The Python Library Reference
Release 3.6.0

Guido van Rossum
and the Python development team

December 22, 2016

Python Software Foundation
Email: docs@python.org

Introduction

Built-in Functions

Built-in Constants
3.1 Constants added by the site module

Built-in Types

4.1 Truth Value Testing
4.2 Boolean Operations — and, or, not
4.3 Comparisons
4.4 Numeric Types — int, float, complex
4.5 Tterator Types
4.6 Sequence Types — list, tuple, range
4.7 Text Sequence Type — str
4.8 Binary Sequence Types — bytes, bytearray, memoryview
49 SetTypes — set, frozenset
4.10 Mapping Types — dict
4.11 Context Manager Types
4.12 Other Built-in Types
4.13 Special Attributes

Built-in Exceptions
5.1 Base classes

5.2 Concrete exceptions
5.3 Warnings
5.4 Exception hierarchy

Text Processing Services

6.1 string— Common string operations
6.2 re — Regular expression operations
6.3 difflib — Helpers for computing deltas
6.4 textwrap — Text wrapping and filling
6.5 unicodedata — Unicode Database
6.6 stringprep — Internet String Preparation
6.7 readline — GNU readline interface
6.8 rlcompleter — Completion function for GNU readline

Binary Data Services
7.1 struct — Interpret bytes as packed binary data
7.2 codecs — Codec registry and base classes

CONTENTS

8 Data Types

8.1 datetime —Basicdateand imetypes it e e e e e e e e e
8.2 calendar — General calendar-related functions L.
83 collections— Containerdatatypes o i it e e e
84 collections.abc — Abstract Base Classes for Containers
8.5 heapg—Heapqueuealgorithm
8.6 bisect — Array bisection algorithm e
8.7 array — Efficient arrays of numeric values L L L
8.8 weakref —Weakreferences L e
8.9 types — Dynamic type creation and names for built-intypes L.
8.10 copy — Shallow and deep copy Operations v v v vttt e e e
8.11 pprint —Datapretty prinfer ottt e e e e e e e e e e e e
8.12 reprlib — Alternate repr () implementationo
8.13 enum — Support for enumerationsol o e e

Numeric and Mathematical Modules

9.1 numbers — Numeric abstractbase classeso
9.2 math — Mathematical functions e
9.3 cmath — Mathematical functions for complex numberso oL
9.4 decimal — Decimal fixed point and floating point arithmetic
9.5 fractions—Rationalnumbers
9.6 random — Generate pseudo-random nUMDbETS oL . e e e e e e e e
9.7 statistics— Mathematical statistics functions

10 Functional Programming Modules

10.1 itertools — Functions creating iterators for efficient looping
10.2 functools — Higher-order functions and operations on callable objects
10.3 operator — Standard operators as functionso oo L.

11 File and Directory Access

11.1 pathlib — Object-oriented filesystem paths
11.2 os.path — Common pathname manipulations
11.3 fileinput — Iterate over lines from multiple input streams
11.4 stat —Interpreting stat () resultS o e
11.5 filecmp — File and Directory Comparisons v v v v v v v vt v et e e
11.6 tempfile — Generate temporary files and directories
11.7 glob — Unix style pathname pattern expansion
11.8 fnmatch — Unix filename pattern matching oL
119 linecache —Randomaccesstotextlines
11.10 shutil — High-level fileoperations v it et e e
11.11 macpath — Mac OS 9 path manipulation functions

12 Data Persistence

12.1 pickle — Python object serialization i e
12.2 copyreg— Register pickle support functionso
12.3 shelve —Pythonobjectpersistence
12.4 marshal — Internal Python object serialization
12.5 dbm — Interfaces to Unix “databases” e
12.6 sglite3 — DB-API 2.0 interface for SQLite databases

13 Data Compression and Archiving

13.1 zlib — Compression compatible withgzip
13.2 gzip—Supportforgzipfiles. e e
13.3 bz2 — Support for bzip2 compression e e e e
13.4 1lzma — Compression using the LZMA algorithm

167
167
197
200
216
220
224
226
229
236
240
241
246
248

267
267
270
275
279
305
308
314

321
321
335
342

349
349
365
370
373
378
380
384
385
386
387
395

397
397
410
410
413
414
418

13,5 zipfile—WorkwithZIParchives e 453

13.6 tarfile —Readand write tar archivefiles L 0oL, 461
14 File Formats 471
14.1 csv—CSV File Reading and Writing e 471
142 configparser — Configuration fileparser 477
143 netrc—netrc file processingo e e e e e e e e e e 495
144 xdrlib —Encode anddecode XDRdata 496
145 plistlib — Generate and parse Mac OS X .plistfiles 499
15 Cryptographic Services 503
15.1 hashlib — Secure hashes and message digests 503
152 hashlib—BLAKE2hashfunctions 506
153 Moduleo e e e e 507
15.4 Examples o o e e e e e e e e e e e e e 509
155 Credits o o e e e e e 513
15.6 hmac — Keyed-Hashing for Message Authentication 513
15.7 secrets — Generate secure random numbers for managing secrets 515
16 Generic Operating System Services 519
16.1 os — Miscellaneous operating system interfaces L. 519
16.2 io — Core tools for working with streams Lo 565
16.3 time — Time access and CONVEISIONS o v v v v v v v it e e e e e e e e e e e e 577
16.4 argparse — Parser for command-line options, arguments and sub-commands 584
16.5 getopt — C-style parser for command lineoptions, 615
16.6 logging — Logging facility for Python oL oL 617
16.7 logging.config— Logging configuration 632
16.8 logging.handlers—Logginghandlers 642
16.9 getpass — Portable passwordinput. L e e e 654
16.10 curses — Terminal handling for character-cell displays 655
16.11 curses.textpad — Text input widget for curses programs 672
16.12 curses.ascii — Utilities for ASCII characters 673
16.13 curses.panel — A panel stack extension forcurses oL 675
16.14 plat form — Access to underlying platform’s identifyingdata 677
16.15 errno — Standard errno system symbols L. L 680
16.16 ctypes — A foreign function library for Python Lo 0oL 686
17 Concurrent Execution 719
17.1 threading— Thread-based parallelism, 719
17.2 multiprocessing — Process-based parallelism 731
17.3 The concurrent package 773
17.4 concurrent.futures — Launching parallel tasks 773
17.5 subprocess — Subprocess management o.u et e e e e e 779
17.6 sched—Eventscheduler 794
177 queue — A synchronized queue class e 796
17.8 dummy_threading — Drop-in replacement for the threadingmodule 798
179 _thread — Low-level threading API 799
17.10 _dummy_thread — Drop-in replacement for the _threadmodule 800
18 Interprocess Communication and Networking 803
18.1 socket — Low-level networking interface L oo 803
18.2 ss1 — TLS/SSL wrapper for socket objects e 824
183 select — Waiting for[/Ocompletion e 854
184 selectors — High-level /O multiplexing 860

