
What’s New in Python
Release 3.10.0a5

A. M. Kuchling

March 01, 2021
Python Software Foundation

Email: docs@python.org

Contents

1 Summary – Release highlights 3

2 New Features 3
2.1 Parenthesized context managers . 3
2.2 PEP 563: Postponed Evaluation of Annotations Becomes Default . 4
2.3 PEP 613: TypeAlias Annotation . 4
2.4 PEP 604: New Type Union Operator . 4
2.5 PEP 612: Parameter Specification Variables . 5
2.6 PEP 634: Structural Pattern Matching . 5
2.7 Better error messages in the parser . 9

3 Other Language Changes 10

4 New Modules 10

5 Improved Modules 10
5.1 argparse . 10
5.2 base64 . 11
5.3 codecs . 11
5.4 collections.abc . 11
5.5 contextlib . 11
5.6 curses . 11
5.7 distutils . 11
5.8 doctest . 12
5.9 encodings . 12
5.10 glob . 12
5.11 inspect . 12
5.12 linecache . 12
5.13 os . 12
5.14 pathlib . 13
5.15 platform . 13
5.16 py_compile . 13
5.17 pyclbr . 13
5.18 shelve . 13

1

5.19 site . 13
5.20 socket . 13
5.21 sys . 13
5.22 threading . 14
5.23 traceback . 14
5.24 types . 14
5.25 typing . 14
5.26 unittest . 15
5.27 urllib.parse . 15
5.28 xml . 15
5.29 zipimport . 15

6 Optimizations 15

7 Deprecated 16

8 Removed 16

9 Porting to Python 3.10 17
9.1 Changes in the Python API . 17

10 CPython bytecode changes 18

11 Build Changes 18

12 C API Changes 19
12.1 New Features . 19
12.2 Porting to Python 3.10 . 19
12.3 Deprecated . 20
12.4 Removed . 20

Index 22

Release 3.10.0a5
Date March 01, 2021

This article explains the new features in Python 3.10, compared to 3.9.
For full details, see the changelog.

Note: Prerelease users should be aware that this document is currently in draft form. It will be updated substantially as
Python 3.10 moves towards release, so it’s worth checking back even after reading earlier versions.

2

1 Summary – Release highlights

2 New Features

2.1 Parenthesized context managers

Using enclosing parentheses for continuation across multiple lines in context managers is now supported. This allows
formatting a long collection of context managers in multiple lines in a similar way as it was previously possible with
import statements. For instance, all these examples are now valid:

with (CtxManager() as example):
...

with (
CtxManager1(),
CtxManager2()

):
...

with (CtxManager1() as example,
CtxManager2()):

...

with (CtxManager1(),
CtxManager2() as example):

...

with (
CtxManager1() as example1,
CtxManager2() as example2

):
...

it is also possible to use a trailing comma at the end of the enclosed group:

with (
CtxManager1() as example1,
CtxManager2() as example2,
CtxManager3() as example3,

):
...

This new syntax uses the non LL(1) capacities of the new parser. Check PEP 617 for more details.
(Contributed by Guido van Rossum, Pablo Galindo and Lysandros Nikolaou in bpo-12782 and bpo-40334.)

3

https://www.python.org/dev/peps/pep-0617
https://bugs.python.org/issue12782
https://bugs.python.org/issue40334

2.2 PEP 563: Postponed Evaluation of Annotations Becomes Default

In Python 3.7, postponed evaluation of annotations was added, to be enabled with a from __future__ import
annotations directive. In 3.10 this became the default behavior, even without that future directive. With this being
default, all annotations stored in __annotations__ will be strings. If needed, annotations can be resolved at runtime
using typing.get_type_hints(). See PEP 563 for a full description. Also, the inspect.signature()
will try to resolve types from now on, and when it fails it will fall back to showing the string annotations. (Contributed by
Batuhan Taskaya in bpo-38605.)

• The int type has a new method int.bit_count(), returning the number of ones in the binary expansion of
a given integer, also known as the population count. (Contributed by Niklas Fiekas in bpo-29882.)

• The views returned by dict.keys(), dict.values() and dict.items() now all have a mapping
attribute that gives a types.MappingProxyType object wrapping the original dictionary. (Contributed by
Dennis Sweeney in bpo-40890.)

• PEP 618: The zip() function now has an optional strict flag, used to require that all the iterables have an
equal length.

2.3 PEP 613: TypeAlias Annotation

PEP 484 introduced the concept of type aliases, only requiring them to be top-level unannotated assignments. This
simplicity sometimes made it difficult for type checkers to distinguish between type aliases and ordinary assignments,
especially when forward references or invalid types were involved. Compare:

StrCache = 'Cache[str]' # a type alias
LOG_PREFIX = 'LOG[DEBUG]' # a module constant

Now the typing module has a special annotation TypeAlias to declare type aliases more explicitly:

StrCache: TypeAlias = 'Cache[str]' # a type alias
LOG_PREFIX = 'LOG[DEBUG]' # a module constant

See PEP 613 for more details.
(Contributed by Mikhail Golubev in bpo-41923.)

2.4 PEP 604: New Type Union Operator

A new type union operator was introduced which enables the syntax X | Y. This provides a cleaner way of expressing
‘either type X or type Y’ instead of using typing.Union, especially in type hints (annotations).
In previous versions of Python, to apply a type hint for functions accepting arguments of multiple types, typing.Union
was used:

def square(number: Union[int, float]) -> Union[int, float]:
return number ** 2

Type hints can now be written in a more succinct manner:

def square(number: int | float) -> int | float:
return number ** 2

This new syntax is also accepted as the second argument to isinstance() and issubclass():

4

https://www.python.org/dev/peps/pep-0563
https://bugs.python.org/issue38605
https://bugs.python.org/issue29882
https://bugs.python.org/issue40890
https://www.python.org/dev/peps/pep-0618
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0613
https://bugs.python.org/issue41923

>>> isinstance(1, int | str)
True

See types-union and PEP 604 for more details.
(Contributed by Maggie Moss and Philippe Prados in bpo-41428.)

