Contents

1 Summary — Release highlights

2 New Features

2.1 PEP 563: Postponed Evaluation of Annotations Becomes Default
2.2 PEP 613: TypeAlias Annotation . . .

2.3 PEP604: New Type Union Operator
3 Other Language Changes
4 New Modules

5 Improved Modules

5.1 base64
52 codecs
53 curses ...
54 encodings
55 glob ...l
56 0 ...
57 py_compile
5.8 shelve
59 sys ...
50 typeso
5.1 unittest
52 xml ... oo o

6 Optimizations

7 Deprecated

8 Removed

9 Porting to Python 3.10

10 Build Changes

What’s New in Python

Release 3.10.0a1
A. M. Kuchling

November 03, 2020

Python Software Foundation
Email: docs@python.org

W W NN

w

[N

(O NV I T ST NV, N NG NG NG N N NG

11 C API Changes
I1.1 New Features L e e e e
11.2 Portingto Python 3.10 o . L e
11.3 Deprecated o e e e e e e e e e e e
11.4 Removed o o e e e e e e

o clo N B J= N

Index 9

Release 3.10.0al
Date November 03, 2020
This article explains the new features in Python 3.10, compared to 3.9.

For full details, see the changelog.

Note: Prerelease users should be aware that this document is currently in draft form. It will be updated substantially as
Python 3.10 moves towards release, so it’s worth checking back even after reading earlier versions.

1 Summary — Release highlights

2 New Features

2.1 PEP 563: Postponed Evaluation of Annotations Becomes Default

In Python 3.7, postponed evaluation of annotations was added, to be enabled with a from __future__ import
annotations directive. In 3.10 this became the default behavior, even without that future directive. With this being
default, all annotations stored in __annotations___ will be strings. If needed, annotations can be resolved at runtime
using typing.get_type_hints (). See PEP 563 for a full description. Also, the inspect.signature ()
will try to resolve types from now on, and when it fails it will fall back to showing the string annotations. (Contributed by
Batuhan Taskaya in bpo-38605.)

* The int type has a new method int .bit_count (), returning the number of ones in the binary expansion of
a given integer, also known as the population count. (Contributed by Niklas Fiekas in bpo-29882.)

e The views returned by dict.keys (), dict.values () and dict.items () now all have a mapping
attribute that gives a types.MappingProxyType object wrapping the original dictionary. (Contributed by
Dennis Sweeney in bpo-40890.)

e PEP 618: The zip () function now has an optional strict flag, used to require that all the iterables have an
equal length.

https://www.python.org/dev/peps/pep-0563
https://bugs.python.org/issue38605
https://bugs.python.org/issue29882
https://bugs.python.org/issue40890
https://www.python.org/dev/peps/pep-0618

2.2 PEP 613: TypeAlias Annotation

PEP 484 introduced the concept of type aliases, only requiring them to be top-level unannotated assignments. This
simplicity sometimes made it difficult for type checkers to distinguish between type aliases and ordinary assignments,
especially when forward references or invalid types were involved. Compare:

StrCache = 'Cache[str]' # a type alias
LOG_PREFIX = 'LOG[DEBUG]' # a module constant

Now the typing module has a special annotation TypeAlias to declare type aliases more explicitly:

StrCache: TypeAlias = 'Cache[str]' # a type alias
LOG_PREFIX = 'LOG[DEBUG]' # a module constant

See PEP 613 for more details.
(Contributed by Mikhail Golubev in bpo-41923.)

2.3 PEP604: New Type Union Operator

A new type union operator was introduced which enables the syntax X | Y. This provides a cleaner way of expressing
‘either type X or type Y’ instead of using t yping.Union, especially in type hints (annotations).

In previous versions of Python, to apply a type hint for functions accepting arguments of multiple types, t yping.Union
was used:

def square (number: Union[int, float]) -> Union[int, float]:
return number ** 2

Type hints can now be written in a more succinct manner:

def square (number: int | float) —-> int | float:
return number ** 2

See PEP 604 for more details.
(Contributed by Maggie Moss and Philippe Prados in bpo-41428.)

3 Other Language Changes

* Builtin and extension functions that take integer arguments no longer accept Decimals, Fractions and other
objects that can be converted to integers only with a loss (e.g. that have the __int___ () method but do not have
the __index__ () method). (Contributed by Serhiy Storchaka in bpo-37999.)

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0613
https://bugs.python.org/issue41923
https://www.python.org/dev/peps/pep-0604
https://bugs.python.org/issue41428
https://bugs.python.org/issue37999

4 New Modules

* None yet.