18.5 asyncio — Asynchronous I/O, event loop, coroutines and tasks 864

19

20

21

18.6 asyncore — Asynchronous sockethandler L. 923

18.7 asynchat — Asynchronous socket command/response handler 927

18.8 signal — Set handlers for asynchronousevents 930

18.9 mmap — Memory-mapped file support oL o 935

Internet Data Handling 939

19.1 email — Anemail and MIME handling package, 939

19.2 json—IJSONencoder anddecoder e 997

193 mailcap—Mailcapfilehandling L 1006
19.4 mailbox — Manipulate mailboxes in various formats 1007
19.5 mimetypes — Map filenames to MIME types o o 1024
19.6 base64 — Basel6, Base32, Base64, Base85 Data Encodings 1027
19.7 binhex — Encode and decode binhex4 files Lo oL 1030
19.8 binascii — Convert between binaryand ASCII 1031
19.9 quopri — Encode and decode MIME quoted-printabledata 1033
19.10 uu — Encode and decode uuencode files L o o 1033
Structured Markup Processing Tools 1035

20.1 html — HyperText Markup Language support v ittt 1035
20.2 html.parser — Simple HTML and XHTML parser 1035
20.3 html.entities — Definitions of HTML general entities 1040
20.4 XML Processing Modules 1040
20.5 xml.etree.ElementTree — The ElementTree XML API 1042
20.6 xml.dom — The Document Object Model AP 1057
20.7 xml.dom.minidom— Minimal DOM implementation 1067
20.8 xml.dom.pulldom— Support for building partial DOM trees 1072
20.9 xml.sax — Supportfor SAX2 parsers oo e e e 1073
20.10 xml.sax.handler — Base classes for SAX handlers, 1075
20.11 xml.sax.saxutils — SAX Utilities o e 1080
20.12 xml.sax.xmlreader — Interface for XML parsers 1081
20.13 xml .parsers.expat — Fast XML parsingusing Expat 1085
Internet Protocols and Support 1095

21.1 webbrowser — Convenient Web-browser controller 1095
21.2 cgi — Common Gateway Interface support e 1097
21.3 cgitb — Traceback manager for CGLscripts o i 1104
21.4 wsgiref — WSGI Utilities and Reference Implementation 1104
21.5 urllib—URLhandlingmodules e 1114
21.6 urllib.request — Extensible library foropening URLs 1114
217 urllib.response — Response classesusedbyurllib 1132
21.8 urllib.parse —Parse URLsintocomponentsot v v v .. 1132
219 urllib.error — Exception classes raised by urllib.request 1139
21.10 urllib.robotparser — Parser forrobots.txt Lo 1139
21.11 http—HTTPmodules e 1140
21.12 http.client — HTTP protocol client 1142
21.13 ftplib —FTPprotocolclient o L e e e e 1149
21.14 poplib —POP3 protocol client e e 1154
21.15 imaplib —IMAP4 protocolclient L o 1157
21.16 nntplib — NNTP protocol client e 1163
21.17 smtplib — SMTP protocol client e 1170
21.18 smtpd — SMTP Server e e e e e 1176
21.19 telnetlib—Telnetclient e 1180
21.20 uuid — UUID objects according to RFC 4122 1182
21.21 socketserver — A framework for network servers Lo 1185

22

23

24

25

26

27

21.22 http.server — HTTPservers i e e e 1193

21.23 http.cookies — HTTP state management v v v v v i v v v v v e v e 1199
21.24 http.cookiejar — Cookie handling for HTTPclients 1202
21.25 xmlrpc — XMLRPC server and clientmodules, 1211
21.26 xmlrpc.client — XML-RPCclientaccess v i i i i it it e . 1211
21.27 xmlrpc.server — Basic XML-RPC servers 1219
21.28 ipaddress — IPv4/IPv6 manipulation library 1224
Multimedia Services 1237

22.1 audioop — Manipulateraw audiodata 1237
222 aifc—Readand write AIFFand AIFCfiles 1240
223 sunau—Readand write Sun AU files Lo oo o oo 1242
224 wave —Read and write WAV files oL 1245
22.5 chunk —Read IFFchunkeddata 1248
22.6 colorsys — Conversions between color systemso 1249
227 imghdr — Determine the type of animage 1250
22.8 sndhdr — Determine type of sound file L L o 1250
229 ossaudiodev — Access to OSS-compatible audio devices 1251
Internationalization 1257