2.5 PEP 612: Parameter Specification Variables

Two new options to improve the information provided to static type checkers for PEP 484‘s Callable have been added
to the typing module.
The first is the parameter specification variable. They are used to forward the parameter types of one callable to another
callable – a pattern commonly found in higher order functions and decorators. Examples of usage can be found in
typing.ParamSpec. Previously, there was no easy way to type annotate dependency of parameter types in such a
precise manner.
The second option is the new Concatenate operator. It’s used in conjunction with parameter specification variables
to type annotate a higher order callable which adds or removes parameters of another callable. Examples of usage can be
found in typing.Concatenate.
See typing.Callable, typing.ParamSpec, typing.Concatenate and PEP 612 for more details.
(Contributed by Ken Jin in bpo-41559.)

2.6 PEP 634: Structural Pattern Matching

Structural patternmatching has been added in the form of amatch statement and case statements of patterns with associated
actions. Patterns consist of sequences, mappings, primitive data types as well as class instances. Pattern matching enables
programs to extract information from complex data types, branch on the structure of data, and apply specific actions based
on different forms of data.

Syntax and operations

The generic syntax of pattern matching is:

match subject:
case <pattern_1>:

<action_1>
case <pattern_2>:

<action_2>
case <pattern_3>:

<action_3>
case _:

<action_wildcard>

A match statement takes an expression and compares its value to successive patterns given as one or more case blocks.
Specifically, pattern matching operates by:

1. using data with type and shape (the subject)
2. evaluating the subject in the match statement
3. comparing the subject with each pattern in a case statement from top to bottom until a match is confirmed.
4. executing the action associated with the pattern of the confirmed match

5

https://www.python.org/dev/peps/pep-0604
https://bugs.python.org/issue41428
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0612
https://bugs.python.org/issue41559

5. If an exact match is not confirmed, the last case, a wildcard _, if provided, will be used as the matching case. If an
exact match is not confirmed and a wildcard case does not exists, the entire match block is a no-op.

Declarative approach

Readers may be aware of pattern matching through the simple example of matching a subject (data object) to a literal
(pattern) with the switch statement found in C, Java or JavaScript (and many other languages). Often the switch statement
is used for comparison of an object/expression with case statements containing literals.
More powerful examples of pattern matching can be found in languages, such as Scala and Elixir. With structural pattern
matching, the approach is “declarative” and explicitly states the conditions (the patterns) for data to match.
While an “imperative” series of instructions using nested “if” statements could be used to accomplish something similar
to structural pattern matching, it is less clear than the “declarative” approach. Instead the “declarative” approach states
the conditions to meet for a match and is more readable through its explicit patterns. While structural pattern matching
can be used in its simplest form comparing a variable to a literal in a case statement, its true value for Python lies in its
handling of the subject’s type and shape.

Simple pattern: match to a literal

Let’s look at this example as pattern matching in its simplest form: a value, the subject, being matched to several literals,
the patterns. In the example below, status is the subject of the match statement. The patterns are each of the case
statements, where literals represent request status codes. The associated action to the case is executed after a match:

def http_error(status):
match status:

case 400:
return "Bad request"

case 404:
return "Not found"

case 418:
return "I'm a teapot"

case _:
return "Something's wrong with the Internet"

If the above function is passed a status of 418, “I’m a teapot” is returned. If the above function is passed a status
of 500, the case statement with _ will match as a wildcard, and “Something’s wrong with the Internet” is returned. Note
the last block: the variable name, _, acts as a wildcard and insures the subject will always match. The use of _ is optional.
You can combine several literals in a single pattern using | (“or”):

case 401 | 403 | 404:
return "Not allowed"

Behavior without the wildcard

If we modify the above example by removing the last case block, the example becomes:

def http_error(status):
match status:

case 400:
return "Bad request"

case 404:
return "Not found"

(continues on next page)

6

(continued from previous page)
case 418:

return "I'm a teapot"

Without the use of _ in a case statement, a match may not exist. If no match exists, the behavior is a no-op. For example,
if status of 500 is passed, a no-op occurs.

Pattterns with a literal and variable

Patterns can look like unpacking assignments, and a pattern may be used to bind variables. In this example, a data point
can be unpacked to its x-coordinate and y-coordinate:

point is an (x, y) tuple
match point:

case (0, 0):
print("Origin")

case (0, y):
print(f"Y={y}")

case (x, 0):
print(f"X={x}")

case (x, y):
print(f"X={x}, Y={y}")

case _:
raise ValueError("Not a point")

The first pattern has two literals, (0, 0), and may be thought of as an extension of the literal pattern shown above. The
next two patterns combine a literal and a variable, and the variable binds a value from the subject (point). The fourth
pattern captures two values, which makes it conceptually similar to the unpacking assignment (x, y) = point.

Patterns and classes

If you are using classes to structure your data, you can use as a pattern the class name followed by an argument list
resembling a constructor. This pattern has the ability to capture class attributes into variables:

class Point:
x: int
y: int

def location(point):
match point:

case Point(x=0, y=0):
print("Origin is the point's location.")

case Point(x=0, y=y):
print(f"Y={y} and the point is on the y-axis.")

case Point(x=x, y=0):
print(f"X={x} and the point is on the x-axis.")

case Point():
print("The point is located somewhere else on the plane.")

case _:
print("Not a point")

7

Patterns with positional parameters

You can use positional parameters with some builtin classes that provide an ordering for their attributes (e.g. dataclasses).
You can also define a specific position for attributes in patterns by setting the __match_args__ special attribute in
your classes. If it’s set to (“x”, “y”), the following patterns are all equivalent (and all bind the y attribute to the var
variable):

Point(1, var)
Point(1, y=var)
Point(x=1, y=var)
Point(y=var, x=1)

Nested patterns

Patterns can be arbitrarily nested. For example, if our data is a short list of points, it could be matched like this:

match points:
case []:

print("No points in the list.")
case [Point(0, 0)]:

print("The origin is the only point in the list.")
case [Point(x, y)]:

print(f"A single point {x}, {y} is in the list.")
case [Point(0, y1), Point(0, y2)]:

print(f"Two points on the Y axis at {y1}, {y2} are in the list.")
case _:

print("Something else is found in the list.")