5 Improved Modules

5.1 base64

Addbase64.b32hexencode () andbase64 .b32hexdecode () tosupport the Base32 Encoding with Extended
Hex Alphabet.

5.2 codecs

Add a codecs.unregister () function to unregister a codec search function. (Contributed by Hai Shi in bpo-
41842.)

5.3 curses
The extended color functions added in ncurses 6.1 will be used transparently by curses.color_content (),
curses.init_color (), curses.init_pair (), and curses.pair_content (). A new function,

curses.has_extended_color_support (), indicates whether extended color support is provided by the un-
derlying ncurses library. (Contributed by Jeffrey Kintscher and Hans Petter Jansson in bpo-36982.)

5.4 encodings

encodings.normalize_encoding () now ignores non-ASCII characters. (Contributed by Hai Shi in bpo-
39337.)

5.5 glob

Added the root_dir and dir_fd parameters in glob () and iglob () which allow to specify the root directory for
searching. (Contributed by Serhiy Storchaka in bpo-38144.)

5.6 os

Added os . cpu_count () support for VxWorks RTOS. (Contributed by Peixing Xin in bpo-41440.)

https://bugs.python.org/issue41842
https://bugs.python.org/issue41842
https://bugs.python.org/issue36982
https://bugs.python.org/issue39337
https://bugs.python.org/issue39337
https://bugs.python.org/issue38144
https://bugs.python.org/issue41440

5.7 py_compile

Added ——quiet option to command-line interface of py_compile. (Contributed by Gregory Schevchenko in bpo-
38731.)

5.8 shelve

The shelve module now uses pickle.DEFAULT_PROTOCOL by default instead of pickle protocol 3 when cre-
ating shelves. (Contributed by Zackery Spytz in bpo-34204.)

5.9 sys

Add sys.orig_argv attribute: the list of the original command line arguments passed to the Python executable.
(Contributed by Victor Stinner in bpo-23427.)

5.10 types

Reintroduced the types.EllipsisType, types.NoneType and types.NotImplementedType classes,
providing a new set of types readily interpretable by type checkers. (Contributed by Bas van Beek in bpo-41810.)

5.11 unittest

Add new method assertNoLogs () to complement the existing assertLogs (). (Contributed by Kit Yan Choi in
bpo-39385.)

5.12 xml

Adda LexicalHandler class to the xml . sax.handler module. (Contributed by Jonathan Gossage and Zackery
Spytz in bpo-35018.)

6 Optimizations

» Constructors str (), bytes () and bytearray () are now faster (around 30-40% for small objects). (Con-
tributed by Serhiy Storchaka in bpo-41334.)

¢ The runpy module now imports fewer modules. The python3 -m module-name command startup time is
1.3x faster in average. (Contributed by Victor Stinner in bpo-41006.)

e The LOAD_ATTR instruction now uses new “per opcode cache” mechanism. It is about 36% faster now. (Con-
tributed by Pablo Galindo and Yury Selivanov in bpo-42093, based on ideas implemented originally in PyPy and
MicroPython.)

e When building Python with ——enable-optimizations now -fno-semantic-interposition
is added to both the compile and link line. This speeds builds of the Python interpreter created with
——enable-shared with gcc by up to 30%. See this article for more details. (Contributed by Victor Stin-
ner and Pablo Galindo in bpo-38980)

https://bugs.python.org/issue38731
https://bugs.python.org/issue38731
https://bugs.python.org/issue34204
https://bugs.python.org/issue23427
https://bugs.python.org/issue41810
https://bugs.python.org/issue39385
https://bugs.python.org/issue35018
https://bugs.python.org/issue41334
https://bugs.python.org/issue41006
https://bugs.python.org/issue42093
https://developers.redhat.com/blog/2020/06/25/red-hat-enterprise-linux-8-2-brings-faster-python-3-8-run-speeds/
https://bugs.python.org/issue38980

7 Deprecated

« Starting in this release, there will be a concerted effort to begin cleaning up old import semantics that were kept for
Python 2.7 compatibility. Specifically, find_loader ()/find_module () (supersededby find_spec()),
load_module () (superseded by exec_module ()), module_repr () (which the import system takes
care of for you), the __package___ attribute (superseded by __spec__.parent), the _ loader__ at-
tribute (superseded by __spec__.loader), and the __cached___ attribute (superseded by __spec___.
cached) will slowly be removed (as well as other classes and methods in importlib). ImportWarning
and/or DeprecationWarning will be raised as appropriate to help identify code which needs updating during
this transition.