23.1 gettext — Multilingual internationalization services 1257
23.2 locale — Internationalization SEIviCes e 1265
Program Frameworks 1273

24.1 turtle —Turtle graphics o o i e e e e e e 1273
24.2 cmd — Support for line-oriented command interpreters oL L. 1308
243 shlex — Simple lexical analysis 1313
Graphical User Interfaces with Tk 1319

25.1 tkinter —Pythoninterfaceto Tcl/Tk oo oo, 1319
252 tkinter.ttk—Tkthemedwidgets 1329
253 tkinter.tix—Extensionwidgetsfor Tk L. 1347
254 tkinter.scrolledtext — Scrolled Text Widget 1352
255 IDLE 1352
25.6 Other Graphical User Interface Packages 1360
Development Tools 1361

26.1 typing—Supportfortypehints. L L e e 1361
26.2 pydoc — Documentation generator and online helpsystem 1375
26.3 doctest — Testinteractive Pythonexamples 0oL, 1376
264 unittest — Unittesting framework L oL 1399
26.5 unittest.mock —mockobjectlibrary e 1426
26.6 unittest.mock —gettingstarted Lo e e 1461
26.7 2to3 - Automated Python 2 to 3 code translation L 0oL, 1479
26.8 test — Regression tests package forPython. o oo oL 1485
269 test.support — Utilities for the Python testsuite 1487
Debugging and Profiling 1495

27.1 bdb—Debugger framework 1495
27.2 faulthandler — Dump the Python traceback 1499
27.3 pdb —The Python Debugger e e e 1501
27.4 The Python Profilers e e e e 1507
27.5 timeit — Measure execution time of small code snippets 1515
27.6 trace — Trace or track Python statement execution, . 1520
2777 tracemalloc — Trace memory allocations 1522

28 Software Packaging and Distribution
28.1 distutils — Building and installing Pythonmodules
28.2 ensurepip — Bootstrapping the pipinstaller L.
28.3 wvenv — Creation of virtual environments L
28.4 zipapp — Manage executable python zip archives oL oL

29 Python Runtime Services
29.1 sys — System-specific parameters and functions 000000 L.
29.2 sysconfig— Provide access to Python’s configuration information
293 builtins—Built-inobjects
29.4 __main___ — Top-level script environment e e
29.5 warnings — Warningcontrol L. L e e e
29.6 contextlib — Utilities for with-statementcontexts
29.7 abc—Abstract Base Classes o o e e e e e e e
29.8 atexit —Exithandlers
29.9 traceback — Printorretrieve a stack tracebacko oo oo
29.10 _ future_ — Future statement definitions
29.11 gc — Garbage Collectorinterface L
29.12 inspect — Inspectlive objects L oL e
29.13 site — Site-specific configurationhook oL oL
29.14 fpectl — Floating point exception control L. Lo

30 Custom Python Interpreters
30.1 code —Interpreter base classes
30.2 codeop —Compile Pythoncode e

31 Importing Modules
31.1 zipimport — Import modules from Ziparchives.
31.2 pkgutil — Package extension utility e e e
31.3 modulefinder — Find modules used by ascript
31.4 runpy — Locating and executing Pythonmodules 0oL,
31.5 importlib — The implementation of import

32 Python Language Services
32.1 parser — Access Pythonparsetrees
322 ast —Abstract Syntax Trees e e e e e e e e e
32.3 symtable — Access to the compiler’s symbol tables 0.,
32.4 symbol — Constants used with Python parsetrees
32.5 token — Constants used with Python parsetrees
32.6 keyword— Testing for Python keywords oL Lo,
32.7 tokenize — Tokenizer for Pythonsource
32.8 tabnanny — Detection of ambiguous indentation L.
32.9 pyclbr —Python class browser support L
32.10 py_compile — Compile Python source files
32.11 compileall — Byte-compile Python libraries
32.12 dis — Disassembler for Python bytecode o000,
32.13 pickletools — Tools for pickle developers

33 Miscellaneous Services
33.1 formatter — Generic output formattingo

34 MS Windows Specific Services
34.1 msilib — Read and write Microsoft Installer files
34.2 msvcrt — Useful routines from the MS VC++runtime
343 winreg— WIindows registry aCCeSS v v v v v e e e e e e e e e e e

vi

344 winsound — Sound-playing interface for Windows oL oL 1708

35 Unix Specific Services 1711
35.1 posix — The most common POSIX systemcalls 1711
35.2 pwd—The password database e 1712
35.3 spwd — The shadow password database e 1713
354 grp—Thegroupdatabase e 1713
35.5 crypt — Function to check Unix passwords e 1714
356 termios —POSIXstylettycontrol e 1716
35.7 tty — Terminal control functions 1717
35.8 pty —Pseudo-terminal utilities e e e e 1718
359 fcntl —The fentland ioctlsystemcalls o oL oL oL L 1719
35.10 pipes — Interface to shell pipelines e 1721
35.11 resource — Resource usage information Lo 1722
35.12 nis — Interface to Sun’s NIS (Yellow Pages) 1726
35.13 syslog — Unix syslog library routines o v i v v i it e i e e e 1727

36 Superseded Modules 1729
36.1 optparse — Parser for command line options Lo oo 1729
36.2 imp — Access the importinternals L. e e 1755

37 Undocumented Modules 1761
37.1 Platform specific modules 1761

A Glossary 1763

Bibliography 1775

B About these documents 1777
B.1 Contributors to the Python Documentation e 1777

C History and License 1779
C.1 Historyofthe software 0 e e e e e e e e e e e e 1779
C.2 Terms and conditions for accessing or otherwise using Python 1780
C.3 Licenses and Acknowledgements for Incorporated Software 1783

D Copyright 1797

Python Module Index 1799

Index 1803

vii

viii

The Python Library Reference, Release 3.6.0

While reference-index describes the exact syntax and semantics of the Python language, this library reference manual
describes the standard library that is distributed with Python. It also describes some of the optional components that
are commonly included in Python distributions.