Complex patterns and the wildcard

To this point, the examples have used _ alone in the last case statement. A wildcard can be used in more complex patterns,
such as ('error', code, _). For example:

match test_variable:
case ('warning', code, 40):

print("A warning has been received.")
case ('error', code, _):

print(f"An error {code} occured.")

In the above case, test_variable will match for (‘error’, code, 100) and (‘error’, code, 800).

Guard

We can add an if clause to a pattern, known as a “guard”. If the guard is false, match goes on to try the next case block.
Note that value capture happens before the guard is evaluated:

match point:
case Point(x, y) if x == y:

print(f"The point is located on the diagonal Y=X at {x}.")
case Point(x, y):

print(f"Point is not on the diagonal.")

8

Other Key Features

Several other key features:
• Like unpacking assignments, tuple and list patterns have exactly the same meaning and actually match arbitrary
sequences. Technically, the subject must be an instance of collections.abc.Sequence. Therefore, an
important exception is that patterns don’t match iterators. Also, to prevent a common mistake, sequence patterns
don’t match strings.

• Sequence patterns support wildcards: [x, y, *rest] and (x, y, *rest) work similar to wildcards in
unpacking assignments. The name after * may also be _, so (x, y, *_) matches a sequence of at least two
items without binding the remaining items.

• Mapping patterns: {"bandwidth": b, "latency": l} captures the "bandwidth" and "latency"
values from a dict. Unlike sequence patterns, extra keys are ignored. A wildcard **rest is also supported. (But
**_ would be redundant, so it not allowed.)

• Subpatterns may be captured using the as keyword:

case (Point(x1, y1), Point(x2, y2) as p2): ...

This binds x1, y1, x2, y2 like you would expect without the as clause, and p2 to the entire second item of the
subject.

• Most literals are compared by equality. However, the singletonsTrue, False andNone are compared by identity.
• Named constants may be used in patterns. These named constants must be dotted names to prevent the constant
from being interpreted as a capture variable:

from enum import Enum
class Color(Enum):

RED = 0
GREEN = 1
BLUE = 2

match color:
case Color.RED:

print("I see red!")
case Color.GREEN:

print("Grass is green")
case Color.BLUE:

print("I'm feeling the blues :(")

For the full specification see PEP 634. Motivation and rationale are in PEP 635, and a longer tutorial is in PEP 636.

2.7 Better error messages in the parser

When parsing code that contains unclosed parentheses or brackets the interpreter now includes the location of the unclosed
bracket of parentheses instead of displaying SyntaxError: unexpected EOF while parsing or pointing to some incorrect
location. For instance, consider the following code (notice the unclosed ‘{‘):

expected = {9: 1, 18: 2, 19: 2, 27: 3, 28: 3, 29: 3, 36: 4, 37: 4,
38: 4, 39: 4, 45: 5, 46: 5, 47: 5, 48: 5, 49: 5, 54: 6,

some_other_code = foo()

previous versions of the interpreter reported confusing places as the location of the syntax error:

9

https://www.python.org/dev/peps/pep-0634
https://www.python.org/dev/peps/pep-0635
https://www.python.org/dev/peps/pep-0636

File "example.py", line 3
some_other_code = foo()

^
SyntaxError: invalid syntax

but in Python3.10 a more informative error is emitted:

File "example.py", line 1
expected = {9: 1, 18: 2, 19: 2, 27: 3, 28: 3, 29: 3, 36: 4, 37: 4,

^
SyntaxError: '{' was never closed

In a similar way, errors involving unclosed string literals (single and triple quoted) now point to the start of the string
instead of reporting EOF/EOL.
These improvements are inspired by previous work in the PyPy interpreter.
(Contributed by Pablo Galindo in bpo-42864 and Batuhan Taskaya in bpo-40176.)

3 Other Language Changes

• Builtin and extension functions that take integer arguments no longer accept Decimals, Fractions and other
objects that can be converted to integers only with a loss (e.g. that have the __int__() method but do not have
the __index__() method). (Contributed by Serhiy Storchaka in bpo-37999.)

• If object.__ipow__() returns NotImplemented, the operator will correctly fall back to object.
__pow__() and object.__rpow__() as expected. (Contributed by Alex Shkop in bpo-38302.)

• Assignment expressions can now be used unparenthesized within set literals and set comprehensions, as well as in
sequence indexes (but not slices).

• Functions have a new __builtins__ attribute which is used to look for builtin symbols when a function
is executed, instead of looking into __globals__['__builtins__']. The attribute is initialized from
__globals__["__builtins__"] if it exists, else from the current builtins. (Contributed by Mark Shan-
non in bpo-42990.)

4 New Modules

• None yet.

5 Improved Modules

5.1 argparse

Misleading phrase “optional arguments” was replaced with “options” in argparse help. Some tests might require adaptation
if they rely on exact output match. (Contributed by Raymond Hettinger in bpo-9694.)

10

https://bugs.python.org/issue42864
https://bugs.python.org/issue40176
https://bugs.python.org/issue37999
https://bugs.python.org/issue38302
https://bugs.python.org/issue42990
https://bugs.python.org/issue9694

5.2 base64

Addbase64.b32hexencode() andbase64.b32hexdecode() to support the Base32 Encoding with Extended
Hex Alphabet.

5.3 codecs

Add a codecs.unregister() function to unregister a codec search function. (Contributed by Hai Shi in bpo-
41842.)

5.4 collections.abc

The __args__ of the parameterized generic for collections.abc.Callable are now consistent with
typing.Callable. collections.abc.Callable generic now flattens type parameters, similar to what
typing.Callable currently does. This means that collections.abc.Callable[[int, str], str]
will have __args__ of (int, str, str); previously this was ([int, str], str). To allow this
change, types.GenericAlias can now be subclassed, and a subclass will be returned when subscripting the
collections.abc.Callable type. Note that a TypeError may be raised for invalid forms of parameter-
izing collections.abc.Callable which may have passed silently in Python 3.9. (Contributed by Ken Jin in
bpo-42195.)

