/dev/peps/pep-0626
https://www.python.org/dev/peps/pep-0604
https://www.python.org/dev/peps/pep-0613
https://www.python.org/dev/peps/pep-0612
https://www.python.org/dev/peps/pep-0644
https://www.python.org/dev/peps/pep-0632
https://www.python.org/dev/peps/pep-0623
https://www.python.org/dev/peps/pep-0624
https://www.python.org/dev/peps/pep-0597

2 New Features

2.1 Parenthesized context managers

Using enclosing parentheses for continuation across multiple lines in context managers is now supported. This allows
formatting a long collection of context managers in multiple lines in a similar way as it was previously possible with
import statements. For instance, all these examples are now valid:

with (CtxManager() as example):
...

with (
CtxManager1(),
CtxManager2()

):
...

with (CtxManager1() as example,
CtxManager2()):

...

with (CtxManager1(),
CtxManager2() as example):

...

with (
CtxManager1() as example1,
CtxManager2() as example2

):
...

it is also possible to use a trailing comma at the end of the enclosed group:

with (
CtxManager1() as example1,
CtxManager2() as example2,
CtxManager3() as example3,

):
...

This new syntax uses the non LL(1) capacities of the new parser. Check PEP 617 for more details.
(Contributed by Guido van Rossum, Pablo Galindo and Lysandros Nikolaou in bpo-12782 and bpo-40334.)

2.2 Better error messages

SyntaxErrors

When parsing code that contains unclosed parentheses or brackets the interpreter now includes the location of the unclosed
bracket of parentheses instead of displaying SyntaxError: unexpected EOF while parsing or pointing to some incorrect
location. For instance, consider the following code (notice the unclosed ‘{‘):

expected = {9: 1, 18: 2, 19: 2, 27: 3, 28: 3, 29: 3, 36: 4, 37: 4,
38: 4, 39: 4, 45: 5, 46: 5, 47: 5, 48: 5, 49: 5, 54: 6,

some_other_code = foo()

4

https://www.python.org/dev/peps/pep-0617
https://bugs.python.org/issue12782
https://bugs.python.org/issue40334

Previous versions of the interpreter reported confusing places as the location of the syntax error:

File "example.py", line 3
some_other_code = foo()

^
SyntaxError: invalid syntax

but in Python 3.10 a more informative error is emitted:

File "example.py", line 1
expected = {9: 1, 18: 2, 19: 2, 27: 3, 28: 3, 29: 3, 36: 4, 37: 4,

^
SyntaxError: '{' was never closed

In a similar way, errors involving unclosed string literals (single and triple quoted) now point to the start of the string
instead of reporting EOF/EOL.
These improvements are inspired by previous work in the PyPy interpreter.
(Contributed by Pablo Galindo in bpo-42864 and Batuhan Taskaya in bpo-40176.)
SyntaxError exceptions raised by the interpreter will now highlight the full error range of the expression that con-
stitutes the syntax error itself, instead of just where the problem is detected. In this way, instead of displaying (before
Python 3.10):

>>> foo(x, z for z in range(10), t, w)
File "<stdin>", line 1
foo(x, z for z in range(10), t, w)

^
SyntaxError: Generator expression must be parenthesized

now Python 3.10 will display the exception as:

>>> foo(x, z for z in range(10), t, w)
File "<stdin>", line 1
foo(x, z for z in range(10), t, w)

^^^^^^^^^^^^^^^^^^^^
SyntaxError: Generator expression must be parenthesized

This improvement was contributed by Pablo Galindo in bpo-43914.
A considerable amount of new specialized messages for SyntaxError exceptions have been incorporated. Some of
the most notable ones are as follows:

• Missing : before blocks:

>>> if rocket.position > event_horizon
File "<stdin>", line 1
if rocket.position > event_horizon

^
SyntaxError: expected ':'

(Contributed by Pablo Galindo in bpo-42997)
• Unparenthesised tuples in comprehensions targets:

>>> {x,y for x,y in zip('abcd', '1234')}
File "<stdin>", line 1
{x,y for x,y in zip('abcd', '1234')}

(continues on next page)

5

https://bugs.python.org/issue42864
https://bugs.python.org/issue40176
https://bugs.python.org/issue43914
https://bugs.python.org/issue42997

(continued from previous page)
^

SyntaxError: did you forget parentheses around the comprehension target?

(Contributed by Pablo Galindo in bpo-43017)
• Missing commas in collection literals and between expressions:

>>> items = {
... x: 1,
... y: 2
... z: 3,
File "<stdin>", line 3
y: 2

^
SyntaxError: invalid syntax. Perhaps you forgot a comma?

(Contributed by Pablo Galindo in bpo-43822)
• Multiple Exception types without parentheses:

>>> try:
... build_dyson_sphere()
... except NotEnoughScienceError, NotEnoughResourcesError:
File "<stdin>", line 3
except NotEnoughScienceError, NotEnoughResourcesError:

^
SyntaxError: multiple exception types must be parenthesized

(Contributed by Pablo Galindo in bpo-43149)
• Missing : and values in dictionary literals:

>>> values = {
... x: 1,
... y: 2,
... z:
... }
File "<stdin>", line 4
z:
^

SyntaxError: expression expected after dictionary key and ':'

>>> values = {x:1, y:2, z w:3}
File "<stdin>", line 1
values = {x:1, y:2, z w:3}

^
SyntaxError: ':' expected after dictionary key

(Contributed by Pablo Galindo in bpo-43823)
• try blocks without except or finally blocks:

>>> try:
... x = 2
... something = 3
File "<stdin>", line 3
something = 3

(continues on next page)

6

https://bugs.python.org/issue43017
https://bugs.python.org/issue43822
https://bugs.python.org/issue43149
https://bugs.python.org/issue43823

(continued from previous page)
^^^^^^^^^

SyntaxError: expected 'except' or 'finally' block

(Contributed by Pablo Galindo in bpo-44305)
• Usage of = instead of == in comparisons:

>>> if rocket.position = event_horizon:
File "<stdin>", line 1
if rocket.position = event_horizon:

^
SyntaxError: cannot assign to attribute here. Maybe you meant '=='␣
↪→instead of '='?

(Contributed by Pablo Galindo in bpo-43797)
• Usage of * in f-strings:

>>> f"Black holes {*all_black_holes} and revelations"
File "<stdin>", line 1
(*all_black_holes)
^

SyntaxError: f-string: cannot use starred expression here

(Contributed by Pablo Galindo in bpo-41064)

IndentationErrors

Many IndentationError exceptions now have more context regarding what kind of block was expecting an inden-
tation, including the location of the statement:

>>> def foo():
... if lel:
... x = 2

File "<stdin>", line 3
x = 2
^

IndentationError: expected an indented block after 'if' statement in line 2

AttributeErrors

When printing AttributeError, PyErr_Display()will offer suggestions of similar attribute names in the object
that the exception was raised from:

>>> collections.namedtoplo
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
AttributeError: module 'collections' has no attribute 'namedtoplo'. Did you mean:␣
↪→namedtuple?

(Contributed by Pablo Galindo in bpo-38530.)

7

https://bugs.python.org/issue44305
https://bugs.python.org/issue43797
https://bugs.python.org/issue41064
https://bugs.python.org/issue38530

Warning: Notice this won’t work if PyErr_Display() is not called to display the error which can
happen if some other custom error display function is used. This is a common scenario in some REPLs
like IPython.

NameErrors

When printing NameError raised by the interpreter, PyErr_Display() will offer suggestions of similar variable
names in the function that the exception was raised from:

>>> schwarzschild_black_hole = None
>>> schwarschild_black_hole
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'schwarschild_black_hole' is not defined. Did you mean: schwarzschild_
↪→black_hole?

(Contributed by Pablo Galindo in bpo-38530.)

Warning: Notice this won’t work if PyErr_Display() is not called to display the error, which can
happen if some other custom error display function is used. This is a common scenario in some REPLs
like IPython.

2.3 PEP 626: Precise line numbers for debugging and other tools

PEP 626 brings more precise and reliable line numbers for debugging, profiling and coverage tools. Tracing events, with
the correct line number, are generated for all lines of code executed and only for lines of code that are executed.
The f_lineno attribute of frame objects will always contain the expected line number.
The co_lnotab attribute of code objects is deprecated and will be removed in 3.12. Code that needs to convert from
offset to line number should use the new co_lines() method instead.

2.4 PEP 634: Structural Pattern Matching

Structural patternmatching has been added in the form of amatch statement and case statements of patterns with associated
actions. Patterns consist of sequences, mappings, primitive data types as well as class instances. Pattern matching enables
programs to extract information from complex data types, branch on the structure of data, and apply specific actions based
on different forms of data.

Syntax and operations

The generic syntax of pattern matching is:

match subject:
case <pattern_1>:

<action_1>
case <pattern_2>:

<action_2>
case <pattern_3>:

(continues on next page)

8

https://bugs.python.org/issue38530

(continued from previous page)
<action_3>

case _:
<action_wildcard>

A match statement takes an expression and compares its value to successive patterns given as one or more case blocks.
Specifically, pattern matching operates by:

1. using data with type and shape (the subject)
2. evaluating the subject in the match statement
3. comparing the subject with each pattern in a case statement from top to bottom until a match is confirmed.
4. executing the action associated with the pattern of the confirmed match
5. If an exact match is not confirmed, the last case, a wildcard _, if provided, will be used as the matching case. If an

exact match is not confirmed and a wildcard case does not exist, the entire match block is a no-op.

Declarative approach

Readers may be aware of pattern matching through the simple example of matching a subject (data object) to a literal
(pattern) with the switch statement found in C, Java or JavaScript (and many other languages). Often the switch statement
is used for comparison of an object/expression with case statements containing literals.
More powerful examples of pattern matching can be found in languages such as Scala and Elixir. With structural pattern
matching, the approach is “declarative” and explicitly states the conditions (the patterns) for data to match.
While an “imperative” series of instructions using nested “if” statements could be used to accomplish something similar
to structural pattern matching, it is less clear than the “declarative” approach. Instead the “declarative” approach states
the conditions to meet for a match and is more readable through its explicit patterns. While structural pattern matching
can be used in its simplest form comparing a variable to a literal in a case statement, its true value for Python lies in its
handling of the subject’s type and shape.