Python’s standard library is very extensive, offering a wide range of facilities as indicated by the long table of contents
listed below. The library contains built-in modules (written in C) that provide access to system functionality such as
file I/O that would otherwise be inaccessible to Python programmers, as well as modules written in Python that provide
standardized solutions for many problems that occur in everyday programming. Some of these modules are explicitly
designed to encourage and enhance the portability of Python programs by abstracting away platform-specifics into
platform-neutral APIs.

The Python installers for the Windows platform usually include the entire standard library and often also include many
additional components. For Unix-like operating systems Python is normally provided as a collection of packages, so
it may be necessary to use the packaging tools provided with the operating system to obtain some or all of the optional
components.

In addition to the standard library, there is a growing collection of several thousand components (from individual pro-
grams and modules to packages and entire application development frameworks), available from the Python Package
Index.

CONTENTS 1

https://pypi.python.org/pypi
https://pypi.python.org/pypi

The Python Library Reference, Release 3.6.0

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers and lists.
For these types, the Python language core defines the form of literals and places some constraints on their semantics,
but does not fully define the semantics. (On the other hand, the language core does define syntactic properties like the
spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without the
need of an import statement. Some of these are defined by the core language, but many are not essential for the
core semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this collection.
Some modules are written in C and built in to the Python interpreter; others are written in Python and imported in
source form. Some modules provide interfaces that are highly specific to Python, like printing a stack trace; some
provide interfaces that are specific to particular operating systems, such as access to specific hardware; others provide
interfaces that are specific to a particular application domain, like the World Wide Web. Some modules are available
in all versions and ports of Python; others are only available when the underlying system supports or requires them;
yet others are available only when a particular configuration option was chosen at the time when Python was compiled
and installed.

This manual is organized “from the inside out:” it first describes the built-in functions, data types and exceptions, and
finally the modules, grouped in chapters of related modules.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored, you
will get a reasonable overview of the available modules and application areas that are supported by the Python library.
Of course, you don’t have to read it like a novel — you can also browse the table of contents (in front of the manual),
or look for a specific function, module or term in the index (in the back). And finally, if you enjoy learning about
random subjects, you choose a random page number (see module random) and read a section or two. Regardless
of the order in which you read the sections of this manual, it helps to start with chapter Built-in Functions, as the
remainder of the manual assumes familiarity with this material.

Let the show begin!

The Python Library Reference, Release 3.6.0

4 Chapter 1. Introduction

CHAPTER

TWO

BUILT-IN FUNCTIONS

The Python interpreter has a number of functions and types built into it that are always available. They are listed here

in alphabetical order.

Built-in Functions

abs () dict () help () min () setattr()
all() dir() hex () next () slice()
any () divmod () id() object () sorted()
ascii() enumerate () input () oct () staticmethod ()
bin() eval () int () open () str()
bool () exec () isinstance () ord() sum ()
bytearray () filter() issubclass () pow () super ()
bytes () float () iter () print () tuple ()
callable () format () len () property () type ()
chr () frozenset () 1ist () range () vars ()
classmethod() getattr () locals () repr () zip ()
compile () globals () map () reversed() __import__ ()
complex () hasattr () max () round ()
delattr() hash () memoryview () set ()

abs (x)

Return the absolute value of a number. The argument may be an integer or a floating point number. If the
argument is a complex number, its magnitude is returned.

all (iterable)

Return True if all elements of the iterable are true (or if the iterable is empty). Equivalent to:

def all (iterable):
for element in iterable:

if not

element:
return False

return True

any (iterable)

Return True if any element of the iterable is true. If the iterable is empty, return False . Equivalent to:

def any (iterable):
for element in iterable:
if element:

return True

return False

The Python Library Reference, Release 3.6.0

ascii (object)
As repr () , return a string containing a printable representation of an object, but escape the non-ASCII
characters in the string returned by repr () using \x, \u or \U escapes. This generates a string similar to
that returned by repr () in Python 2.

bin (x)
Convert an integer number to a binary string. The result is a valid Python expression. If x is not a Python int
object, it has to define an __index__ () method that returns an integer.

class bool ([x])
Return a Boolean value, i.e. one of True or False . x is converted using the standard rruth testing procedure.
If x is false or omitted, this returns False ; otherwise it returns True . The bool class is a subclass of int
(see Numeric Types — int, float, complex). It cannot be subclassed further. Its only instances are False and
True (see Boolean Values).

class bytearray ([source[, encoding[, errors]]])
Return a new array of bytes. The bytearray class is a mutable sequence of integers in the range 0 <= x <
256. It has most of the usual methods of mutable sequences, described in Mutable Sequence Types, as well as
most methods that the bytes type has, see Bytes and Bytearray Operations.

The optional source parameter can be used to initialize the array in a few different ways:

oIf it is a string, you must also give the encoding (and optionally, errors) parameters; bytearray () then
converts the string to bytes using st r.encode () .

oIf it is an integer, the array will have that size and will be initialized with null bytes.

oIf it is an object conforming to the buffer interface, a read-only buffer of the object will be used to initialize
the bytes array.

oIf it is an iferable, it must be an iterable of integers in the range 0 <= x < 256 , which are used as the
initial contents of the array.

Without an argument, an array of size 0 is created.
See also Binary Sequence Types — bytes, bytearray, memoryview and Bytearray Objects.

class bytes ([source[, encoding[, errors]]])
Return a new “bytes” object, which is an immutable sequence of integers in the range 0 <= x < 256 .
bytes is an immutable version of bytearray - it has the same non-mutating methods and the same
indexing and slicing behavior.