5.5 contextlib

Add a contextlib.aclosing() context manager to safely close async generators and objects representing asyn-
chronously released resources. (Contributed by Joongi Kim and John Belmonte in bpo-41229.)
Add asynchronous context manager support to contextlib.nullcontext(). (Contributed by Tom Gringauz in
bpo-41543.)

5.6 curses

The extended color functions added in ncurses 6.1 will be used transparently by curses.color_content(),
curses.init_color(), curses.init_pair(), and curses.pair_content(). A new function,
curses.has_extended_color_support(), indicates whether extended color support is provided by the un-
derlying ncurses library. (Contributed by Jeffrey Kintscher and Hans Petter Jansson in bpo-36982.)
The BUTTON5_* constants are now exposed in the cursesmodule if they are provided by the underlying curses library.
(Contributed by Zackery Spytz in bpo-39273.)

5.7 distutils

The entire distutils package is deprecated, to be removed in Python 3.12. Its functionality for specifying package
builds has already been completely replaced by third-party packages setuptools and packaging, and most other
commonly used APIs are available elsewhere in the standard library (such as platform, shutil, subprocess or
sysconfig). There are no plans to migrate any other functionality from distutils, and applications that are using
other functions should plan to make private copies of the code. Refer to PEP 632 for discussion.
The bdist_wininst command deprecated in Python 3.8 has been removed. The bdist_wheel command is now
recommended to distribute binary packages on Windows. (Contributed by Victor Stinner in bpo-42802.)

11

https://bugs.python.org/issue41842
https://bugs.python.org/issue41842
https://bugs.python.org/issue42195
https://bugs.python.org/issue41229
https://bugs.python.org/issue41543
https://bugs.python.org/issue36982
https://bugs.python.org/issue39273
https://www.python.org/dev/peps/pep-0632
https://bugs.python.org/issue42802

5.8 doctest

When a module does not define __loader__, fall back to __spec__.loader. (Contributed by Brett Cannon in
bpo-42133.)

5.9 encodings

encodings.normalize_encoding() now ignores non-ASCII characters. (Contributed by Hai Shi in bpo-
39337.)

5.10 glob

Added the root_dir and dir_fd parameters in glob() and iglob() which allow to specify the root directory for
searching. (Contributed by Serhiy Storchaka in bpo-38144.)

5.11 inspect

When a module does not define __loader__, fall back to __spec__.loader. (Contributed by Brett Cannon in
bpo-42133.)
Added globalns and localns parameters in signature() and inspect.Signature.from_callable() to
retrieve the annotations in given local and global namespaces. (Contributed by Batuhan Taskaya in bpo-41960.)

5.12 linecache

When a module does not define __loader__, fall back to __spec__.loader. (Contributed by Brett Cannon in
bpo-42133.)

5.13 os

Added os.cpu_count() support for VxWorks RTOS. (Contributed by Peixing Xin in bpo-41440.)
Added a new function os.eventfd() and related helpers to wrap the eventfd2 syscall on Linux. (Contributed by
Christian Heimes in bpo-41001.)
Added os.splice() that allows to move data between two file descriptors without copying between kernel address
space and user address space, where one of the file descriptors must refer to a pipe. (Contributed by Pablo Galindo in
bpo-41625.)
Added O_EVTONLY, O_FSYNC, O_SYMLINK and O_NOFOLLOW_ANY for macOS. (Contributed by Dong-hee Na in
bpo-43106.)

12

https://bugs.python.org/issue42133
https://bugs.python.org/issue39337
https://bugs.python.org/issue39337
https://bugs.python.org/issue38144
https://bugs.python.org/issue42133
https://bugs.python.org/issue41960
https://bugs.python.org/issue42133
https://bugs.python.org/issue41440
https://bugs.python.org/issue41001
https://bugs.python.org/issue41625
https://bugs.python.org/issue43106

5.14 pathlib

Added slice support to PurePath.parents. (Contributed by Joshua Cannon in bpo-35498)
Added negative indexing support to PurePath.parents. (Contributed by Yaroslav Pankovych in bpo-21041)

5.15 platform

Addedplatform.freedesktop_os_release() to retrieve operation system identification from freedesktop.org
os-release standard file. (Contributed by Christian Heimes in bpo-28468)

5.16 py_compile

Added --quiet option to command-line interface of py_compile. (Contributed by Gregory Schevchenko in bpo-
38731.)

5.17 pyclbr

Added an end_lineno attribute to the Function and Class objects in the tree returned by pyclbr.
readline() and pyclbr.readline_ex(). It matches the existing (start) lineno. (Contributed by Aviral
Srivastava in bpo-38307.)

5.18 shelve

The shelve module now uses pickle.DEFAULT_PROTOCOL by default instead of pickle protocol 3 when cre-
ating shelves. (Contributed by Zackery Spytz in bpo-34204.)

5.19 site

When a module does not define __loader__, fall back to __spec__.loader. (Contributed by Brett Cannon in
bpo-42133.)

5.20 socket

The exception socket.timeout is now an alias of TimeoutError. (Contributed by Christian Heimes in bpo-
42413.)

5.21 sys

Add sys.orig_argv attribute: the list of the original command line arguments passed to the Python executable.
(Contributed by Victor Stinner in bpo-23427.)
Add sys.stdlib_module_names, containing the list of the standard library module names. (Contributed by Victor
Stinner in bpo-42955.)

13

https://bugs.python.org/issue35498
https://bugs.python.org/issue21041
https://www.freedesktop.org/software/systemd/man/os-release.html
https://www.freedesktop.org/software/systemd/man/os-release.html
https://bugs.python.org/issue28468
https://bugs.python.org/issue38731
https://bugs.python.org/issue38731
https://bugs.python.org/issue38307
https://bugs.python.org/issue34204
https://bugs.python.org/issue42133
https://bugs.python.org/issue42413
https://bugs.python.org/issue42413
https://bugs.python.org/issue23427
https://bugs.python.org/issue42955

5.22 threading

Added threading.gettrace() and threading.getprofile() to retrieve the functions set by
threading.settrace() and threading.setprofile() respectively. (Contributed by Mario Corchero in
bpo-42251.)
Add threading.__excepthook__ to allow retrieving the original value of threading.excepthook() in
case it is set to a broken or a different value. (Contributed by Mario Corchero in bpo-42308.)