Simple pattern: match to a literal

Let’s look at this example as pattern matching in its simplest form: a value, the subject, being matched to several literals,
the patterns. In the example below, status is the subject of the match statement. The patterns are each of the case
statements, where literals represent request status codes. The associated action to the case is executed after a match:

def http_error(status):
match status:

case 400:
return "Bad request"

case 404:
return "Not found"

case 418:
return "I'm a teapot"

case _:
return "Something's wrong with the internet"

If the above function is passed a status of 418, “I’m a teapot” is returned. If the above function is passed a status
of 500, the case statement with _ will match as a wildcard, and “Something’s wrong with the internet” is returned. Note
the last block: the variable name, _, acts as a wildcard and insures the subject will always match. The use of _ is optional.
You can combine several literals in a single pattern using | (“or”):

9

case 401 | 403 | 404:
return "Not allowed"

Behavior without the wildcard

If we modify the above example by removing the last case block, the example becomes:

def http_error(status):
match status:

case 400:
return "Bad request"

case 404:
return "Not found"

case 418:
return "I'm a teapot"

Without the use of _ in a case statement, a match may not exist. If no match exists, the behavior is a no-op. For example,
if status of 500 is passed, a no-op occurs.

Patterns with a literal and variable

Patterns can look like unpacking assignments, and a pattern may be used to bind variables. In this example, a data point
can be unpacked to its x-coordinate and y-coordinate:

point is an (x, y) tuple
match point:

case (0, 0):
print("Origin")

case (0, y):
print(f"Y={y}")

case (x, 0):
print(f"X={x}")

case (x, y):
print(f"X={x}, Y={y}")

case _:
raise ValueError("Not a point")

The first pattern has two literals, (0, 0), and may be thought of as an extension of the literal pattern shown above. The
next two patterns combine a literal and a variable, and the variable binds a value from the subject (point). The fourth
pattern captures two values, which makes it conceptually similar to the unpacking assignment (x, y) = point.

Patterns and classes

If you are using classes to structure your data, you can use as a pattern the class name followed by an argument list
resembling a constructor. This pattern has the ability to capture class attributes into variables:

class Point:
x: int
y: int

def location(point):
match point:

(continues on next page)

10

(continued from previous page)
case Point(x=0, y=0):

print("Origin is the point's location.")
case Point(x=0, y=y):

print(f"Y={y} and the point is on the y-axis.")
case Point(x=x, y=0):

print(f"X={x} and the point is on the x-axis.")
case Point():

print("The point is located somewhere else on the plane.")
case _:

print("Not a point")

Patterns with positional parameters

You can use positional parameters with some builtin classes that provide an ordering for their attributes (e.g. dataclasses).
You can also define a specific position for attributes in patterns by setting the __match_args__ special attribute in
your classes. If it’s set to (“x”, “y”), the following patterns are all equivalent (and all bind the y attribute to the var
variable):

Point(1, var)
Point(1, y=var)
Point(x=1, y=var)
Point(y=var, x=1)

Nested patterns

Patterns can be arbitrarily nested. For example, if our data is a short list of points, it could be matched like this:

match points:
case []:

print("No points in the list.")
case [Point(0, 0)]:

print("The origin is the only point in the list.")
case [Point(x, y)]:

print(f"A single point {x}, {y} is in the list.")
case [Point(0, y1), Point(0, y2)]:

print(f"Two points on the Y axis at {y1}, {y2} are in the list.")
case _:

print("Something else is found in the list.")

Complex patterns and the wildcard

To this point, the examples have used _ alone in the last case statement. A wildcard can be used in more complex patterns,
such as ('error', code, _). For example:

match test_variable:
case ('warning', code, 40):

print("A warning has been received.")
case ('error', code, _):

print(f"An error {code} occurred.")

In the above case, test_variable will match for (‘error’, code, 100) and (‘error’, code, 800).

11

Guard

We can add an if clause to a pattern, known as a “guard”. If the guard is false, match goes on to try the next case block.
Note that value capture happens before the guard is evaluated:

match point:
case Point(x, y) if x == y:

print(f"The point is located on the diagonal Y=X at {x}.")
case Point(x, y):

print(f"Point is not on the diagonal.")

Other Key Features

Several other key features:
• Like unpacking assignments, tuple and list patterns have exactly the same meaning and actually match arbitrary
sequences. Technically, the subject must be a sequence. Therefore, an important exception is that patterns don’t
match iterators. Also, to prevent a common mistake, sequence patterns don’t match strings.

• Sequence patterns support wildcards: [x, y, *rest] and (x, y, *rest) work similar to wildcards in
unpacking assignments. The name after * may also be _, so (x, y, *_) matches a sequence of at least two
items without binding the remaining items.

• Mapping patterns: {"bandwidth": b, "latency": l} captures the "bandwidth" and "latency"
values from a dict. Unlike sequence patterns, extra keys are ignored. A wildcard **rest is also supported. (But
**_ would be redundant, so is not allowed.)

• Subpatterns may be captured using the as keyword:

case (Point(x1, y1), Point(x2, y2) as p2): ...

This binds x1, y1, x2, y2 like you would expect without the as clause, and p2 to the entire second item of the
subject.

• Most literals are compared by equality. However, the singletonsTrue, False andNone are compared by identity.
• Named constants may be used in patterns. These named constants must be dotted names to prevent the constant
from being interpreted as a capture variable:

from enum import Enum
class Color(Enum):

RED = 0
GREEN = 1
BLUE = 2

match color:
case Color.RED:

print("I see red!")
case Color.GREEN:

print("Grass is green")
case Color.BLUE:

print("I'm feeling the blues :(")

For the full specification see PEP 634. Motivation and rationale are in PEP 635, and a longer tutorial is in PEP 636.

12

https://www.python.org/dev/peps/pep-0634
https://www.python.org/dev/peps/pep-0635
https://www.python.org/dev/peps/pep-0636

2.5 Optional EncodingWarning and encoding="locale" option

The default encoding of TextIOWrapper and open() is platform and locale dependent. Since UTF-8 is used on
most Unix platforms, omitting encoding option when opening UTF-8 files (e.g. JSON, YAML, TOML, Markdown)
is a very common bug. For example:

BUG: "rb" mode or encoding="utf-8" should be used.
with open("data.json") as f:

data = json.load(f)

To find this type of bug, an optional EncodingWarning is added. It is emitted when sys.flags.
warn_default_encoding is true and locale-specific default encoding is used.
-X warn_default_encoding option and PYTHONWARNDEFAULTENCODING are added to enable the warning.
See io-text-encoding for more information.

3 New Features Related to Type Hints

This section covers major changes affecting PEP 484 type hints and the typing module.

3.1 PEP 604: New Type Union Operator

A new type union operator was introduced which enables the syntax X | Y. This provides a cleaner way of expressing
‘either type X or type Y’ instead of using typing.Union, especially in type hints.
In previous versions of Python, to apply a type hint for functions accepting arguments of multiple types, typing.Union
was used:

def square(number: Union[int, float]) -> Union[int, float]:
return number ** 2

Type hints can now be written in a more succinct manner:

def square(number: int | float) -> int | float:
return number ** 2

This new syntax is also accepted as the second argument to isinstance() and issubclass():

>>> isinstance(1, int | str)
True

See types-union and PEP 604 for more details.
(Contributed by Maggie Moss and Philippe Prados in bpo-41428, with additions by Yurii Karabas and Serhiy Storchaka
in bpo-44490.)

13

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0604
https://bugs.python.org/issue41428
https://bugs.python.org/issue44490

3.2 PEP 612: Parameter Specification Variables

Two new options to improve the information provided to static type checkers for PEP 484‘s Callable have been added
to the typing module.
The first is the parameter specification variable. They are used to forward the parameter types of one callable to another
callable – a pattern commonly found in higher order functions and decorators. Examples of usage can be found in
typing.ParamSpec. Previously, there was no easy way to type annotate dependency of parameter types in such a
precise manner.
The second option is the new Concatenate operator. It’s used in conjunction with parameter specification variables
to type annotate a higher order callable which adds or removes parameters of another callable. Examples of usage can be
found in typing.Concatenate.
See typing.Callable, typing.ParamSpec, typing.Concatenate, typing.ParamSpecArgs,
typing.ParamSpecKwargs, and PEP 612 for more details.
(Contributed by Ken Jin in bpo-41559, with minor enhancements by Jelle Zijlstra in bpo-43783. PEP written by Mark
Mendoza.)

3.3 PEP 613: TypeAlias

PEP 484 introduced the concept of type aliases, only requiring them to be top-level unannotated assignments. This
simplicity sometimes made it difficult for type checkers to distinguish between type aliases and ordinary assignments,
especially when forward references or invalid types were involved. Compare:

StrCache = 'Cache[str]' # a type alias
LOG_PREFIX = 'LOG[DEBUG]' # a module constant

Now the typing module has a special value TypeAlias which lets you declare type aliases more explicitly:

StrCache: TypeAlias = 'Cache[str]' # a type alias
LOG_PREFIX = 'LOG[DEBUG]' # a module constant

See PEP 613 for more details.
(Contributed by Mikhail Golubev in bpo-41923.)

3.4 PEP 647: User-Defined Type Guards

TypeGuard has been added to the typingmodule to annotate type guard functions and improve information provided
to static type checkers during type narrowing. For more information, please see TypeGuard‘s documentation, and PEP
647.
(Contributed by Ken Jin and Guido van Rossum in bpo-43766. PEP written by Eric Traut.)

14

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0612
https://bugs.python.org/issue41559
https://bugs.python.org/issue43783
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0613
https://bugs.python.org/issue41923
https://www.python.org/dev/peps/pep-0647
https://www.python.org/dev/peps/pep-0647
https://bugs.python.org/issue43766

4 Other Language Changes

• The int type has a new method int.bit_count(), returning the number of ones in the binary expansion of
a given integer, also known as the population count. (Contributed by Niklas Fiekas in bpo-29882.)

• The views returned by dict.keys(), dict.values() and dict.items() now all have a mapping
attribute that gives a types.MappingProxyType object wrapping the original dictionary. (Contributed by
Dennis Sweeney in bpo-40890.)

• PEP 618: The zip() function now has an optional strict flag, used to require that all the iterables have an
equal length.

• Builtin and extension functions that take integer arguments no longer accept Decimals, Fractions and other
objects that can be converted to integers only with a loss (e.g. that have the __int__() method but do not have
the __index__() method). (Contributed by Serhiy Storchaka in bpo-37999.)

• If object.__ipow__() returns NotImplemented, the operator will correctly fall back to object.
__pow__() and object.__rpow__() as expected. (Contributed by Alex Shkop in bpo-38302.)