Accordingly, constructor arguments are interpreted as for bytearray () .
Bytes objects can also be created with literals, see strings.
See also Binary Sequence Types — bytes, bytearray, memoryview, Bytes, and Bytes and Bytearray Operations.

callable (object)
Return True if the object argument appears callable, False if not. If this returns true, it is still possible that a
call fails, but if it is false, calling object will never succeed. Note that classes are callable (calling a class returns
a new instance); instances are callable if their classhasa___call__ () method.

New in version 3.2: This function was first removed in Python 3.0 and then brought back in Python 3.2.

chr (i)
Return the string representing a character whose Unicode code point is the integer i. For example, chr (97)
returns the string 'a' , while chr (8364) returns the string '€ "' . This is the inverse of ord () .

The valid range for the argument is from O through 1,114,111 (Ox10FFFF in base 16). ValueError will be
raised if i is outside that range.

6 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.6.0

classmethod (function)
Return a class method for function.

A class method receives the class as implicit first argument, just like an instance method receives the instance.
To declare a class method, use this idiom:

class C:
@classmethod
def f(cls, argl, arg2, ...):

The @classmethod form is a function decorator — see the description of function definitions in function for
details.

It can be called either on the class (such as C. £ ()) or on an instance (such as C () . £ ()). The instance is
ignored except for its class. If a class method is called for a derived class, the derived class object is passed as
the implied first argument.

Class methods are different than C++ or Java static methods. If you want those, see staticmethod () in
this section.

For more information on class methods, consult the documentation on the standard type hierarchy in types.

compile (source, filename, mode, flags=0, dont_inherit=False, optimize=-1)
Compile the source into a code or AST object. Code objects can be executed by exec () or eval () . source
can either be a normal string, a byte string, or an AST object. Refer to the ast module documentation for
information on how to work with AST objects.

The filename argument should give the file from which the code was read; pass some recognizable value if it
wasn’t read from a file (' <string>"' is commonly used).

The mode argument specifies what kind of code must be compiled; it can be 'exec' if source consists of a
sequence of statements, 'eval' if it consists of a single expression, or 'single' if it consists of a single
interactive statement (in the latter case, expression statements that evaluate to something other than None will
be printed).

The optional arguments flags and dont_inherit control which future statements (see PEP 236) affect the compi-
lation of source. If neither is present (or both are zero) the code is compiled with those future statements that
are in effect in the code that is calling compile () . If the flags argument is given and dont_inherit is not (or
is zero) then the future statements specified by the flags argument are used in addition to those that would be
used anyway. If dont_inherit is a non-zero integer then the flags argument is it — the future statements in effect
around the call to compile are ignored.

Future statements are specified by bits which can be bitwise ORed together to specify multiple statements. The
bitfield required to specify a given feature can be found as the compiler_flag attribute on the _Feature
instance inthe future _ module.

The argument optimize specifies the optimization level of the compiler; the default value of -1 selects the op-
timization level of the interpreter as given by —O options. Explicit levels are O (no optimization; __debug___
is true), 1 (asserts are removed, ___debug___ is false) or 2 (docstrings are removed too).

This function raises SyntaxError if the compiled source is invalid, and ValueError if the source contains
null bytes.

If you want to parse Python code into its AST representation, see ast . parse () .

Note: When compiling a string with multi-line code in 'single' or 'eval' mode, input must be termi-
nated by at least one newline character. This is to facilitate detection of incomplete and complete statements in
the code module.

https://www.python.org/dev/peps/pep-0236

The Python Library Reference, Release 3.6.0

Changed in version 3.2: Allowed use of Windows and Mac newlines. Also input in 'exec' mode does not
have to end in a newline anymore. Added the optimize parameter.

Changed in version 3.5: Previously, TypeError was raised when null bytes were encountered in source.

class complex ([real[, imag]])
Return a complex number with the value real + imag*1j or convert a string or number to a complex number. If
the first parameter is a string, it will be interpreted as a complex number and the function must be called without
a second parameter. The second parameter can never be a string. Each argument may be any numeric type
(including complex). If imag is omitted, it defaults to zero and the constructor serves as a numeric conversion
like int and float . If both arguments are omitted, returns 07 .

Note: When converting from a string, the string must not contain whitespace around the central + or —
operator. For example, complex ('1+273") isfine, but complex ('l + 23j') raises ValueError.

The complex type is described in Numeric Types — int, float, complex.
Changed in version 3.6: Grouping digits with underscores as in code literals is allowed.

delattr (object, name)
This is arelative of setattr () . The arguments are an object and a string. The string must be the name of one
of the object’s attributes. The function deletes the named attribute, provided the object allows it. For example,
delattr (x, 'foobar') isequivalentto del x.foobar.

class dict (**kwarg)

class dict (mapping, **kwarg)

class dict (iterable, **kwarg)
Create a new dictionary. The dict object is the dictionary class. See dict and Mapping Types — dict for
documentation about this class.

For other containers see the built-in 1ist, set,and tuple classes, as well as the col Iect ions module.

dir ([object])
Without arguments, return the list of names in the current local scope. With an argument, attempt to return a list
of valid attributes for that object.

If the object has a method named __dir__ () , this method will be called and must return the list of attributes.
This allows objects that implement a custom __getattr__ () or __getattribute__ () function to
customize the way dir () reports their attributes.

If the object does not provide __dir__ () , the function tries its best to gather information from the object’s
__dict___ attribute, if defined, and from its type object. The resulting list is not necessarily complete, and
may be inaccurate when the object has a custom __getattr__ () .