5.23 traceback

The format_exception(), format_exception_only(), and print_exception() functions can now
take an exception object as a positional-only argument. (Contributed by Zackery Spytz and Matthias Bussonnier in bpo-
26389.)

5.24 types

Reintroduced the types.EllipsisType, types.NoneType and types.NotImplementedType classes,
providing a new set of types readily interpretable by type checkers. (Contributed by Bas van Beek in bpo-41810.)

5.25 typing

The behavior of typing.Literal was changed to conform with PEP 586 and to match the behavior of static type
checkers specified in the PEP.

1. Literal now de-duplicates parameters.
2. Equality comparisons between Literal objects are now order independent.
3. Literal comparisons now respects types. For example, Literal[0] == Literal[False] previously

evaluated to True. It is now False. To support this change, the internally used type cache now supports differ-
entiating types.

4. Literal objects will now raise a TypeError exception during equality comparisons if one of their parameters
are not immutable. Note that declaring Literal with mutable parameters will not throw an error:

>>> from typing import Literal
>>> Literal[{0}]
>>> Literal[{0}] == Literal[{False}]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: unhashable type: 'set'

(Contributed by Yurii Karabas in bpo-42345.)

14

https://bugs.python.org/issue42251
https://bugs.python.org/issue42308
https://bugs.python.org/issue26389
https://bugs.python.org/issue26389
https://bugs.python.org/issue41810
https://www.python.org/dev/peps/pep-0586
https://bugs.python.org/issue42345

5.26 unittest

Add new method assertNoLogs() to complement the existing assertLogs(). (Contributed by Kit Yan Choi in
bpo-39385.)

5.27 urllib.parse

Python versions earlier than Python 3.10 allowed using both ; and & as query parameter separators in urllib.parse.
parse_qs() and urllib.parse.parse_qsl(). Due to security concerns, and to conform with newer W3C
recommendations, this has been changed to allow only a single separator key, with & as the default. This change also
affects cgi.parse() and cgi.parse_multipart() as they use the affected functions internally. For more
details, please see their respective documentation. (Contributed by Adam Goldschmidt, Senthil Kumaran and Ken Jin in
bpo-42967.)

5.28 xml

Add a LexicalHandler class to the xml.sax.handlermodule. (Contributed by Jonathan Gossage and Zackery
Spytz in bpo-35018.)

5.29 zipimport

Add methods related to PEP 451: find_spec(), zipimport.zipimporter.create_module(), and
zipimport.zipimporter.exec_module(). (Contributed by Brett Cannon in bpo-42131.

6 Optimizations

• Constructors str(), bytes() and bytearray() are now faster (around 30–40% for small objects). (Con-
tributed by Serhiy Storchaka in bpo-41334.)

• The runpy module now imports fewer modules. The python3 -m module-name command startup time is
1.3x faster in average. (Contributed by Victor Stinner in bpo-41006.)

• The LOAD_ATTR instruction now uses new “per opcode cache” mechanism. It is about 36% faster now for regular
attributes and 44% faster for slots. (Contributed by Pablo Galindo and Yury Selivanov in bpo-42093 and Guido
van Rossum in bpo-42927, based on ideas implemented originally in PyPy and MicroPython.)

• When building Python with --enable-optimizations now -fno-semantic-interposition
is added to both the compile and link line. This speeds builds of the Python interpreter created with
--enable-shared with gcc by up to 30%. See this article for more details. (Contributed by Victor Stin-
ner and Pablo Galindo in bpo-38980.)

• Function parameters and their annotations are no longer computed at runtime, but rather at compilation time. They
are stored as a tuple of strings at the bytecode level. It is now around 100% faster to create a function with parameter
annotations. (Contributed by Yurii Karabas and Inada Naoki in bpo-42202)

• Substring search functions such as str1 in str2 and str2.find(str1) now sometimes use Crochemore
& Perrin’s “Two-Way” string searching algorithm to avoid quadratic behavior on long strings. (Contributed by
Dennis Sweeney in bpo-41972)

15

https://bugs.python.org/issue39385
https://bugs.python.org/issue42967
https://bugs.python.org/issue35018
https://www.python.org/dev/peps/pep-0451
https://bugs.python.org/issue42131
https://bugs.python.org/issue41334
https://bugs.python.org/issue41006
https://bugs.python.org/issue42093
https://bugs.python.org/issue42927
https://developers.redhat.com/blog/2020/06/25/red-hat-enterprise-linux-8-2-brings-faster-python-3-8-run-speeds/
https://bugs.python.org/issue38980
https://bugs.python.org/issue42202
https://bugs.python.org/issue41972

7 Deprecated

• Starting in this release, there will be a concerted effort to begin cleaning up old import semantics that were kept for
Python 2.7 compatibility. Specifically, find_loader()/find_module() (superseded by find_spec()),
load_module() (superseded by exec_module()), module_repr() (which the import system takes
care of for you), the __package__ attribute (superseded by __spec__.parent), the __loader__ at-
tribute (superseded by __spec__.loader), and the __cached__ attribute (superseded by __spec__.
cached) will slowly be removed (as well as other classes and methods in importlib). ImportWarning
and/or DeprecationWarning will be raised as appropriate to help identify code which needs updating during
this transition.

• The entire distutils namespace is deprecated, to be removed in Python 3.12. Refer to the module changes
section for more information.

• Non-integer arguments to random.randrange() are deprecated. The ValueError is deprecated in favor
of a TypeError. (Contributed by Serhiy Storchaka and Raymond Hettinger in bpo-37319.)

• The various load_module()methods of importlib have been documented as deprecated since Python 3.6,
but will now also trigger a DeprecationWarning. Use exec_module() instead. (Contributed by Brett
Cannon in bpo-26131.)

• zimport.zipimporter.load_module() has been deprecated in preference for exec_module().
(Contributed by Brett Cannon in bpo-26131.)