• Assignment expressions can now be used unparenthesized within set literals and set comprehensions, as well as in
sequence indexes (but not slices).

• Functions have a new __builtins__ attribute which is used to look for builtin symbols when a function
is executed, instead of looking into __globals__['__builtins__']. The attribute is initialized from
__globals__["__builtins__"] if it exists, else from the current builtins. (Contributed by Mark Shan-
non in bpo-42990.)

• Two new builtin functions – aiter() and anext() have been added to provide asynchronous counterparts
to iter() and next(), respectively. (Contributed by Joshua Bronson, Daniel Pope, and Justin Wang in bpo-
31861.)

• Static methods (@staticmethod) and class methods (@classmethod) now inherit the method at-
tributes (__module__, __name__, __qualname__, __doc__, __annotations__) and have a new
__wrapped__ attribute. Moreover, static methods are now callable as regular functions. (Contributed by Victor
Stinner in bpo-43682.)

• Annotations for complex targets (everything beside simple name targets defined by PEP 526) no longer cause
any runtime effects with from __future__ import annotations. (Contributed by Batuhan Taskaya
in bpo-42737.)

• Class and module objects now lazy-create empty annotations dicts on demand. The annotations dicts are stored
in the object’s __dict__ for backwards compatibility. This improves the best practices for working with
__annotations__; for more information, please see annotations-howto. (Contributed by Larry Hastings in
bpo-43901.)

• Annotations consist of yield, yield from, await or named expressions are now forbidden under from
__future__ import annotations due to their side effects. (Contributed by Batuhan Taskaya in bpo-
42725.)

• Usage of unbound variables, super() and other expressions that might alter the processing of symbol table as
annotations are now rendered effectless under from __future__ import annotations. (Contributed
by Batuhan Taskaya in bpo-42725.)

• Hashes of NaN values of both float type and decimal.Decimal type now depend on object identity. For-
merly, they always hashed to 0 even though NaN values are not equal to one another. This caused potentially
quadratic runtime behavior due to excessive hash collisions when creating dictionaries and sets containing multiple
NaNs. (Contributed by Raymond Hettinger in bpo-43475.)

• A SyntaxError (instead of a NameError) will be raised when deleting the __debug__ constant. (Con-
tributed by Dong-hee Na in bpo-45000.)

15

https://bugs.python.org/issue29882
https://bugs.python.org/issue40890
https://www.python.org/dev/peps/pep-0618
https://bugs.python.org/issue37999
https://bugs.python.org/issue38302
https://bugs.python.org/issue42990
https://bugs.python.org/issue31861
https://bugs.python.org/issue31861
https://bugs.python.org/issue43682
https://www.python.org/dev/peps/pep-0526
https://bugs.python.org/issue42737
https://bugs.python.org/issue43901
https://bugs.python.org/issue42725
https://bugs.python.org/issue42725
https://bugs.python.org/issue42725
https://bugs.python.org/issue43475
https://bugs.python.org/issue45000

5 New Modules

• None yet.

6 Improved Modules

6.1 asyncio

Add missing connect_accepted_socket() method. (Contributed by Alex Grönholm in bpo-41332.)

6.2 argparse

Misleading phrase “optional arguments” was replaced with “options” in argparse help. Some tests might require adaptation
if they rely on exact output match. (Contributed by Raymond Hettinger in bpo-9694.)

6.3 array

Theindex()method ofarray.array now has optional start and stop parameters. (Contributed byAnders Lorentsen
and Zackery Spytz in bpo-31956.)

6.4 asynchat, asyncore, smtpd

These modules have been marked as deprecated in their module documentation since Python 3.6. An import-time
DeprecationWarning has now been added to all three of these modules.

6.5 base64

Addbase64.b32hexencode() andbase64.b32hexdecode() to support the Base32 Encoding with Extended
Hex Alphabet.

6.6 bdb

Add clearBreakpoints() to reset all set breakpoints. (Contributed by Irit Katriel in bpo-24160.)

6.7 codecs

Add a codecs.unregister() function to unregister a codec search function. (Contributed by Hai Shi in bpo-
41842.)

16

https://bugs.python.org/issue41332
https://bugs.python.org/issue9694
https://bugs.python.org/issue31956
https://bugs.python.org/issue24160
https://bugs.python.org/issue41842
https://bugs.python.org/issue41842

6.8 collections.abc

The __args__ of the parameterized generic for collections.abc.Callable are now consistent with
typing.Callable. collections.abc.Callable generic now flattens type parameters, similar to what
typing.Callable currently does. This means that collections.abc.Callable[[int, str], str]
will have __args__ of (int, str, str); previously this was ([int, str], str). To allow this
change, types.GenericAlias can now be subclassed, and a subclass will be returned when subscripting the
collections.abc.Callable type. Note that a TypeError may be raised for invalid forms of parameter-
izing collections.abc.Callable which may have passed silently in Python 3.9. (Contributed by Ken Jin in
bpo-42195.)

6.9 contextlib

Add a contextlib.aclosing() context manager to safely close async generators and objects representing asyn-
chronously released resources. (Contributed by Joongi Kim and John Belmonte in bpo-41229.)
Add asynchronous context manager support to contextlib.nullcontext(). (Contributed by Tom Gringauz in
bpo-41543.)
Add AsyncContextDecorator, for supporting usage of async context managers as decorators.

6.10 curses

The extended color functions added in ncurses 6.1 will be used transparently by curses.color_content(),
curses.init_color(), curses.init_pair(), and curses.pair_content(). A new function,
curses.has_extended_color_support(), indicates whether extended color support is provided by the un-
derlying ncurses library. (Contributed by Jeffrey Kintscher and Hans Petter Jansson in bpo-36982.)
The BUTTON5_* constants are now exposed in the cursesmodule if they are provided by the underlying curses library.
(Contributed by Zackery Spytz in bpo-39273.)

6.11 dataclasses

__slots__

Added slots parameter in dataclasses.dataclass() decorator. (Contributed by Yurii Karabas in bpo-42269)

Keyword-only fields

dataclassses now supports fields that are keyword-only in the generated __init__ method. There are a number of ways of
specifying keyword-only fields.
You can say that every field is keyword-only:

from dataclasses import dataclass

@dataclass(kw_only=True)
class Birthday:

name: str
birthday: datetime.date

17

https://bugs.python.org/issue42195
https://bugs.python.org/issue41229
https://bugs.python.org/issue41543
https://bugs.python.org/issue36982
https://bugs.python.org/issue39273
https://bugs.python.org/issue42269

Both name and birthday are keyword-only parameters to the generated __init__ method.
You can specify keyword-only on a per-field basis:

from dataclasses import dataclass

@dataclass
class Birthday:

name: str
birthday: datetime.date = field(kw_only=True)

Here only birthday is keyword-only. If you set kw_only on individual fields, be aware that there are rules about
re-ordering fields due to keyword-only fields needing to follow non-keyword-only fields. See the full dataclasses docu-
mentation for details.
You can also specify that all fields following a KW_ONLY marker are keyword-only. This will probably be the most
common usage:

from dataclasses import dataclass, KW_ONLY

@dataclass
class Point:

x: float
y: float
_: KW_ONLY
z: float = 0.0
t: float = 0.0

Here, z and t are keyword-only parameters, while x and y are not. (Contributed by Eric V. Smith in bpo-43532)

6.12 distutils

The entire distutils package is deprecated, to be removed in Python 3.12. Its functionality for specifying package
builds has already been completely replaced by third-party packages setuptools and packaging, and most other
commonly used APIs are available elsewhere in the standard library (such as platform, shutil, subprocess or
sysconfig). There are no plans to migrate any other functionality from distutils, and applications that are using
other functions should plan to make private copies of the code. Refer to PEP 632 for discussion.
The bdist_wininst command deprecated in Python 3.8 has been removed. The bdist_wheel command is now
recommended to distribute binary packages on Windows. (Contributed by Victor Stinner in bpo-42802.)

6.13 doctest

When a module does not define __loader__, fall back to __spec__.loader. (Contributed by Brett Cannon in
bpo-42133.)

18

https://bugs.python.org/issue43532
https://www.python.org/dev/peps/pep-0632
https://bugs.python.org/issue42802
https://bugs.python.org/issue42133

6.14 encodings

encodings.normalize_encoding() now ignores non-ASCII characters. (Contributed by Hai Shi in bpo-
39337.)

6.15 fileinput

Add encoding and errors parameters in fileinput.input() and fileinput.FileInput. (Contributed by
Inada Naoki in bpo-43712.)
fileinput.hook_compressed() now returnsTextIOWrapper object whenmode is “r” and file is compressed,
like uncompressed files. (Contributed by Inada Naoki in bpo-5758.)

6.16 faulthandler

The faulthandler module now detects if a fatal error occurs during a garbage collector collection. (Contributed by
Victor Stinner in bpo-44466.)

6.17 gc

Add audit hooks for gc.get_objects(), gc.get_referrers() and gc.get_referents(). (Contributed
by Pablo Galindo in bpo-43439.)

6.18 glob

Add the root_dir and dir_fd parameters inglob() andiglob()which allow to specify the root directory for searching.
(Contributed by Serhiy Storchaka in bpo-38144.)

6.19 hashlib

The hashlib module requires OpenSSL 1.1.1 or newer. (Contributed by Christian Heimes in PEP 644 and bpo-43669.)
The hashlib module has preliminary support for OpenSSL 3.0.0. (Contributed by Christian Heimes in bpo-38820 and
other issues.)
The pure-Python fallback of pbkdf2_hmac() is deprecated. In the future PBKDF2-HMAC will only be available
when Python has been built with OpenSSL support. (Contributed by Christian Heimes in bpo-43880.)

6.20 hmac

The hmac module now uses OpenSSL’s HMAC implementation internally. (Contributed by Christian Heimes in bpo-
40645.)