The default dir () mechanism behaves differently with different types of objects, as it attempts to produce the
most relevant, rather than complete, information:

oIf the object is a module object, the list contains the names of the module’s attributes.

oIf the object is a type or class object, the list contains the names of its attributes, and recursively of the
attributes of its bases.

*Otherwise, the list contains the object’s attributes’ names, the names of its class’s attributes, and recursively
of the attributes of its class’s base classes.

The resulting list is sorted alphabetically. For example:
>>> import struct

>>> dir () # show the names in the module namespace
['__builtins__ ', '__name__ ', 'struct']

8 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.6.0

>>> dir (struct) # show the names in the struct module
['Struct', ' _all ', ' builtins__ ', '__cached_', '__doc__ "', '__ file ',
' __initializing__ ', '__loader__', '__name__', '__package__',

'_clearcache', 'calcsize', 'error', 'pack', 'pack_into',
'unpack', 'unpack_from']
>>> class Shape:
def _ dir_ (self):
return ['area', 'perimeter', 'location']
Shape ()
>>> dir(s)
['area', 'location', 'perimeter']

>>> s

Note: Because dir () issupplied primarily as a convenience for use at an interactive prompt, it tries to supply
an interesting set of names more than it tries to supply a rigorously or consistently defined set of names, and its
detailed behavior may change across releases. For example, metaclass attributes are not in the result list when
the argument is a class.

divmod (a, b)
Take two (non complex) numbers as arguments and return a pair of numbers consisting of their quotient and
remainder when using integer division. With mixed operand types, the rules for binary arithmetic operators
apply. For integers, the result is the same as (a // b,a % b) . For floating point numbers the result is
(gq,a % Db) , where g is usually math.floor (a / b) but may be 1 less than that. In any case g *« b
+ a % b isveryclose toa, if a $ b is non-zero it has the same sign as b, and 0 <= abs(a % b) <
abs (b) .

enumerate (iterable, start=0)
Return an enumerate object. iferable must be a sequence, an iterator, or some other object which supports
iteration. The ___next___ () method of the iterator returned by enumerate () returns a tuple containing a
count (from start which defaults to 0) and the values obtained from iterating over iterable.

>>> seasons = ['Spring', 'Summer', 'Fall', 'Winter']

>>> list (enumerate (seasons))

[(O, 'Spring'), (1, 'Summer'), (2, 'Fall'), (3, 'Winter')]
>>> list (enumerate (seasons, start=1))

[(1, 'Spring'), (2, 'Summer'), (3, 'Fall'), (4, 'Winter')]

Equivalent to:

def enumerate (sequence, start=0):
n start
for elem in sequence:
yield n, elem
n += 1

eval (expression, globals=None, locals=None)

The arguments are a string and optional globals and locals. If provided, globals must be a dictionary. If provided,
locals can be any mapping object.

The expression argument is parsed and evaluated as a Python expression (technically speaking, a condition list)
using the globals and locals dictionaries as global and local namespace. If the globals dictionary is present
and lacks ‘__builtins__’, the current globals are copied into globals before expression is parsed. This means
that expression normally has full access to the standard builtins module and restricted environments are
propagated. If the locals dictionary is omitted it defaults to the globals dictionary. If both dictionaries are

The Python Library Reference, Release 3.6.0

omitted, the expression is executed in the environment where eval () is called. The return value is the result
of the evaluated expression. Syntax errors are reported as exceptions. Example:

>>> x = 1
>>> eval ('
2

x+1")

This function can also be used to execute arbitrary code objects (such as those created by compile ()). In
this case pass a code object instead of a string. If the code object has been compiled with 'exec' as the mode
argument, eval () ‘s return value will be None .

Hints: dynamic execution of statements is supported by the exec () function. The globals () and
locals () functions returns the current global and local dictionary, respectively, which may be useful to
pass around for use by eval () or exec () .

See ast.literal eval () for afunction that can safely evaluate strings with expressions containing only
literals.

exec (object[, globals[, locals]])
This function supports dynamic execution of Python code. object must be either a string or a code object. If
it is a string, the string is parsed as a suite of Python statements which is then executed (unless a syntax error
occurs). ' If it is a code object, it is simply executed. In all cases, the code that’s executed is expected to
be valid as file input (see the section “File input” in the Reference Manual). Be aware that the return and
yield statements may not be used outside of function definitions even within the context of code passed to
the exec () function. The return value is None .

In all cases, if the optional parts are omitted, the code is executed in the current scope. If only globals is
provided, it must be a dictionary, which will be used for both the global and the local variables. If globals and
locals are given, they are used for the global and local variables, respectively. If provided, locals can be any
mapping object. Remember that at module level, globals and locals are the same dictionary. If exec gets two
separate objects as globals and locals, the code will be executed as if it were embedded in a class definition.

If the globals dictionary does not contain a value for the key _ _builtins__ , a reference to the dictionary
of the built-in module builtins is inserted under that key. That way you can control what builtins are
available to the executed code by inserting your own __builtins__ dictionary into globals before passing
itto exec () .

Note: The built-in functions globals () and locals () return the current global and local dictionary,
respectively, which may be useful to pass around for use as the second and third argument to exec () .

Note: The default locals act as described for function Jocals () below: modifications to the default locals
dictionary should not be attempted. Pass an explicit locals dictionary if you need to see effects of the code on
locals after function exec () returns.

filter (function, iterable)
Construct an iterator from those elements of iterable for which function returns true. iterable may be either
a sequence, a container which supports iteration, or an iterator. If function is None , the identity function is
assumed, that is, all elements of iterable that are false are removed.

Note that filter (function, iterable) is equivalent to the generator expression (item for
item in iterable if function(item)) if function is not None and (item for item in
iterable if item) if functionis None .