• The use of load_module() by the import system now triggers an ImportWarning as exec_module()
is preferred. (Contributed by Brett Cannon in bpo-26131.)

• sqlite3.OptimizedUnicode has been undocumented and obsolete since Python 3.3, when it was made an
alias to str. It is now deprecated, scheduled for removal in Python 3.12. (Contributed by Erlend E. Aasland in
bpo-42264.)

• The undocumented built-in function sqlite3.enable_shared_cache is now deprecated, scheduled for
removal in Python 3.12. Its use is strongly discouraged by the SQLite3 documentation. See the SQLite3 docs for
more details. If shared cache must be used, open the database in URI mode using the cache=shared query
parameter. (Contributed by Erlend E. Aasland in bpo-24464.)

8 Removed

• Removed special methods __int__, __float__, __floordiv__, __mod__, __divmod__,
__rfloordiv__, __rmod__ and__rdivmod__ of thecomplex class. They always raised aTypeError.
(Contributed by Serhiy Storchaka in bpo-41974.)

• The ParserBase.error()method from the private and undocumented _markupbasemodule has been re-
moved. html.parser.HTMLParser is the only subclass of ParserBase and its error() implementation
has already been removed in Python 3.5. (Contributed by Berker Peksag in bpo-31844.)

• Removed the unicodedata.ucnhash_CAPI attribute which was an internal PyCapsule object. The related
private _PyUnicode_Name_CAPI structure was moved to the internal C API. (Contributed by Victor Stinner
in bpo-42157.)

• Removed the parser module, which was deprecated in 3.9 due to the switch to the new PEG parser, as well
as all the C source and header files that were only being used by the old parser, including node.h, parser.h,
graminit.h and grammar.h.

• Removed the Public C API functions PyParser_SimpleParseStringFlags(),
PyParser_SimpleParseStringFlagsFilename(), PyParser_SimpleParseFileFlags()
and PyNode_Compile() that were deprecated in 3.9 due to the switch to the new PEG parser.

16

https://bugs.python.org/issue37319
https://bugs.python.org/issue26131
https://bugs.python.org/issue26131
https://bugs.python.org/issue26131
https://bugs.python.org/issue42264
https://sqlite.org/c3ref/enable_shared_cache.html
https://bugs.python.org/issue24464
https://bugs.python.org/issue41974
https://bugs.python.org/issue31844
https://bugs.python.org/issue42157

• Removed the formatter module, which was deprecated in Python 3.4. It is somewhat obsolete, little used, and
not tested. It was originally scheduled to be removed in Python 3.6, but such removals were delayed until after
Python 2.7 EOL. Existing users should copy whatever classes they use into their code. (Contributed by Dong-hee
Na and Terry J. Reedy in bpo-42299.)

• Removed the PyModule_GetWarningsModule() function that was useless now due to the _warnings mod-
ule was converted to a builtin module in 2.6. (Contributed by Hai Shi in bpo-42599.)

• Remove deprecated aliases to collections-abstract-base-classes from the collections module. (Contributed
by Victor Stinner in bpo-37324.)

• The loop parameter has been removed from most of asyncio‘s high-level API following deprecation in Python
3.8. The motivation behind this change is multifold:
1. This simplifies the high-level API.
2. The functions in the high-level API have been implicitly getting the current thread’s running event loop since

Python 3.7. There isn’t a need to pass the event loop to the API in most normal use cases.
3. Event loop passing is error-prone especially when dealing with loops running in different threads.

Note that the low-level API will still accept loop. See Changes in the Python API for examples of how to replace
existing code.
(Contributed by Yurii Karabas, Andrew Svetlov, Yury Selivanov and Kyle Stanley in bpo-42392.)

9 Porting to Python 3.10

This section lists previously described changes and other bugfixes that may require changes to your code.

9.1 Changes in the Python API

• The etype parameters of the format_exception(), format_exception_only(), and
print_exception() functions in the traceback module have been renamed to exc. (Contributed
by Zackery Spytz and Matthias Bussonnier in bpo-26389.)

• atexit: At Python exit, if a callback registered with atexit.register() fails, its exception is now logged.
Previously, only some exceptions were logged, and the last exception was always silently ignored. (Contributed by
Victor Stinner in bpo-42639.)

• collections.abc.Callable generic now flattens type parameters, similar to what typing.Callable
currently does. This means that collections.abc.Callable[[int, str], str] will have
__args__ of (int, str, str); previously this was ([int, str], str). Code which accesses the ar-
guments via typing.get_args() or __args__ need to account for this change. Furthermore, TypeError
may be raised for invalid forms of parameterizing collections.abc.Callable which may have passed
silently in Python 3.9. (Contributed by Ken Jin in bpo-42195.)

• socket.htons() and socket.ntohs() now raise OverflowError instead of
DeprecationWarning if the given parameter will not fit in a 16-bit unsigned integer. (Contributed by
Erlend E. Aasland in bpo-42393.)

• The loop parameter has been removed from most of asyncio‘s high-level API following deprecation in Python
3.8.
A coroutine that currently look like this:

async def foo(loop):
await asyncio.sleep(1, loop=loop)

17

https://bugs.python.org/issue42299
https://bugs.python.org/issue42599
https://bugs.python.org/issue37324
https://bugs.python.org/issue42392
https://bugs.python.org/issue26389
https://bugs.python.org/issue42639
https://bugs.python.org/issue42195
https://bugs.python.org/issue42393

Should be replaced with this:

async def foo():
await asyncio.sleep(1)

If foo() was specifically designed not to run in the current thread’s running event loop (e.g. running in another
thread’s event loop), consider using asyncio.run_coroutine_threadsafe() instead.
(Contributed by Yurii Karabas, Andrew Svetlov, Yury Selivanov and Kyle Stanley in bpo-42392.)

• The types.FunctionType constructor now inherits the current builtins if the globals dictionary has no
"__builtins__" key, rather than using {"None": None} as builtins: same behavior as eval() and
exec() functions. Defining a function with def function(...): ... in Python is not affected, glob-
als cannot be overriden with this syntax: it also inherits the current builtins. (Contributed by Victor Stinner in
bpo-42990.)