19

https://bugs.python.org/issue39337
https://bugs.python.org/issue39337
https://bugs.python.org/issue43712
https://bugs.python.org/issue5758
https://bugs.python.org/issue44466
https://bugs.python.org/issue43439
https://bugs.python.org/issue38144
https://www.python.org/dev/peps/pep-0644
https://bugs.python.org/issue43669
https://bugs.python.org/issue38820
https://bugs.python.org/issue43880
https://bugs.python.org/issue40645
https://bugs.python.org/issue40645

6.21 IDLE and idlelib

Make IDLE invoke sys.excepthook() (when started without ‘-n’). User hooks were previously ignored. (Patch by
Ken Hilton in bpo-43008.)
This change was backported to a 3.9 maintenance release.
Add a Shell sidebar. Move the primary prompt (‘»>’) to the sidebar. Add secondary prompts (‘…’) to the sidebar. Left
click and optional drag selects one or more lines of text, as with the editor line number sidebar. Right click after selecting
text lines displays a context menu with ‘copy with prompts’. This zips together prompts from the sidebar with lines from
the selected text. This option also appears on the context menu for the text. (Contributed by Tal Einat in bpo-37903.)
Use spaces instead of tabs to indent interactive code. This makes interactive code entries ‘look right’. Making this feasible
was a major motivation for adding the shell sidebar. Contributed by Terry Jan Reedy in bpo-37892.)
We expect to backport these shell changes to a future 3.9 maintenance release.
Highlight the new soft keywords match, case, and _ in pattern-matching statements. However, this highlighting is
not perfect and will be incorrect in some rare cases, including some _-s in case patterns. (Contributed by Tal Einat in
bpo-44010.)

6.22 importlib.metadata

Feature parity with importlib_metadata 4.6 (history).
importlib.metadata entry points now provides a nicer experience for selecting entry points by group and name through
a new importlib.metadata.EntryPoints class. See the Compatibility Note in the docs for more info on the
deprecation and usage.
Added importlib.metadata.packages_distributions() for resolving top-level Python modules and
packages to their importlib.metadata.Distribution.

6.23 inspect

When a module does not define __loader__, fall back to __spec__.loader. (Contributed by Brett Cannon in
bpo-42133.)
Add inspect.get_annotations(), which safely computes the annotations defined on an object. It works around
the quirks of accessing the annotations on various types of objects, and makes very few assumptions about the object
it examines. inspect.get_annotations() can also correctly un-stringize stringized annotations. inspect.
get_annotations() is now considered best practice for accessing the annotations dict defined on any Python
object; for more information on best practices for working with annotations, please see annotations-howto. Relat-
edly, inspect.signature(), inspect.Signature.from_callable(), and inspect.Signature.
from_function() now call inspect.get_annotations() to retrieve annotations. This means inspect.
signature() andinspect.Signature.from_callable() can also now un-stringize stringized annotations.
(Contributed by Larry Hastings in bpo-43817.)

20

https://bugs.python.org/issue43008
https://bugs.python.org/issue37903
https://bugs.python.org/issue37892
https://importlib-metadata.readthedocs.io/en/latest/history.html
https://bugs.python.org/issue42133
https://bugs.python.org/issue43817

6.24 linecache

When a module does not define __loader__, fall back to __spec__.loader. (Contributed by Brett Cannon in
bpo-42133.)

6.25 os

Add os.cpu_count() support for VxWorks RTOS. (Contributed by Peixing Xin in bpo-41440.)
Add a new function os.eventfd() and related helpers to wrap the eventfd2 syscall on Linux. (Contributed by
Christian Heimes in bpo-41001.)
Add os.splice() that allows to move data between two file descriptors without copying between kernel address
space and user address space, where one of the file descriptors must refer to a pipe. (Contributed by Pablo Galindo in
bpo-41625.)
Add O_EVTONLY, O_FSYNC, O_SYMLINK and O_NOFOLLOW_ANY for macOS. (Contributed by Dong-hee Na in
bpo-43106.)

6.26 os.path

os.path.realpath() now accepts a strict keyword-only argument. When set to True, OSError is raised if a
path doesn’t exist or a symlink loop is encountered. (Contributed by Barney Gale in bpo-43757.)

6.27 pathlib

Add slice support to PurePath.parents. (Contributed by Joshua Cannon in bpo-35498)
Add negative indexing support to PurePath.parents. (Contributed by Yaroslav Pankovych in bpo-21041)
Add Path.hardlink_to method that supersedes link_to(). The new method has the same argument order as
symlink_to(). (Contributed by Barney Gale in bpo-39950.)
pathlib.Path.stat() and chmod() now accept a follow_symlinks keyword-only argument for consistency with
corresponding functions in the os module. (Contributed by Barney Gale in bpo-39906.)

6.28 platform

Add platform.freedesktop_os_release() to retrieve operation system identification from freedesktop.org
os-release standard file. (Contributed by Christian Heimes in bpo-28468)

6.29 pprint

pprint.pprint() now accepts a new underscore_numbers keyword argument. (Contributed by sblondon in
bpo-42914.)
pprint can now pretty-print dataclasses.dataclass instances. (Contributed by Lewis Gaul in bpo-43080.)

21

https://bugs.python.org/issue42133
https://bugs.python.org/issue41440
https://bugs.python.org/issue41001
https://bugs.python.org/issue41625
https://bugs.python.org/issue43106
https://bugs.python.org/issue43757
https://bugs.python.org/issue35498
https://bugs.python.org/issue21041
https://bugs.python.org/issue39950
https://bugs.python.org/issue39906
https://www.freedesktop.org/software/systemd/man/os-release.html
https://www.freedesktop.org/software/systemd/man/os-release.html
https://bugs.python.org/issue28468
https://bugs.python.org/issue42914
https://bugs.python.org/issue43080

6.30 py_compile

Add --quiet option to command-line interface of py_compile. (Contributed by Gregory Schevchenko in bpo-
38731.)

6.31 pyclbr

Add an end_lineno attribute to the Function and Class objects in the tree returned by pyclbr.readline()
and pyclbr.readline_ex(). It matches the existing (start) lineno. (Contributed by Aviral Srivastava in bpo-
38307.)

6.32 shelve

The shelve module now uses pickle.DEFAULT_PROTOCOL by default instead of pickle protocol 3 when cre-
ating shelves. (Contributed by Zackery Spytz in bpo-34204.)

6.33 statistics

Add covariance(), Pearson’s correlation(), and simple linear_regression() functions. (Contributed
by Tymoteusz Wołodźko in bpo-38490.)

6.34 site

When a module does not define __loader__, fall back to __spec__.loader. (Contributed by Brett Cannon in
bpo-42133.)

6.35 socket

The exception socket.timeout is now an alias of TimeoutError. (Contributed by Christian Heimes in bpo-
42413.)
Add option to create MPTCP sockets with IPPROTO_MPTCP (Contributed by Rui Cunha in bpo-43571.)
Add IP_RECVTOS option to receive the type of service (ToS) or DSCP/ECN fields (Contributed by Georg Sauthoff in
bpo-44077.)

6.36 ssl

The ssl module requires OpenSSL 1.1.1 or newer. (Contributed by Christian Heimes in PEP 644 and bpo-43669.)
The ssl module has preliminary support for OpenSSL 3.0.0 and new option OP_IGNORE_UNEXPECTED_EOF. (Con-
tributed by Christian Heimes in bpo-38820, bpo-43794, bpo-43788, bpo-43791, bpo-43799, bpo-43920, bpo-43789,
and bpo-43811.)
Deprecated function and use of deprecated constants now result in a DeprecationWarning. ssl.SSLContext.
options has OP_NO_SSLv2 and OP_NO_SSLv3 set by default and therefore cannot warn about setting the flag again.
The deprecation section has a list of deprecated features. (Contributed by Christian Heimes in bpo-43880.)
The ssl module now has more secure default settings. Ciphers without forward secrecy or SHA-1 MAC are disabled by
default. Security level 2 prohibits weak RSA, DH, and ECC keys with less than 112 bits of security. SSLContext

22

https://bugs.python.org/issue38731
https://bugs.python.org/issue38731
https://bugs.python.org/issue38307
https://bugs.python.org/issue38307
https://bugs.python.org/issue34204
https://bugs.python.org/issue38490
https://bugs.python.org/issue42133
https://bugs.python.org/issue42413
https://bugs.python.org/issue42413
https://bugs.python.org/issue43571
https://bugs.python.org/issue44077
https://www.python.org/dev/peps/pep-0644
https://bugs.python.org/issue43669
https://bugs.python.org/issue38820
https://bugs.python.org/issue43794
https://bugs.python.org/issue43788
https://bugs.python.org/issue43791
https://bugs.python.org/issue43799
https://bugs.python.org/issue43920
https://bugs.python.org/issue43789
https://bugs.python.org/issue43811
https://bugs.python.org/issue43880

defaults to minimum protocol version TLS 1.2. Settings are based on Hynek Schlawack’s research. (Contributed by
Christian Heimes in bpo-43998.)
The deprecated protocols SSL 3.0, TLS 1.0, and TLS 1.1 are no longer officially supported. Python does not block
them actively. However OpenSSL build options, distro configurations, vendor patches, and cipher suites may prevent a
successful handshake.
Add a timeout parameter to the ssl.get_server_certificate() function. (Contributed by Zackery Spytz in
bpo-31870.)
The ssl module uses heap-types and multi-phase initialization. (Contributed by Christian Heimes in bpo-42333.)
A new verify flag VERIFY_X509_PARTIAL_CHAIN has been added. (Contributed by l0x in bpo-40849.)

6.37 sqlite3

Add audit events for connect/handle(), enable_load_extension(), and load_extension(). (Con-
tributed by Erlend E. Aasland in bpo-43762.)

6.38 sys

Add sys.orig_argv attribute: the list of the original command line arguments passed to the Python executable.
(Contributed by Victor Stinner in bpo-23427.)
Add sys.stdlib_module_names, containing the list of the standard library module names. (Contributed by Victor
Stinner in bpo-42955.)

6.39 _thread

_thread.interrupt_main() now takes an optional signal number to simulate (the default is still signal.
SIGINT). (Contributed by Antoine Pitrou in bpo-43356.)

6.40 threading

Add threading.gettrace() and threading.getprofile() to retrieve the functions set by threading.
settrace() and threading.setprofile() respectively. (Contributed by Mario Corchero in bpo-42251.)
Add threading.__excepthook__ to allow retrieving the original value of threading.excepthook() in
case it is set to a broken or a different value. (Contributed by Mario Corchero in bpo-42308.)

6.41 traceback

The format_exception(), format_exception_only(), and print_exception() functions can now
take an exception object as a positional-only argument. (Contributed by Zackery Spytz and Matthias Bussonnier in bpo-
26389.)