8 Removed
¢ Removed special methods __int_ , _ float_ , _ floordiv_ , _ mod__, __divmod__,
__rfloordiv__,__rmod__and__rdivmod__ of the complex class. They always raiseda TypeError.

(Contributed by Serhiy Storchaka in bpo-41974.)

e The ParserBase.error () method from the private and undocumented _markupbase module has been re-
moved. html .parser.HTMLParser is the only subclass of ParserBase andits error () implementation
has already been removed in Python 3.5. (Contributed by Berker Peksag in bpo-31844.)

¢ Removed the unicodedata.ucnhash_CAPT attribute which was an internal PyCapsule object. The related
private _PyUnicode_Name_CAPT structure was moved to the internal C API. (Contributed by Victor Stinner
in bpo-42157.)

9 Porting to Python 3.10

This section lists previously described changes and other bugfixes that may require changes to your code.

10 Build Changes

e The C99 functions snprintf () and vsnprintf () are now required to build Python. (Contributed by Victor
Stinner in bpo-36020.)

* sglite3 requires SQLite 3.7.3 or higher. (Contributed by Sergey Fedoseev and Erlend E. Aasland bpo-40744.)

11 C API Changes

11.1 New Features
* The result of PyNumber_Index () now always has exact type int. Previously, the result could have been an
instance of a subclass of int. (Contributed by Serhiy Storchaka in bpo-40792.)

e Add a new orig_argv member to the PyConfig structure: the list of the original command line arguments
passed to the Python executable. (Contributed by Victor Stinner in bpo-23427.)

https://bugs.python.org/issue41974
https://bugs.python.org/issue31844
https://bugs.python.org/issue42157
https://bugs.python.org/issue36020
https://bugs.python.org/issue40744
https://bugs.python.org/issue40792
https://bugs.python.org/issue23427

e The PyDateTime_DATE_GET_TZINFO () and PyDateTime_TIME_GET_TZINFO () macros have been
added for accessing the t zinfo attributes of datetime.datetime and datetime.time objects. (Con-
tributed by Zackery Spytz in bpo-30155.)

¢ Add a PyCodec_Unregister () function to unregister a codec search function. (Contributed by Hai Shi in
bpo-41842.)

e ThePyIter_Send () function was added to allow sending value into iterator without raising StopIteration
exception. (Contributed by Vladimir Matveev in bpo-41756.)

e Added PyUnicode_AsUTF8AndSize () to the limited C API. (Contributed by Alex Gaynor in bpo-41784.)

11.2 Porting to Python 3.10

e The PY_SSIZE_T_CLEAN macro must now be defined to use PyArg ParseTuple() and
Py_BuildValue () formats which use #: es#, et#, s#, u#, y#, z#, U# and Z#. See Parsing argu-
ments and building values and the PEP 353. (Contributed by Victor Stinner in bpo-40943.)

e Since Py_TYPE () is changed to the inline static function, Py_TYPE (obj) = new_type must be replaced
with Py_SET_TYPE (obj, new_type):see Py_SET_TYPE () (available since Python 3.9). For backward
compatibility, this macro can be used:

#1f PY VERSION_HEX < 0x030900A4
define Py _SET _TYPE (obj, type) ((Py_TYPE(obj) = (type)), (void)O0)
#endif

(Contributed by Dong-hee Na in bpo-39573.)

e Since Py_REFCNT () is changed to the inline static function, Py_REFCNT (obj) = new_refcnt must be
replaced with Py_SET_REFCNT (obj, new_refcnt): see Py_SET_REFCNT () (available since Python
3.9). For backward compatibility, this macro can be used:

#1f PY VERSION_HEX < 0x030900A4
define Py_SET_REFCNT (obj, refcnt) ((Py_REFCNT (obj) = (refcnt)), (void)O0)
#endif

(Contributed by Victor Stinner in bpo-39573.)

* Since Py_SIZE () is changed to the inline static function, Py_SIZE (obj) = new_size must be replaced
with Py_SET_SIZE (obj, new_size):seePy_SET_SIZE () (available since Python 3.9). For backward
compatibility, this macro can be used:

#if PY VERSION_HEX < 0x030900A4
define Py _SET SIZE(obj, size) ((Py_SIZE(obj) = (size)), (void)O0)
#endif

(Contributed by Victor Stinner in bpo-39573.)

e Calling PyDict_GetItem () without GIL held had been allowed for historical reason. It is no longer allowed.
(Contributed by Victor Stinner in bpo-40839.)