! Note that the parser only accepts the Unix-style end of line convention. If you are reading the code from a file, make sure to use newline
conversion mode to convert Windows or Mac-style newlines.

10 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.6.0

See itertools.filterfalse () for the complementary function that returns elements of iterable for
which function returns false.

class float ([x])
Return a floating point number constructed from a number or string x.

If the argument is a string, it should contain a decimal number, optionally preceded by a sign, and optionally
embedded in whitespace. The optional sign may be '+' or '-' ;a '+' sign has no effect on the value
produced. The argument may also be a string representing a NaN (not-a-number), or a positive or negative
infinity. More precisely, the input must conform to the following grammar after leading and trailing whitespace
characters are removed:

sign = R

infinity = S Infinity'' | " Tinf'!

nan = ““nan''

numeric_value = floatnumber | infinity | nan
numeric_string = [sign] numeric_value

Here f1loatnumber is the form of a Python floating-point literal, described in floating. Case is not significant,
so, for example, “inf”, “Inf”, “INFINITY” and “iNfINity” are all acceptable spellings for positive infinity.

Otherwise, if the argument is an integer or a floating point number, a floating point number with the same value
(within Python’s floating point precision) is returned. If the argument is outside the range of a Python float, an
OverflowError will be raised.

For a general Python object x , f1oat (x) delegatestox.___float__ () .
If no argument is given, 0. 0 is returned.

Examples:

>>> float ('+1.23")

1.23

>>> float (' -12345\n")
-12345.0

>>> float ('1le-003")
0.001

>>> float ('+1E6")
1000000.0

>>> float ('-Infinity")
—inf

The float type is described in Numeric Types — int, float, complex.
Changed in version 3.6: Grouping digits with underscores as in code literals is allowed.

format (value[, format_spec])
Convert a value to a “formatted” representation, as controlled by format_spec. The interpretation of format_spec
will depend on the type of the value argument, however there is a standard formatting syntax that is used by
most built-in types: Format Specification Mini-Language.

The default format_spec is an empty string which usually gives the same effect as calling st r (value) .

Acallto format (value, format_spec) istranslatedto type (value) ._ format__ (value, format_spec)
which bypasses the instance dictionary when searching for the value’s __ format__ () method. A
TypeError exception is raised if the method search reaches ob ject and the format_spec is non-empty, or

if either the format_spec or the return value are not strings.

11

The Python Library Reference, Release 3.6.0

Changed in version 3.4: object () .__format__ (format_spec) raises TypeError if format_spec
is not an empty string.

class frozenset ([iterable])
Return a new frozenset object, optionally with elements taken from iterable. frozenset is a built-in
class. See frozenset and Set Types — set, frozenset for documentation about this class.

For other containers see the built-in set , 1ist, tuple,and dict classes, as well as the collections
module.

getattr (object, name[, default])
Return the value of the named attribute of object. name must be a string. If the string is the name of one of
the object’s attributes, the result is the value of that attribute. For example, getattr (x, 'foobar') is
equivalent to x.foobar . If the named attribute does not exist, default is returned if provided, otherwise
AttributeError israised.

globals ()
Return a dictionary representing the current global symbol table. This is always the dictionary of the current
module (inside a function or method, this is the module where it is defined, not the module from which it is
called).

hasattr (object, name)
The arguments are an object and a string. The result is True if the string is the name of one of the object’s
attributes, False if not. (This is implemented by calling getattr (object, name) and seeing whether it
raises an AttributeError ornot.)

hash (object)

Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly
compare dictionary keys during a dictionary lookup. Numeric values that compare equal have the
same hash value (even if they are of different types, as is the case for 1 and 1.0).

Note: For object’s with custom __hash__ () methods, note that hash () truncates the return value based
on the bit width of the host machine. See __hash__ () for details.

help ([object])
Invoke the built-in help system. (This function is intended for interactive use.) If no argument is given, the
interactive help system starts on the interpreter console. If the argument is a string, then the string is looked up
as the name of a module, function, class, method, keyword, or documentation topic, and a help page is printed
on the console. If the argument is any other kind of object, a help page on the object is generated.

This function is added to the built-in namespace by the site module.

Changed in version 3.4: Changes to pydoc and inspect mean that the reported signatures for callables are
now more comprehensive and consistent.

hex (x)

Convert an integer number to a lowercase hexadecimal string prefixed with “0x”, for example:

>>> hex (255)
"Oxff'
>>> hex (—-42)
'-0x2a'’

If x is not a Python int object, it has to define an __index__ () method that returns an integer.

See also int () for converting a hexadecimal string to an integer using a base of 16.

12 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.6.0

Note: To obtain a hexadecimal string representation for a float, use the f1oat . hex () method.

id (object)
Return the “identity” of an object. This is an integer which is guaranteed to be unique and constant for this
object during its lifetime. Two objects with non-overlapping lifetimes may have the same id () value.

CPython implementation detail: This is the address of the object in memory.

input ([prompt])
If the prompt argument is present, it is written to standard output without a trailing newline. The function then
reads a line from input, converts it to a string (stripping a trailing newline), and returns that. When EOF is read,
EOFError israised. Example:

>>> s = input('-—> ")
—-—> Monty Python's Flying Circus
>>> s

"Monty Python's Flying Circus"

If the readline module was loaded, then input () will use it to provide elaborate line editing and history
features.

class int (x=0)

class int (x, base=10)
Return an integer object constructed from a number or string x, or return 0 if no arguments are given. If x is a
number, return x. __int__ () . For floating point numbers, this truncates towards zero.