23

https://bugs.python.org/issue43998
https://bugs.python.org/issue31870
https://bugs.python.org/issue42333
https://bugs.python.org/issue40849
https://bugs.python.org/issue43762
https://bugs.python.org/issue23427
https://bugs.python.org/issue42955
https://bugs.python.org/issue43356
https://bugs.python.org/issue42251
https://bugs.python.org/issue42308
https://bugs.python.org/issue26389
https://bugs.python.org/issue26389

6.42 types

Reintroduce the types.EllipsisType, types.NoneType and types.NotImplementedType classes,
providing a new set of types readily interpretable by type checkers. (Contributed by Bas van Beek in bpo-41810.)

6.43 typing

For major changes, see New Features Related to Type Hints.
The behavior of typing.Literal was changed to conform with PEP 586 and to match the behavior of static type
checkers specified in the PEP.

1. Literal now de-duplicates parameters.
2. Equality comparisons between Literal objects are now order independent.
3. Literal comparisons now respects types. For example, Literal[0] == Literal[False] previously

evaluated to True. It is now False. To support this change, the internally used type cache now supports differ-
entiating types.

4. Literal objects will now raise a TypeError exception during equality comparisons if any of their parameters
are not hashable. Note that declaring Literal with unhashable parameters will not throw an error:

>>> from typing import Literal
>>> Literal[{0}]
>>> Literal[{0}] == Literal[{False}]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: unhashable type: 'set'

(Contributed by Yurii Karabas in bpo-42345.)
Add new function typing.is_typeddict() to introspect if an annotation is a typing.TypedDict. (Con-
tributed by Patrick Reader in bpo-41792)
Subclasses oftyping.Protocolwhich only have data variables declared will now raise aTypeErrorwhen checked
with isinstance unless they are decorated with runtime_checkable(). Previously, these checks passed
silently. Users should decorate their subclasses with the runtime_checkable() decorator if they want runtime
protocols. (Contributed by Yurii Karabas in bpo-38908)
Importing from the typing.io and typing.re submodules will now emit DeprecationWarning. These sub-
modules have been deprecated since Python 3.8 and will be removed in a future version of Python. Anything belonging
to those submodules should be imported directly from typing instead. (Contributed by Sebastian Rittau in bpo-38291)

6.44 unittest

Add new method assertNoLogs() to complement the existing assertLogs(). (Contributed by Kit Yan Choi in
bpo-39385.)

24

https://bugs.python.org/issue41810
https://www.python.org/dev/peps/pep-0586
https://bugs.python.org/issue42345
https://bugs.python.org/issue41792
https://bugs.python.org/issue38908
https://bugs.python.org/issue38291
https://bugs.python.org/issue39385

6.45 urllib.parse

Python versions earlier than Python 3.10 allowed using both ; and & as query parameter separators in urllib.parse.
parse_qs() and urllib.parse.parse_qsl(). Due to security concerns, and to conform with newer W3C
recommendations, this has been changed to allow only a single separator key, with & as the default. This change also
affects cgi.parse() and cgi.parse_multipart() as they use the affected functions internally. For more
details, please see their respective documentation. (Contributed by Adam Goldschmidt, Senthil Kumaran and Ken Jin in
bpo-42967.)
The presence of newline or tab characters in parts of a URL allows for some forms of attacks. Following the WHATWG
specification that updates RFC 3986, ASCII newline \n, \r and tab \t characters are stripped from the URL by the
parser in urllib.parse preventing such attacks. The removal characters are controlled by a newmodule level variable
urllib.parse._UNSAFE_URL_BYTES_TO_REMOVE. (See bpo-43882)

6.46 xml

Add a LexicalHandler class to the xml.sax.handlermodule. (Contributed by Jonathan Gossage and Zackery
Spytz in bpo-35018.)

6.47 zipimport

Add methods related to PEP 451: find_spec(), zipimport.zipimporter.create_module(), and
zipimport.zipimporter.exec_module(). (Contributed by Brett Cannon in bpo-42131.)
Add invalidate_caches() method. (Contributed by Desmond Cheong in bpo-14678.)

7 Optimizations

• Constructors str(), bytes() and bytearray() are now faster (around 30–40% for small objects). (Con-
tributed by Serhiy Storchaka in bpo-41334.)

• The runpy module now imports fewer modules. The python3 -m module-name command startup time
is 1.4x faster in average. On Linux, python3 -I -m module-name imports 69 modules on Python 3.9,
whereas it only imports 51 modules (-18) on Python 3.10. (Contributed by Victor Stinner in bpo-41006 and bpo-
41718.)

• The LOAD_ATTR instruction now uses new “per opcode cache” mechanism. It is about 36% faster now for regular
attributes and 44% faster for slots. (Contributed by Pablo Galindo and Yury Selivanov in bpo-42093 and Guido
van Rossum in bpo-42927, based on ideas implemented originally in PyPy and MicroPython.)

• When building Python with --enable-optimizations now -fno-semantic-interposition
is added to both the compile and link line. This speeds builds of the Python interpreter created with
--enable-shared with gcc by up to 30%. See this article for more details. (Contributed by Victor Stin-
ner and Pablo Galindo in bpo-38980.)

• Use a new output buffer management code for bz2 / lzma / zlib modules, and add .readall() function to
_compression.DecompressReader class. bz2 decompression is now 1.09x ~ 1.17x faster, lzma decom-
pression 1.20x ~ 1.32x faster, GzipFile.read(-1) 1.11x ~ 1.18x faster. (Contributed by Ma Lin, reviewed
by Gregory P. Smith, in bpo-41486)

• When using stringized annotations, annotations dicts for functions are no longer createdwhen the function is created.
Instead, they are stored as a tuple of strings, and the function object lazily converts this into the annotations dict
on demand. This optimization cuts the CPU time needed to define an annotated function by half. (Contributed by
Yurii Karabas and Inada Naoki in bpo-42202)

25

https://bugs.python.org/issue42967
https://tools.ietf.org/html/rfc3986.html
https://bugs.python.org/issue43882
https://bugs.python.org/issue35018
https://www.python.org/dev/peps/pep-0451
https://bugs.python.org/issue42131
https://bugs.python.org/issue14678
https://bugs.python.org/issue41334
https://bugs.python.org/issue41006
https://bugs.python.org/issue41718
https://bugs.python.org/issue41718
https://bugs.python.org/issue42093
https://bugs.python.org/issue42927
https://developers.redhat.com/blog/2020/06/25/red-hat-enterprise-linux-8-2-brings-faster-python-3-8-run-speeds/
https://bugs.python.org/issue38980
https://bugs.python.org/issue41486
https://bugs.python.org/issue42202

• Substring search functions such as str1 in str2 and str2.find(str1) now sometimes use Crochemore
& Perrin’s “Two-Way” string searching algorithm to avoid quadratic behavior on long strings. (Contributed by
Dennis Sweeney in bpo-41972)

• Add micro-optimizations to _PyType_Lookup() to improve type attribute cache lookup performance in the
common case of cache hits. This makes the interpreter 1.04 times faster on average. (Contributed by Dino Viehland
in bpo-43452)

• The following built-in functions now support the faster PEP 590 vectorcall calling convention: map(),
filter(), reversed(), bool() and float(). (Contributed by Dong-hee Na and Jeroen Demeyer in
bpo-43575, bpo-43287, bpo-41922, bpo-41873 and bpo-41870)

• BZ2File performance is improved by removing internal RLock. This makes BZ2File thread unsafe in the
face of multiple simultaneous readers or writers, just like its equivalent classes in gzip and lzma have always
been. (Contributed by Inada Naoki in bpo-43785).

8 Deprecated

• Currently Python accepts numeric literals immediately followed by keywords, for example 0in x, 1or x, 0if
1else 2. It allows confusing and ambigious expressions like [0x1for x in y] (which can be interpreted
as [0x1 for x in y] or [0x1f or x in y]). Starting in this release, a deprecation warning is raised if
the numeric literal is immediately followed by one of keywords and, else, for, if, in, is and or. If future
releases it will be changed to syntax warning, and finally to syntax error. (Contributed by Serhiy Storchaka in
bpo-43833).

• Starting in this release, there will be a concerted effort to begin cleaning up old import semantics that were kept for
Python 2.7 compatibility. Specifically, find_loader()/find_module() (superseded by find_spec()),
load_module() (superseded by exec_module()), module_repr() (which the import system takes
care of for you), the __package__ attribute (superseded by __spec__.parent), the __loader__ at-
tribute (superseded by __spec__.loader), and the __cached__ attribute (superseded by __spec__.
cached) will slowly be removed (as well as other classes and methods in importlib). ImportWarning
and/or DeprecationWarning will be raised as appropriate to help identify code which needs updating during
this transition.

• The entire distutils namespace is deprecated, to be removed in Python 3.12. Refer to the module changes
section for more information.

• Non-integer arguments to random.randrange() are deprecated. The ValueError is deprecated in favor
of a TypeError. (Contributed by Serhiy Storchaka and Raymond Hettinger in bpo-37319.)

• The various load_module()methods of importlib have been documented as deprecated since Python 3.6,
but will now also trigger a DeprecationWarning. Use exec_module() instead. (Contributed by Brett
Cannon in bpo-26131.)

• zimport.zipimporter.load_module() has been deprecated in preference for exec_module().
(Contributed by Brett Cannon in bpo-26131.)

• The use of load_module() by the import system now triggers an ImportWarning as exec_module()
is preferred. (Contributed by Brett Cannon in bpo-26131.)

• The use of importlib.abc.MetaPathFinder.find_module() and importlib.abc.
PathEntryFinder.find_module() by the import system now trigger an ImportWarning as
importlib.abc.MetaPathFinder.find_spec() and importlib.abc.PathEntryFinder.
find_spec() are preferred, respectively. You can use importlib.util.spec_from_loader() to
help in porting. (Contributed by Brett Cannon in bpo-42134.)

• The use of importlib.abc.PathEntryFinder.find_loader() by the import system now triggers
an ImportWarning as importlib.abc.PathEntryFinder.find_spec() is preferred. You can

26

https://bugs.python.org/issue41972
https://bugs.python.org/issue43452
https://www.python.org/dev/peps/pep-0590
https://bugs.python.org/issue43575
https://bugs.python.org/issue43287
https://bugs.python.org/issue41922
https://bugs.python.org/issue41873
https://bugs.python.org/issue41870
https://bugs.python.org/issue43785
https://bugs.python.org/issue43833
https://bugs.python.org/issue37319
https://bugs.python.org/issue26131
https://bugs.python.org/issue26131
https://bugs.python.org/issue26131
https://bugs.python.org/issue42134

use importlib.util.spec_from_loader() to help in porting. (Contributed by Brett Cannon in bpo-
43672.)