* PyUnicode_FromUnicode (NULL, size) and PyUnicode_FromStringAndSize (NULL,
size) raise DeprecationWarning now. Use PyUnicode_New () to allocate Unicode object without
initial data. (Contributed by Inada Naoki in bpo-36346.)

e The private _PyUnicode_Name_CAPT structure of the PyCapsule API unicodedata.ucnhash_CAPI
has been moved to the internal C API. (Contributed by Victor Stinner in bpo-42157.)

https://bugs.python.org/issue30155
https://bugs.python.org/issue41842
https://bugs.python.org/issue41756
https://bugs.python.org/issue41784
https://www.python.org/dev/peps/pep-0353
https://bugs.python.org/issue40943
https://bugs.python.org/issue39573
https://bugs.python.org/issue39573
https://bugs.python.org/issue39573
https://bugs.python.org/issue40839
https://bugs.python.org/issue36346
https://bugs.python.org/issue42157

11.3 Deprecated

e The PyUnicode_InternImmortal () function is now deprecated and will be removed in Python 3.12: use
PyUnicode_InternInPlace () instead. (Contributed by Victor Stinner in bpo-41692.)

11.4 Removed

* PyObject_AsCharBuffer (),PyObject_AsReadBuffer (),PyObject_CheckReadBuffer(),
and PyObject_AsWriteBuffer () are removed. Please migrate to new buffer protocol;
PyObject_GetBuffer () and PyBuffer_Release (). (Contributed by Inada Naoki in bpo-41103.)

* Removed Py_UNICODE_str* functions manipulating Py_UNICODE * strings. (Contributed by Inada Naoki in
bpo-41123.)

— Py_UNICODE_strlen: use PyUnicode_GetLength () or PyUnicode_GET_LENGTH
— Py_UNICODE_strcat:use PyUnicode_CopyCharacters () orPyUnicode_FromFormat ()

— Py_UNICODE_strcpy, Py _UNICODE_strncpy: use PyUnicode_CopyCharacters () or
PyUnicode_Substring ()

— Py_UNICODE_strcmp: use PyUnicode_Compare ()
— Py_UNICODE_strncmp: use PyUnicode_Tailmatch ()
— Py_UNICODE_strchr,Py_UNICODE_strrchr: use PyUnicode_FindChar ()

¢ Removed PyUnicode_GetMax (). Please migrate to new (PEP 393) APIs. (Contributed by Inada Naoki in
bpo-41103.)

* Removed PyLong_FromUnicode (). Please migrate to PyLong_FromUnicodeObject (). (Contributed
by Inada Naoki in bpo-41103.)

¢ Removed PyUnicode_AsUnicodeCopy (). Please use PyUnicode_AsUCS4Copy () or
PyUnicode_AsWideCharString () (Contributed by Inada Naoki in bpo-41103.)

* Removed _Py_CheckRecursionLimit variable: it has been replaced by ceval.recursion_limit of
the PyInterpreterState structure. (Contributed by Victor Stinner in bpo-41834.)

¢ Removed undocumented macros Py_ALLOW_RECURSION and Py_END_ALLOW_RECURSION and the
recursion_critical field of the PyInterpreterState structure. (Contributed by Serhiy Storchaka in
bpo-41936.)

https://bugs.python.org/issue41692
https://bugs.python.org/issue41103
https://bugs.python.org/issue41123
https://www.python.org/dev/peps/pep-0393
https://bugs.python.org/issue41103
https://bugs.python.org/issue41103
https://bugs.python.org/issue41103
https://bugs.python.org/issue41834
https://bugs.python.org/issue41936

Index

Python Enhancement Proposals
PEP 353,7
PEP 393,8
PEP 484,3
PEP 563,2
PEP 604,3
PEP 613,3
PEP 618,2

	Summary – Release highlights
	New Features
	PEP 563: Postponed Evaluation of Annotations Becomes Default
	PEP 613: TypeAlias Annotation
	PEP604: New Type Union Operator

	Other Language Changes
	New Modules
	Improved Modules
	base64
	codecs
	curses
	encodings
	glob
	os
	py_compile
	shelve
	sys
	types
	unittest
	xml

	Optimizations
	Deprecated
	Removed
	Porting to Python 3.10
	Build Changes
	C API Changes
	New Features
	Porting to Python 3.10
	Deprecated
	Removed

	Index