If x is not a number or if base is given, then x must be a string, bytes, or bytearray instance representing
an integer literal in radix base. Optionally, the literal can be preceded by + or — (with no space in between)
and surrounded by whitespace. A base-n literal consists of the digits 0 to n-1, with a to z (or A to Z) having
values 10 to 35. The default base is 10. The allowed values are 0 and 2-36. Base-2, -8, and -16 literals can be
optionally prefixed with 0b /0B, 00 /00, or 0x /0X , as with integer literals in code. Base 0 means to interpret
exactly as a code literal, so that the actual base is 2, 8, 10, or 16, and so that int ('010',0) is not legal,
while int ('010") is,aswellas int ('010"', 8) .

The integer type is described in Numeric Types — int, float, complex.

Changed in version 3.4: If base is not an instance of int and the base object has a base.___index_
method, that method is called to obtain an integer for the base. Previous versions used base.__int___ instead
of base._ _index__ .

Changed in version 3.6: Grouping digits with underscores as in code literals is allowed.

isinstance (object, classinfo)
Return true if the object argument is an instance of the classinfo argument, or of a (direct, indirect or virtual)
subclass thereof. If object is not an object of the given type, the function always returns false. If classinfo is a
tuple of type objects (or recursively, other such tuples), return true if object is an instance of any of the types. If
classinfo is not a type or tuple of types and such tuples, a TypeError exception is raised.

issubclass (class, classinfo)
Return true if class is a subclass (direct, indirect or virfual) of classinfo. A class is considered a subclass of
itself. classinfo may be a tuple of class objects, in which case every entry in classinfo will be checked. In any
other case, a TypeError exception is raised.

iter (object[, sentinel])
Return an iferator object. The first argument is interpreted very differently depending on the presence of the
second argument. Without a second argument, object must be a collection object which supports the iteration
protocol (the __iter__ () method), or it must support the sequence protocol (the __getitem__ () method

13

The Python Library Reference, Release 3.6.0

with integer arguments starting at 0). If it does not support either of those protocols, TypeError israised. If
the second argument, sentinel, is given, then object must be a callable object. The iterator created in this case
will call object with no arguments for each call toits ___next__ () method; if the value returned is equal to
sentinel, StopIteration will be raised, otherwise the value will be returned.

See also Iterator Types.

One useful application of the second form of iter () is to read lines of a file until a certain line is reached.
The following example reads a file until the readline () method returns an empty string:

with open('mydata.txt') as fp:
for line in iter (fp.readline, ''):
process_line(line)

len ()
Return the length (the number of items) of an object. The argument may be a sequence (such as a string, bytes,
tuple, list, or range) or a collection (such as a dictionary, set, or frozen set).

class 1ist ([iterable])
Rather than being a function, 11ist is actually a mutable sequence type, as documented in Lists and Sequence
Types — list, tuple, range.

locals ()
Update and return a dictionary representing the current local symbol table. Free variables are returned by
locals () when itis called in function blocks, but not in class blocks.

Note: The contents of this dictionary should not be modified; changes may not affect the values of local and
free variables used by the interpreter.

map (function, iterable, ...)
Return an iterator that applies function to every item of iterable, yielding the results. If additional iterable
arguments are passed, function must take that many arguments and is applied to the items from all iterables in
parallel. With multiple iterables, the iterator stops when the shortest iterable is exhausted. For cases where the
function inputs are already arranged into argument tuples, see itertools.starmap () .

max (iterable, *[, key, default])
max (argl, arg2, *args[, key])
Return the largest item in an iterable or the largest of two or more arguments.

If one positional argument is provided, it should be an iterable. The largest item in the iterable is returned. If
two or more positional arguments are provided, the largest of the positional arguments is returned.

There are two optional keyword-only arguments. The key argument specifies a one-argument ordering function
like that used for 1ist.sort () . The default argument specifies an object to return if the provided iterable is
empty. If the iterable is empty and default is not provided, a ValueError is raised.

If multiple items are maximal, the function returns the first one encountered. This is consistent with other
sort-stability preserving tools such as sorted (iterable, key=keyfunc, reverse=True) [0] and
heapg.nlargest (1,iterable, key=keyfunc) .

New in version 3.4: The default keyword-only argument.

memoryview (obj)
Return a “memory view” object created from the given argument. See Memory Views for more information.

min (iterable, *[, key, default])
min (argl, arg2, *args[, key])
Return the smallest item in an iterable or the smallest of two or more arguments.

14 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.6.0

If one positional argument is provided, it should be an iferable. The smallest item in the iterable is returned. If
two or more positional arguments are provided, the smallest of the positional arguments is returned.

There are two optional keyword-only arguments. The key argument specifies a one-argument ordering function
like that used for 1ist.sort () . The default argument specifies an object to return if the provided iterable is
empty. If the iterable is empty and default is not provided, a ValueError is raised.

If multiple items are minimal, the function returns the first one encountered. This is consis-
tent with other sort-stability preserving tools such as sorted(iterable, key=keyfunc) [0] and
heapg.nsmallest (1,iterable, key=keyfunc) .

New in version 3.4: The default keyword-only argument.

next (itemtor[, default])
Retrieve the next item from the iterator by calling its ___next___ () method. If default is given, it is returned
if the iterator is exhausted, otherwise StopIteration is raised.

class object
Return a new featureless object. ob ject is a base for all classes. It has the methods that are common to all
instances of Python classes. This function does not accept any arguments.

Note: object does not have a ___dict___ , so you can’t assign arbitrary attributes to an instance of the
object class.

oct (x)
Convert an integer number to an octal string. The result is a valid Python expression. If x is not a Python int
object, it has to define an __index__ () method that returns an integer.

open (file, mode='r’, buffering=-1, encoding=None, errors=None, newline=None, closefd=True,

opener=None)
Open file and return a corresponding file object. If the file cannot be opened, an OSError is raised.

file is a path-like object giving the pathname (absolute