• The various implementations of importlib.abc.MetaPathFinder.find_module() (
importlib.machinery.BuiltinImporter.find_module(), importlib.machinery.
FrozenImporter.find_module(), importlib.machinery.WindowsRegistryFinder.
find_module(), importlib.machinery.PathFinder.find_module(), importlib.abc.
MetaPathFinder.find_module()), importlib.abc.PathEntryFinder.find_module()
(importlib.machinery.FileFinder.find_module(),), and importlib.abc.
PathEntryFinder.find_loader() (importlib.machinery.FileFinder.find_loader()
) now raise DeprecationWarning and are slated for removal in Python 3.12 (previously they were documented
as deprecated in Python 3.4). (Contributed by Brett Cannon in bpo-42135.)

• importlib.abc.Finder is deprecated (including its sole method, find_module()). Both
importlib.abc.MetaPathFinder and importlib.abc.PathEntryFinder no longer inherit
from the class. Users should inherit from one of these two classes as appropriate instead. (Contributed by Brett
Cannon in bpo-42135.)

• The deprecations of imp, importlib.find_loader(), importlib.util.
set_package_wrapper(), importlib.util.set_loader_wrapper(), importlib.util.
module_for_loader(), pkgutil.ImpImporter, and pkgutil.ImpLoader have all been updated
to list Python 3.12 as the slated version of removal (they began raising DeprecationWarning in previous
versions of Python). (Contributed by Brett Cannon in bpo-43720.)

• The import system now uses the __spec__ attribute on modules before falling back on module_repr() for
a module’s __repr__() method. Removal of the use of module_repr() is scheduled for Python 3.12.
(Contributed by Brett Cannon in bpo-42137.)

• importlib.abc.Loader.module_repr(), importlib.machinery.FrozenLoader.
module_repr(), and importlib.machinery.BuiltinLoader.module_repr() are deprecated
and slated for removal in Python 3.12. (Contributed by Brett Cannon in bpo-42136.)

• sqlite3.OptimizedUnicode has been undocumented and obsolete since Python 3.3, when it was made an
alias to str. It is now deprecated, scheduled for removal in Python 3.12. (Contributed by Erlend E. Aasland in
bpo-42264.)

• asyncio.get_event_loop() now emits a deprecation warning if there is no running event loop. In the
future it will be an alias of get_running_loop(). asyncio functions which implicitly create a Future
or Task objects now emit a deprecation warning if there is no running event loop and no explicit loop argument
is passed: ensure_future(), wrap_future(), gather(), shield(), as_completed() and con-
structors of Future, Task, StreamReader, StreamReaderProtocol. (Contributed by Serhiy Stor-
chaka in bpo-39529.)

• The undocumented built-in function sqlite3.enable_shared_cache is now deprecated, scheduled for
removal in Python 3.12. Its use is strongly discouraged by the SQLite3 documentation. See the SQLite3 docs for
more details. If a shared cache must be used, open the database in URI mode using the cache=shared query
parameter. (Contributed by Erlend E. Aasland in bpo-24464.)

• The following threading methods are now deprecated:
– threading.currentThread => threading.current_thread()
– threading.activeCount => threading.active_count()
– threading.Condition.notifyAll => threading.Condition.notify_all()
– threading.Event.isSet => threading.Event.is_set()
– threading.Thread.setName => threading.Thread.name
– threading.thread.getName => threading.Thread.name

27

https://bugs.python.org/issue43672
https://bugs.python.org/issue43672
https://bugs.python.org/issue42135
https://bugs.python.org/issue42135
https://bugs.python.org/issue43720
https://bugs.python.org/issue42137
https://bugs.python.org/issue42136
https://bugs.python.org/issue42264
https://bugs.python.org/issue39529
https://sqlite.org/c3ref/enable_shared_cache.html
https://bugs.python.org/issue24464

– threading.Thread.isDaemon => threading.Thread.daemon
– threading.Thread.setDaemon => threading.Thread.daemon

(Contributed by Jelle Zijlstra in bpo-21574.)
• pathlib.Path.link_to() is deprecated and slated for removal in Python 3.12. Use pathlib.Path.
hardlink_to() instead. (Contributed by Barney Gale in bpo-39950.)

• cgi.log() is deprecated and slated for removal in Python 3.12. (Contributed by Inada Naoki in bpo-41139.)
• The following ssl features have been deprecated since Python 3.6, Python 3.7, or OpenSSL 1.1.0 and will be
removed in 3.11:

– OP_NO_SSLv2, OP_NO_SSLv3, OP_NO_TLSv1, OP_NO_TLSv1_1, OP_NO_TLSv1_2, and
OP_NO_TLSv1_3 are replaced by sslSSLContext.minimum_version and sslSSLContext.
maximum_version.

– PROTOCOL_SSLv2, PROTOCOL_SSLv3, PROTOCOL_SSLv23, PROTOCOL_TLSv1,
PROTOCOL_TLSv1_1, PROTOCOL_TLSv1_2, and PROTOCOL_TLS are deprecated in favor of
PROTOCOL_TLS_CLIENT and PROTOCOL_TLS_SERVER

– wrap_socket() is replaced by ssl.SSLContext.wrap_socket()
– match_hostname()

– RAND_pseudo_bytes(), RAND_egd()
– NPN features like ssl.SSLSocket.selected_npn_protocol() and ssl.SSLContext.
set_npn_protocols() are replaced by ALPN.

• The threading debug (PYTHONTHREADDEBUG environment variable) is deprecated in Python 3.10 and will be
removed in Python 3.12. This feature requires a debug build of Python. (Contributed by Victor Stinner in bpo-
44584.)

• Importing from the typing.io and typing.re submodules will now emit DeprecationWarning. These
submodules will be removed in a future version of Python. Anything belonging to these submodules should be
imported directly from typing instead. (Contributed by Sebastian Rittau in bpo-38291)

9 Removed

• Removed special methods __int__, __float__, __floordiv__, __mod__, __divmod__,
__rfloordiv__, __rmod__ and__rdivmod__ of thecomplex class. They always raised aTypeError.
(Contributed by Serhiy Storchaka in bpo-41974.)

• The ParserBase.error()method from the private and undocumented _markupbasemodule has been re-
moved. html.parser.HTMLParser is the only subclass of ParserBase and its error() implementation
was already removed in Python 3.5. (Contributed by Berker Peksag in bpo-31844.)

• Removed the unicodedata.ucnhash_CAPI attribute which was an internal PyCapsule object. The related
private _PyUnicode_Name_CAPI structure was moved to the internal C API. (Contributed by Victor Stinner
in bpo-42157.)

• Removed the parser module, which was deprecated in 3.9 due to the switch to the new PEG parser, as well
as all the C source and header files that were only being used by the old parser, including node.h, parser.h,
graminit.h and grammar.h.

• Removed the Public C API functions PyParser_SimpleParseStringFlags,
PyParser_SimpleParseStringFlagsFilename, PyParser_SimpleParseFileFlags and
PyNode_Compile that were deprecated in 3.9 due to the switch to the new PEG parser.

28

https://bugs.python.org/issue21574
https://bugs.python.org/issue39950
https://bugs.python.org/issue41139
https://bugs.python.org/issue44584
https://bugs.python.org/issue44584
https://bugs.python.org/issue38291
https://bugs.python.org/issue41974
https://bugs.python.org/issue31844
https://bugs.python.org/issue42157

• Removed the formatter module, which was deprecated in Python 3.4. It is somewhat obsolete, little used, and
not tested. It was originally scheduled to be removed in Python 3.6, but such removals were delayed until after
Python 2.7 EOL. Existing users should copy whatever classes they use into their code. (Contributed by Dong-hee
Na and Terry J. Reedy in bpo-42299.)

• Removed the PyModule_GetWarningsModule() function that was useless now due to the _warnings mod-
ule was converted to a builtin module in 2.6. (Contributed by Hai Shi in bpo-42599.)

• Remove deprecated aliases to collections-abstract-base-classes from the collections module. (Contributed
by Victor Stinner in bpo-37324.)

• The loop parameter has been removed from most of asyncio‘s high-level API following deprecation in Python
3.8. The motivation behind this change is multifold:
1. This simplifies the high-level API.
2. The functions in the high-level API have been implicitly getting the current thread’s running event loop since

Python 3.7. There isn’t a need to pass the event loop to the API in most normal use cases.
3. Event loop passing is error-prone especially when dealing with loops running in different threads.

Note that the low-level API will still accept loop. See Changes in the Python API for examples of how to replace
existing code.
(Contributed by Yurii Karabas, Andrew Svetlov, Yury Selivanov and Kyle Stanley in bpo-42392.)

10 Porting to Python 3.10

This section lists previously described changes and other bugfixes that may require changes to your code.

10.1 Changes in the Python syntax

• Deprecation warning is now emitted when compiling previously valid syntax if the numeric literal is immediately
followed by a keyword (like in 0in x). If future releases it will be changed to syntax warning, and finally to a
syntax error. To get rid of the warning and make the code compatible with future releases just add a space between
the numeric literal and the following keyword. (Contributed by Serhiy Storchaka in bpo-43833).

10.2 Changes in the Python API

• The etype parameters of the format_exception(), format_exception_only(), and
print_exception() functions in the traceback module have been renamed to exc. (Contributed
by Zackery Spytz and Matthias Bussonnier in bpo-26389.)

• atexit: At Python exit, if a callback registered with atexit.register() fails, its exception is now logged.
Previously, only some exceptions were logged, and the last exception was always silently ignored. (Contributed by
Victor Stinner in bpo-42639.)

• collections.abc.Callable generic now flattens type parameters, similar to what typing.Callable
currently does. This means that collections.abc.Callable[[int, str], str] will have
__args__ of (int, str, str); previously this was ([int, str], str). Code which accesses the ar-
guments via typing.get_args() or __args__ need to account for this change. Furthermore, TypeError
may be raised for invalid forms of parameterizing collections.abc.Callable which may have passed
silently in Python 3.9. (Contributed by Ken Jin in bpo-42195.)

29

https://bugs.python.org/issue42299
https://bugs.python.org/issue42599
https://bugs.python.org/issue37324
https://bugs.python.org/issue42392
https://bugs.python.org/issue43833
https://bugs.python.org/issue26389
https://bugs.python.org/issue42639
https://bugs.python.org/issue42195

• socket.htons() and socket.ntohs() now raise OverflowError instead of
DeprecationWarning if the given parameter will not fit in a 16-bit unsigned integer. (Contributed by
Erlend E. Aasland in bpo-42393.)