10 CPython bytecode changes

• The MAKE_FUNCTION instruction accepts tuple of strings as annotations instead of dictionary. (Contributed by
Yurii Karabas and Inada Naoki in bpo-42202)

11 Build Changes

• The C99 functions snprintf() and vsnprintf() are now required to build Python. (Contributed by Victor
Stinner in bpo-36020.)

• sqlite3 requires SQLite 3.7.15 or higher. (Contributed by Sergey Fedoseev and Erlend E. Aasland bpo-40744
and bpo-40810.)

• The atexitmodule must now always be built as a built-in module. (Contributed by Victor Stinner in bpo-42639.)
• Added --disable-test-modules option to the configure script: don’t build nor install test modules.
(Contributed by Xavier de Gaye, Thomas Petazzoni and Peixing Xin in bpo-27640.)

• Add --with-wheel-pkg-dir=PATH option to the ./configure script. If specified, the ensurepip
module looks for setuptools and pip wheel packages in this directory: if both are present, these wheel pack-
ages are used instead of ensurepip bundled wheel packages.
Some Linux distribution packaging policies recommend against bundling dependencies. For example, Fedora
installs wheel packages in the /usr/share/python-wheels/ directory and don’t install the ensurepip.
_bundled package.
(Contributed by Victor Stinner in bpo-42856.)

• Add a new configure --without-static-libpython option to not build the libpythonMAJOR.
MINOR.a static library and not install the python.o object file.
(Contributed by Victor Stinner in bpo-43103.)

• The configure script now uses the pkg-config utility, if available, to detect the location of Tcl/Tk headers
and libraries. As before, those locations can be explicitly specified with the --with-tcltk-includes and
--with-tcltk-libs configuration options. (Contributed by Manolis Stamatogiannakis in bpo-42603.)

18

https://bugs.python.org/issue42392
https://bugs.python.org/issue42990
https://bugs.python.org/issue42202
https://bugs.python.org/issue36020
https://bugs.python.org/issue40744
https://bugs.python.org/issue40810
https://bugs.python.org/issue42639
https://bugs.python.org/issue27640
https://bugs.python.org/issue42856
https://bugs.python.org/issue43103
https://bugs.python.org/issue42603

12 C API Changes

12.1 New Features

• The result of PyNumber_Index() now always has exact type int. Previously, the result could have been an
instance of a subclass of int. (Contributed by Serhiy Storchaka in bpo-40792.)

• Add a new orig_argv member to the PyConfig structure: the list of the original command line arguments
passed to the Python executable. (Contributed by Victor Stinner in bpo-23427.)

• The PyDateTime_DATE_GET_TZINFO() and PyDateTime_TIME_GET_TZINFO() macros have been
added for accessing the tzinfo attributes of datetime.datetime and datetime.time objects. (Con-
tributed by Zackery Spytz in bpo-30155.)

• Add a PyCodec_Unregister() function to unregister a codec search function. (Contributed by Hai Shi in
bpo-41842.)

• The PyIter_Send() function was added to allow sending value into iterator without raising StopIteration
exception. (Contributed by Vladimir Matveev in bpo-41756.)

• Added PyUnicode_AsUTF8AndSize() to the limited C API. (Contributed by Alex Gaynor in bpo-41784.)
• Added PyModule_AddObjectRef() function: similar to PyModule_AddObject() but don’t steal a ref-
erence to the value on success. (Contributed by Victor Stinner in bpo-1635741.)

• Added Py_NewRef() and Py_XNewRef() functions to increment the reference count of an object and return
the object. (Contributed by Victor Stinner in bpo-42262.)

• The PyType_FromSpecWithBases() and PyType_FromModuleAndSpec() functions now accept a
single class as the bases argument. (Contributed by Serhiy Storchaka in bpo-42423.)

• The PyType_FromModuleAndSpec() function now accepts NULL tp_doc slot. (Contributed by Hai Shi
in bpo-41832.)

• The PyType_GetSlot() function can accept static types. (Contributed by Hai Shi and Petr Viktorin in bpo-
41073.)

• Add a new PySet_CheckExact() function to the C-API to check if an object is an instance of set but not
an instance of a subtype. (Contributed by Pablo Galindo in bpo-43277.)

12.2 Porting to Python 3.10

• The PY_SSIZE_T_CLEAN macro must now be defined to use PyArg_ParseTuple() and
Py_BuildValue() formats which use #: es#, et#, s#, u#, y#, z#, U# and Z#. See Parsing argu-
ments and building values and the PEP 353. (Contributed by Victor Stinner in bpo-40943.)

• Since Py_REFCNT() is changed to the inline static function, Py_REFCNT(obj) = new_refcnt must be
replaced with Py_SET_REFCNT(obj, new_refcnt): see Py_SET_REFCNT() (available since Python
3.9). For backward compatibility, this macro can be used:

#if PY_VERSION_HEX < 0x030900A4
define Py_SET_REFCNT(obj, refcnt) ((Py_REFCNT(obj) = (refcnt)), (void)0)
#endif

(Contributed by Victor Stinner in bpo-39573.)
• Calling PyDict_GetItem() without GIL held had been allowed for historical reason. It is no longer allowed.
(Contributed by Victor Stinner in bpo-40839.)

19

https://bugs.python.org/issue40792
https://bugs.python.org/issue23427
https://bugs.python.org/issue30155
https://bugs.python.org/issue41842
https://bugs.python.org/issue41756
https://bugs.python.org/issue41784
https://bugs.python.org/issue1635741
https://bugs.python.org/issue42262
https://bugs.python.org/issue42423
https://bugs.python.org/issue41832
https://bugs.python.org/issue41073
https://bugs.python.org/issue41073
https://bugs.python.org/issue43277
https://www.python.org/dev/peps/pep-0353
https://bugs.python.org/issue40943
https://bugs.python.org/issue39573
https://bugs.python.org/issue40839

• PyUnicode_FromUnicode(NULL, size) and PyUnicode_FromStringAndSize(NULL,
size) raise DeprecationWarning now. Use PyUnicode_New() to allocate Unicode object without
initial data. (Contributed by Inada Naoki in bpo-36346.)