• The loop parameter has been removed from most of asyncio‘s high-level API following deprecation in Python
3.8.
A coroutine that currently looks like this:

async def foo(loop):
await asyncio.sleep(1, loop=loop)

Should be replaced with this:

async def foo():
await asyncio.sleep(1)

If foo() was specifically designed not to run in the current thread’s running event loop (e.g. running in another
thread’s event loop), consider using asyncio.run_coroutine_threadsafe() instead.
(Contributed by Yurii Karabas, Andrew Svetlov, Yury Selivanov and Kyle Stanley in bpo-42392.)

• The types.FunctionType constructor now inherits the current builtins if the globals dictionary has no
"__builtins__" key, rather than using {"None": None} as builtins: same behavior as eval() and
exec() functions. Defining a function with def function(...): ... in Python is not affected, glob-
als cannot be overriden with this syntax: it also inherits the current builtins. (Contributed by Victor Stinner in
bpo-42990.)

10.3 Changes in the C API

• TheCAPI functionsPyParser_SimpleParseStringFlags, PyParser_SimpleParseStringFlagsFilename,
PyParser_SimpleParseFileFlags, PyNode_Compile and the type used by these functions, struct
_node, were removed due to the switch to the new PEG parser.
Source should be now be compiled directly to a code object using, for example, Py_CompileString(). The
resulting code object can then be evaluated using, for example, PyEval_EvalCode().
Specifically:
– A call to PyParser_SimpleParseStringFlags followed by PyNode_Compile can be replaced
by calling Py_CompileString().

– There is no direct replacement for PyParser_SimpleParseFileFlags. To compile code
from a FILE * argument, you will need to read the file in C and pass the resulting buffer to
Py_CompileString().

– To compile a file given a char * filename, explicitly open the file, read it and compile the result. One way
to do this is using the io module with PyImport_ImportModule(), PyObject_CallMethod(),
PyBytes_AsString() and Py_CompileString(), as sketched below. (Declarations and error han-
dling are omitted.)

io_module = Import_ImportModule("io");
fileobject = PyObject_CallMethod(io_module, "open", "ss", filename, "rb");
source_bytes_object = PyObject_CallMethod(fileobject, "read", "");
result = PyObject_CallMethod(fileobject, "close", "");
source_buf = PyBytes_AsString(source_bytes_object);
code = Py_CompileString(source_buf, filename, Py_file_input);

30

https://bugs.python.org/issue42393
https://bugs.python.org/issue42392
https://bugs.python.org/issue42990

11 CPython bytecode changes

• The MAKE_FUNCTION instruction now accepts either a dict or a tuple of strings as the function’s annotations.
(Contributed by Yurii Karabas and Inada Naoki in bpo-42202)

12 Build Changes

• PEP 644: Python now requires OpenSSL 1.1.1 or newer. OpenSSL 1.0.2 is no longer supported. (Contributed by
Christian Heimes in bpo-43669.)

• The C99 functions snprintf() and vsnprintf() are now required to build Python. (Contributed by Victor
Stinner in bpo-36020.)

• sqlite3 requires SQLite 3.7.15 or higher. (Contributed by Sergey Fedoseev and Erlend E. Aasland bpo-40744
and bpo-40810.)

• The atexitmodule must now always be built as a built-in module. (Contributed by Victor Stinner in bpo-42639.)
• Add--disable-test-modules option to theconfigure script: don’t build nor install test modules. (Con-
tributed by Xavier de Gaye, Thomas Petazzoni and Peixing Xin in bpo-27640.)

• Add --with-wheel-pkg-dir=PATH option to the ./configure script. If specified, the
ensurepip module looks for setuptools and pip wheel packages in this directory: if both are present,
these wheel packages are used instead of ensurepip bundled wheel packages.
Some Linux distribution packaging policies recommend against bundling dependencies. For example, Fedora
installs wheel packages in the /usr/share/python-wheels/ directory and don’t install the ensurepip.
_bundled package.
(Contributed by Victor Stinner in bpo-42856.)

• Add a new configure --without-static-libpython option to not build the
libpythonMAJOR.MINOR.a static library and not install the python.o object file.
(Contributed by Victor Stinner in bpo-43103.)

• The configure script now uses the pkg-config utility, if available, to detect the location of Tcl/Tk headers
and libraries. As before, those locations can be explicitly specified with the --with-tcltk-includes and
--with-tcltk-libs configuration options. (Contributed by Manolis Stamatogiannakis in bpo-42603.)

• Add --with-openssl-rpath option to configure script. The option simplifies building Python
with a custom OpenSSL installation, e.g. ./configure --with-openssl=/path/to/openssl
--with-openssl-rpath=auto. (Contributed by Christian Heimes in bpo-43466.)

13 C API Changes

13.1 PEP 652: Maintaining the Stable ABI

The Stable ABI (Application Binary Interface) for extension modules or embedding Python is now explicitly defined.
stable describes C API and ABI stability guarantees along with best practices for using the Stable ABI.
(Contributed by Petr Viktorin in PEP 652 and bpo-43795.)

31

https://bugs.python.org/issue42202
https://www.python.org/dev/peps/pep-0644
https://bugs.python.org/issue43669
https://bugs.python.org/issue36020
https://bugs.python.org/issue40744
https://bugs.python.org/issue40810
https://bugs.python.org/issue42639
https://bugs.python.org/issue27640
https://bugs.python.org/issue42856
https://bugs.python.org/issue43103
https://bugs.python.org/issue42603
https://bugs.python.org/issue43466
https://www.python.org/dev/peps/pep-0652
https://bugs.python.org/issue43795

13.2 New Features

• The result of PyNumber_Index() now always has exact type int. Previously, the result could have been an
instance of a subclass of int. (Contributed by Serhiy Storchaka in bpo-40792.)

• Add a new orig_argv member to the PyConfig structure: the list of the original command line arguments
passed to the Python executable. (Contributed by Victor Stinner in bpo-23427.)

• The PyDateTime_DATE_GET_TZINFO() and PyDateTime_TIME_GET_TZINFO() macros have been
added for accessing the tzinfo attributes of datetime.datetime and datetime.time objects. (Con-
tributed by Zackery Spytz in bpo-30155.)

• Add a PyCodec_Unregister() function to unregister a codec search function. (Contributed by Hai Shi in
bpo-41842.)

• The PyIter_Send() function was added to allow sending value into iterator without raising StopIteration
exception. (Contributed by Vladimir Matveev in bpo-41756.)

• Add PyUnicode_AsUTF8AndSize() to the limited C API. (Contributed by Alex Gaynor in bpo-41784.)
• Add PyModule_AddObjectRef() function: similar to PyModule_AddObject() but don’t steal a refer-
ence to the value on success. (Contributed by Victor Stinner in bpo-1635741.)

• Add Py_NewRef() and Py_XNewRef() functions to increment the reference count of an object and return
the object. (Contributed by Victor Stinner in bpo-42262.)

• The PyType_FromSpecWithBases() and PyType_FromModuleAndSpec() functions now accept a
single class as the bases argument. (Contributed by Serhiy Storchaka in bpo-42423.)

• The PyType_FromModuleAndSpec() function now accepts NULL tp_doc slot. (Contributed by Hai Shi
in bpo-41832.)

• The PyType_GetSlot() function can accept static types. (Contributed by Hai Shi and Petr Viktorin in bpo-
41073.)

• Add a new PySet_CheckExact() function to the C-API to check if an object is an instance of set but not
an instance of a subtype. (Contributed by Pablo Galindo in bpo-43277.)

• Add PyErr_SetInterruptEx() which allows passing a signal number to simulate. (Contributed by Antoine
Pitrou in bpo-43356.)

• The limited C API is now supported if Python is built in debug mode (if the Py_DEBUG macro is defined). In
the limited C API, the Py_INCREF() and Py_DECREF() functions are now implemented as opaque function
calls, rather than accessing directly the PyObject.ob_refcnt member, if Python is built in debug mode and
the Py_LIMITED_API macro targets Python 3.10 or newer. It became possible to support the limited C API
in debug mode because the PyObject structure is the same in release and debug mode since Python 3.8 (see
bpo-36465).
The limited CAPI is still not supported in the --with-trace-refs special build (Py_TRACE_REFSmacro).
(Contributed by Victor Stinner in bpo-43688.)

• Add the Py_Is(x, y) function to test if the x object is the y object, the same as x is y in Python. Add also
the Py_IsNone(), Py_IsTrue(), Py_IsFalse() functions to test if an object is, respectively, the None
singleton, the True singleton or the False singleton. (Contributed by Victor Stinner in bpo-43753.)

• Add new functions to control the garbage collector from C code: PyGC_Enable(), PyGC_Disable(),
PyGC_IsEnabled(). These functions allow to activate, deactivate and query the state of the garbage collector
from C code without having to import the gc module.

• Add a new Py_TPFLAGS_DISALLOW_INSTANTIATION type flag to disallow creating type instances. (Con-
tributed by Victor Stinner in bpo-43916.)

32

https://bugs.python.org/issue40792
https://bugs.python.org/issue23427
https://bugs.python.org/issue30155
https://bugs.python.org/issue41842
https://bugs.python.org/issue41756
https://bugs.python.org/issue41784
https://bugs.python.org/issue1635741
https://bugs.python.org/issue42262
https://bugs.python.org/issue42423
https://bugs.python.org/issue41832
https://bugs.python.org/issue41073
https://bugs.python.org/issue41073
https://bugs.python.org/issue43277
https://bugs.python.org/issue43356
https://bugs.python.org/issue36465
https://bugs.python.org/issue43688
https://bugs.python.org/issue43753
https://bugs.python.org/issue43916

• Add a new Py_TPFLAGS_IMMUTABLETYPE type flag for creating immutable type objects: type attributes can-
not be set nor deleted. (Contributed by Victor Stinner and Erlend E. Aasland in bpo-43908.)

13.3 Porting to Python 3.10

• The PY_SSIZE_T_CLEAN macro must now be defined to use PyArg_ParseTuple() and
Py_BuildValue() formats which use #: es#, et#, s#, u#, y#, z#, U# and Z#. See Parsing argu-
ments and building values and the PEP 353. (Contributed by Victor Stinner in bpo-40943.)

• Since Py_REFCNT() is changed to the inline static function, Py_REFCNT(obj) = new_refcnt must be
replaced with Py_SET_REFCNT(obj, new_refcnt): see Py_SET_REFCNT() (available since Python
3.9). For backward compatibility, this macro can be used:

#if PY_VERSION_HEX < 0x030900A4
define Py_SET_REFCNT(obj, refcnt) ((Py_REFCNT(obj) = (refcnt)), (void)0)
#endif

(Contributed by Victor Stinner in bpo-39573.)
• Calling PyDict_GetItem() without GIL held had been allowed for historical reason. It is no longer allowed.
(Contributed by Victor Stinner in bpo-40839.)

• PyUnicode_FromUnicode(NULL, size) and PyUnicode_FromStringAndSize(NULL,
size) raise DeprecationWarning now. Use PyUnicode_New() to allocate Unicode object without
initial data. (Contributed by Inada Naoki in bpo-36346.)

• The private _PyUnicode_Name_CAPI structure of the PyCapsule API unicodedata.ucnhash_CAPI
has been moved to the internal C API. (Contributed by Victor Stinner in bpo-42157.)

• Py_GetPath(), Py_GetPrefix(), Py_GetExecPrefix(), Py_GetProgramFullPath(),
Py_GetPythonHome() and Py_GetProgramName() functions now return NULL if called before
Py_Initialize() (before Python is initialized). Use the new Python Initialization Configuration API to get
the Python Path Configuration.. (Contributed by Victor Stinner in bpo-42260.)

• PyList_SET_ITEM(), PyTuple_SET_ITEM() and PyCell_SET() macros can no longer be used as
l-value or r-value. For example, x = PyList_SET_ITEM(a, b, c) and PyList_SET_ITEM(a, b,
c) = x now fail with a compiler error. It prevents bugs like if (PyList_SET_ITEM (a, b, c) < 0)
... test. (Contributed by Zackery Spytz and Victor Stinner in bpo-30459.)

• The non-limited API files odictobject.h, parser_interface.h, picklebufobject.h,
pyarena.h, pyctype.h, pydebug.h, pyfpe.h, and pytime.h have been moved to the Include/
cpython directory. These files must not be included directly, as they are already included in Python.h:
Include Files. If they have been included directly, consider including Python.h instead. (Contributed by
Nicholas Sim in bpo-35134)

• Use the Py_TPFLAGS_IMMUTABLETYPE type flag to create immutable type objects. Do
not rely on Py_TPFLAGS_HEAPTYPE to decide if a type object is mutable or not; check if
Py_TPFLAGS_IMMUTABLETYPE is set instead. (Contributed by Victor Stinner and Erlend E. Aasland
in bpo-43908.)

• The undocumented function Py_FrozenMain has been removed from the limited API. The function is mainly
useful for custom builds of Python. (Contributed by Petr Viktorin in bpo-26241)

33

https://bugs.python.org/issue43908
https://www.python.org/dev/peps/pep-0353
https://bugs.python.org/issue40943
https://bugs.python.org/issue39573
https://bugs.python.org/issue40839
https://bugs.python.org/issue36346
https://bugs.python.org/issue42157
https://bugs.python.org/issue42260
https://bugs.python.org/issue30459
https://bugs.python.org/issue35134
https://bugs.python.org/issue43908
https://bugs.python.org/issue26241

13.4 Deprecated

• The PyUnicode_InternImmortal() function is now deprecated and will be removed in Python 3.12: use
PyUnicode_InternInPlace() instead. (Contributed by Victor Stinner in bpo-41692.)

13.5 Removed

• Removed Py_UNICODE_str* functions manipulating Py_UNICODE* strings. (Contributed by Inada Naoki in
bpo-41123.)

– Py_UNICODE_strlen: use PyUnicode_GetLength() or PyUnicode_GET_LENGTH
– Py_UNICODE_strcat: use PyUnicode_CopyCharacters() or PyUnicode_FromFormat()
– Py_UNICODE_strcpy, Py_UNICODE_strncpy: use PyUnicode_CopyCharacters() or
PyUnicode_Substring()

– Py_UNICODE_strcmp: use PyUnicode_Compare()
– Py_UNICODE_strncmp: use PyUnicode_Tailmatch()
– Py_UNICODE_strchr, Py_UNICODE_strrchr: use PyUnicode_FindChar()

• Removed PyUnicode_GetMax(). Please migrate to new (PEP 393) APIs. (Contributed by Inada Naoki in
bpo-41103.)

• RemovedPyLong_FromUnicode(). Pleasemigrate toPyLong_FromUnicodeObject(). (Contributed
by Inada Naoki in bpo-41103.)

• Removed PyUnicode_AsUnicodeCopy(). Please use PyUnicode_AsUCS4Copy() or
PyUnicode_AsWideCharString() (Contributed by Inada Naoki in bpo-41103.)

• Removed _Py_CheckRecursionLimit variable: it has been replaced by ceval.recursion_limit of
the PyInterpreterState structure. (Contributed by Victor Stinner in bpo-41834.)

• Removed undocumented macros Py_ALLOW_RECURSION and Py_END_ALLOW_RECURSION and the
recursion_critical field of the PyInterpreterState structure. (Contributed by Serhiy Storchaka in
bpo-41936.)

• Removed the undocumented PyOS_InitInterrupts() function. Initializing Python already implicitly in-
stalls signal handlers: see PyConfig.install_signal_handlers. (Contributed by Victor Stinner in bpo-
41713.)

• Remove the PyAST_Validate() function. It is no longer possible to build a AST object (mod_ty type) with
the public C API. The function was already excluded from the limited C API (PEP 384). (Contributed by Victor
Stinner in bpo-43244.)

• Remove the symtable.h header file and the undocumented functions:
– PyST_GetScope()

– PySymtable_Build()

– PySymtable_BuildObject()

– PySymtable_Free()

– Py_SymtableString()

– Py_SymtableStringObject()

34

https://bugs.python.org/issue41692
https://bugs.python.org/issue41123
https://www.python.org/dev/peps/pep-0393
https://bugs.python.org/issue41103
https://bugs.python.org/issue41103
https://bugs.python.org/issue41103
https://bugs.python.org/issue41834
https://bugs.python.org/issue41936
https://bugs.python.org/issue41713
https://bugs.python.org/issue41713
https://www.python.org/dev/peps/pep-0384
https://bugs.python.org/issue43244

The Py_SymtableString() function was part the stable ABI by mistake but it could not be used, because the
symtable.h header file was excluded from the limited C API.
Use Python symtable module instead. (Contributed by Victor Stinner in bpo-43244.)

• Remove PyOS_ReadlineFunctionPointer() from the limited CAPI headers and from python3.dll,
the library that provides the stable ABI on Windows. Since the function takes a FILE* argument, its ABI stability
cannot be guaranteed. (Contributed by Petr Viktorin in bpo-43868.)

• Remove ast.h, asdl.h, and Python-ast.h header files. These functions were undocumented and excluded
from the limited C API. Most names defined by these header files were not prefixed by Py and so could create
names conflicts. For example, Python-ast.h defined a Yield macro which was conflict with the Yield
name used by the Windows <winbase.h> header. Use the Python astmodule instead. (Contributed by Victor
Stinner in bpo-43244.)

• Remove the compiler and parser functions using struct _mod type, because the public AST C API was re-
moved:

– PyAST_Compile()

– PyAST_CompileEx()

– PyAST_CompileObject()

– PyFuture_FromAST()

– PyFuture_FromASTObject()

– PyParser_ASTFromFile()

– PyParser_ASTFromFileObject()

– PyParser_ASTFromFilename()

– PyParser_ASTFromString()

– PyParser_ASTFromStringObject()

These functions were undocumented and excluded from the limited C API. (Contributed by Victor Stinner in bpo-
43244.)

• Remove the pyarena.h header file with functions:
– PyArena_New()

– PyArena_Free()

– PyArena_Malloc()

– PyArena_AddPyObject()

These functions were undocumented, excluded from the limited C API, and were only used internally by the com-
piler. (Contributed by Victor Stinner in bpo-43244.)

35

https://bugs.python.org/issue43244
https://bugs.python.org/issue43868
https://bugs.python.org/issue43244
https://bugs.python.org/issue43244
https://bugs.python.org/issue43244
https://bugs.python.org/issue43244

Index
E
environment variable

PYTHONTHREADDEBUG, 28
PYTHONWARNDEFAULTENCODING, 13

P
Python Enhancement Proposals

PEP 353, 33
PEP 384, 34
PEP 393, 34
PEP 451, 25
PEP 484, 13, 14
PEP 526, 15
PEP 586, 24
PEP 590, 26
PEP 597, 3
PEP 604, 3, 13
PEP 612, 3, 14
PEP 613, 3, 14
PEP 617, 4
PEP 618, 3, 15
PEP 623, 3
PEP 624, 3
PEP 626, 3
PEP 632, 3, 18
PEP 634, 3, 12
PEP 635, 3, 12
PEP 636, 3, 12
PEP 644, 3, 19, 22, 31
PEP 647, 14
PEP 652, 31

PYTHONTHREADDEBUG, 28
PYTHONWARNDEFAULTENCODING, 13

R
RFC

RFC 3986, 25

36

	Summary – Release highlights
	New Features
	Parenthesized context managers
	Better error messages
	PEP 626: Precise line numbers for debugging and other tools
	PEP 634: Structural Pattern Matching
	Optional EncodingWarning and encoding="locale" option

	New Features Related to Type Hints
	PEP 604: New Type Union Operator
	PEP 612: Parameter Specification Variables
	PEP 613: TypeAlias
	PEP 647: User-Defined Type Guards

	Other Language Changes
	New Modules
	Improved Modules
	asyncio
	argparse
	array
	asynchat, asyncore, smtpd
	base64
	bdb
	codecs
	collections.abc
	contextlib
	curses
	dataclasses
	distutils
	doctest
	encodings
	fileinput
	faulthandler
	gc
	glob
	hashlib
	hmac
	IDLE and idlelib
	importlib.metadata
	inspect
	linecache
	os
	os.path
	pathlib
	platform
	pprint
	py_compile
	pyclbr
	shelve
	statistics
	site
	socket
	ssl
	sqlite3
	sys
	_thread
	threading
	traceback
	types
	typing
	unittest
	urllib.parse
	xml
	zipimport

	Optimizations
	Deprecated
	Removed
	Porting to Python 3.10
	Changes in the Python syntax
	Changes in the Python API
	Changes in the C API

	CPython bytecode changes
	Build Changes
	C API Changes
	PEP 652: Maintaining the Stable ABI
	New Features
	Porting to Python 3.10
	Deprecated
	Removed

	Index