• The private _PyUnicode_Name_CAPI structure of the PyCapsule API unicodedata.ucnhash_CAPI
has been moved to the internal C API. (Contributed by Victor Stinner in bpo-42157.)

• Py_GetPath(), Py_GetPrefix(), Py_GetExecPrefix(), Py_GetProgramFullPath(),
Py_GetPythonHome() and Py_GetProgramName() functions now return NULL if called before
Py_Initialize() (before Python is initialized). Use the new Python Initialization Configuration API to get
the Python Path Configuration.. (Contributed by Victor Stinner in bpo-42260.)

• PyList_SET_ITEM(), PyTuple_SET_ITEM() and PyCell_SET() macros can no longer be used as
l-value or r-value. For example, x = PyList_SET_ITEM(a, b, c) and PyList_SET_ITEM(a, b,
c) = x now fail with a compiler error. It prevents bugs like if (PyList_SET_ITEM (a, b, c) < 0)
... test. (Contributed by Zackery Spytz and Victor Stinner in bpo-30459.)

• The non-limited API files odictobject.h, parser_interface.h, picklebufobject.h,
pyarena.h, pyctype.h, pydebug.h, pyfpe.h, and pytime.h have been moved to the Include/
cpython directory. These files must not be included directly, as they are already included in Python.h:
Include Files. If they have been included directly, consider including Python.h instead. (Contributed by
Nicholas Sim in bpo-35134)

12.3 Deprecated

• The PyUnicode_InternImmortal() function is now deprecated and will be removed in Python 3.12: use
PyUnicode_InternInPlace() instead. (Contributed by Victor Stinner in bpo-41692.)

12.4 Removed

• PyObject_AsCharBuffer(), PyObject_AsReadBuffer(), PyObject_CheckReadBuffer(),
and PyObject_AsWriteBuffer() are removed. Please migrate to new buffer protocol;
PyObject_GetBuffer() and PyBuffer_Release(). (Contributed by Inada Naoki in bpo-41103.)

• Removed Py_UNICODE_str* functions manipulating Py_UNICODE* strings. (Contributed by Inada Naoki in
bpo-41123.)

– Py_UNICODE_strlen: use PyUnicode_GetLength() or PyUnicode_GET_LENGTH
– Py_UNICODE_strcat: use PyUnicode_CopyCharacters() or PyUnicode_FromFormat()
– Py_UNICODE_strcpy, Py_UNICODE_strncpy: use PyUnicode_CopyCharacters() or
PyUnicode_Substring()

– Py_UNICODE_strcmp: use PyUnicode_Compare()
– Py_UNICODE_strncmp: use PyUnicode_Tailmatch()
– Py_UNICODE_strchr, Py_UNICODE_strrchr: use PyUnicode_FindChar()

• Removed PyUnicode_GetMax(). Please migrate to new (PEP 393) APIs. (Contributed by Inada Naoki in
bpo-41103.)

• RemovedPyLong_FromUnicode(). Pleasemigrate toPyLong_FromUnicodeObject(). (Contributed
by Inada Naoki in bpo-41103.)

• Removed PyUnicode_AsUnicodeCopy(). Please use PyUnicode_AsUCS4Copy() or
PyUnicode_AsWideCharString() (Contributed by Inada Naoki in bpo-41103.)

20

https://bugs.python.org/issue36346
https://bugs.python.org/issue42157
https://bugs.python.org/issue42260
https://bugs.python.org/issue30459
https://bugs.python.org/issue35134
https://bugs.python.org/issue41692
https://bugs.python.org/issue41103
https://bugs.python.org/issue41123
https://www.python.org/dev/peps/pep-0393
https://bugs.python.org/issue41103
https://bugs.python.org/issue41103
https://bugs.python.org/issue41103

• Removed _Py_CheckRecursionLimit variable: it has been replaced by ceval.recursion_limit of
the PyInterpreterState structure. (Contributed by Victor Stinner in bpo-41834.)

• Removed undocumented macros Py_ALLOW_RECURSION and Py_END_ALLOW_RECURSION and the
recursion_critical field of the PyInterpreterState structure. (Contributed by Serhiy Storchaka in
bpo-41936.)

• Removed the undocumented PyOS_InitInterrupts() function. Initializing Python already implicitly in-
stalls signal handlers: see PyConfig.install_signal_handlers. (Contributed by Victor Stinner in bpo-
41713.)

21

https://bugs.python.org/issue41834
https://bugs.python.org/issue41936
https://bugs.python.org/issue41713
https://bugs.python.org/issue41713

Index
P
Python Enhancement Proposals

PEP 353, 19
PEP 393, 20
PEP 451, 15
PEP 484, 4, 5
PEP 563, 4
PEP 586, 14
PEP 604, 5
PEP 612, 5
PEP 613, 4
PEP 617, 3
PEP 618, 4
PEP 632, 11
PEP 634, 9
PEP 635, 9
PEP 636, 9

22

	Summary – Release highlights
	New Features
	Parenthesized context managers
	PEP 563: Postponed Evaluation of Annotations Becomes Default
	PEP 613: TypeAlias Annotation
	PEP 604: New Type Union Operator
	PEP 612: Parameter Specification Variables
	PEP 634: Structural Pattern Matching
	Better error messages in the parser

	Other Language Changes
	New Modules
	Improved Modules
	argparse
	base64
	codecs
	collections.abc
	contextlib
	curses
	distutils
	doctest
	encodings
	glob
	inspect
	linecache
	os
	pathlib
	platform
	py_compile
	pyclbr
	shelve
	site
	socket
	sys
	threading
	traceback
	types
	typing
	unittest
	urllib.parse
	xml
	zipimport

	Optimizations
	Deprecated
	Removed
	Porting to Python 3.10
	Changes in the Python API

	CPython bytecode changes
	Build Changes
	C API Changes
	New Features
	Porting to Python 3.10
	Deprecated
	Removed

	Index

