The Python Language Reference
Release 3.5.5

Guido van Rossum
and the Python development team

April 02, 2018

Python Software Foundation
Email: docs@python.org

CONTENTS

Introduction 3
I.1 Alternate Implementations L. e 3
1.2 Notation o o e e e e e e e e e e e e e 4
Lexical analysis 5
2.1 LANESIIUCIUTE . . . v v v v e e e it e 5
2.2 Othertokens o i e e e e e e e 8
2.3 Identifiers and keywords e e e 8
24 Literals oo e e e 9
2.5 OPETatOrS . . v v v v e 13
2.6 Delimiters e e e 13
Data model 15
3.1 Objects, values and tyPes v v v i i e e e e e e e e e e e e e e e e e e 15
3.2 Thestandard type hierarchy L 16
3.3 Specialmethodnames oL e 23
3.4 COoroutineSt it e e e 38
Execution model 41
4.1 Structure of A program oL e e e e e e e e e e e e e e e 41
4.2 Namingand binding e e e 41
4.3 EXCEPLONS . . . v o v v e 43
The import system 45
5.1 dmportlib e e e e 45
5.2 Packages e e e e e e e e 45
5.3 Searching o L e e e e e e e e 47
54 Loading e e e e e e e 48
5.5 ThePathBased Finder e 53
5.6 Replacing the standard import system oL e e 55
5.7 Special considerations for __main__. L e e e e e e e e e e e e 55
5.8 OPENISSUES . o . v v o v e 56
59 References e 56
Expressions 59
6.1 Arithmetic CONVEersions o i i i e e e e e 59
6.2 AOMS e e e 59
6.3 Primaries e e e e e e e e e e 64
6.4 AWt EXPIeSSION . . . v v v v it i e e e e e e e e e e e e e e e e 68
6.5 The pOWEr OPEerator v v v v i e i e 68
6.6 Unary arithmetic and bitwise Operations v o v v v v v vt e e e e e e 68

10

6.7

6.8

6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16

Binary arithmetic operations L e e e e e e e e e e e e e
Shifting Operations v i v e e e e e e e e e e e e e e e e e e
Binary bitwise operations L e e e e e e e e
CompariSONS e e e e e e e e e
Boolean operations oL e e e e e e e e e e e
Conditional eXpressions v L. e e e e e e e e e e
Lambdas e
Expression lists o oo e e e e
Evaluationorder L.

Simple statements

7.1
7.2
1.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13

Expression Statementso e e e e e e e e e
Assignment StAtEMENLS o L. e
The assert StatemMent o v i v v it e e e e e e e e e e e e e e e e e e
The pass statement i e e e e e e e e e e e e e e e
The del statement v v v v e et e e e e e e e e e e e e e e e e e e e
The return statement o ot i e e e e e e e e e e e e e
The yieldstatement i v it i e e e e e e e e e e e e e e e e
The raise StateMeNt v v v v it e
The break Statement v v v i v e
The continue StateMENt v v v v v v it e e e e e e e e e e e e e e e e e e e
The import statement o v v i e e e e e e e e e e e e e e e
The global statement o v v i it et e e e e e e e e e e e
The nonlocal statement o v i v i e e e e e e e e e e e e e e e e e

Compound statements

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

The ifstatement e e e e e e e e e e e e e e e e
The while statement i i i it et e e e e e e e e e e
The for statement 0 i e e e e e e e e e e e e e e e e
The try statement o e
The with statement 0 e
Function definitions e e e e e e e e e
Class definitions e e e e e
COrOULINES v v e e e e e e e e e e e e e e e e e e

Top-level components

9.1 Complete Python programs L e e e
0.2 FIleinput o i e e e e e e e e e e e e e e
0.3 Interactive INPUL v v v et e
0.4 EXpPression inpUL v v it e
Full Grammar specification

Glossary

About these documents

B.1 Contributors to the Python Documentation o
History and License

C.1 Historyof thesoftware
C.2 Terms and conditions for accessing or otherwise using Python
C.3 Licenses and Acknowledgements for Incorporated Software
Copyright

69

77
77
77
80
80
81
81
81
82
83
83
83
86
86

89
90
90
90
91
93
94
95
96

101

105

117
117

119
119
120
123

137

Index 139

The Python Language Reference, Release 3.5.5

This reference manual describes the syntax and “core semantics” of the language. It is terse, but attempts to be exact
and complete. The semantics of non-essential built-in object types and of the built-in functions and modules are de-
scribed in library-index. For an informal introduction to the language, see tutorial-index. For C or C++ programmers,
two additional manuals exist: extending-index describes the high-level picture of how to write a Python extension
module, and the c-api-index describes the interfaces available to C/C++ programmers in detail.

CONTENTS 1

The Python Language Reference, Release 3.5.5

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

This reference manual describes the Python programming language. It is not intended as a tutorial.

While I am trying to be as precise as possible, I chose to use English rather than formal specifications for everything
except syntax and lexical analysis. This should make the document more understandable to the average reader, but will
leave room for ambiguities. Consequently, if you were coming from Mars and tried to re-implement Python from this
document alone, you might have to guess things and in fact you would probably end up implementing quite a different
language. On the other hand, if you are using Python and wonder what the precise rules about a particular area of the
language are, you should definitely be able to find them here. If you would like to see a more formal definition of the
language, maybe you could volunteer your time — or invent a cloning machine :-).

It is dangerous to add too many implementation details to a language reference document — the implementation may
change, and other implementations of the same language may work differently. On the other hand, CPython is the
one Python implementation in widespread use (although alternate implementations continue to gain support), and
its particular quirks are sometimes worth being mentioned, especially where the implementation imposes additional
limitations. Therefore, you’ll find short “implementation notes” sprinkled throughout the text.

Every Python implementation comes with a number of built-in and standard modules. These are documented in library-
index. A few built-in modules are mentioned when they interact in a significant way with the language definition.

1.1 Alternate Implementations

Though there is one Python implementation which is by far the most popular, there are some alternate implementations
which are of particular interest to different audiences.

Known implementations include:

CPython This is the original and most-maintained implementation of Python, written in C. New language features
generally appear here first.

Jython Python implemented in Java. This implementation can be used as a scripting language for Java applications,
or can be used to create applications using the Java class libraries. It is also often used to create tests for Java
libraries. More information can be found at the Jython website.

Python for .NET This implementation actually uses the CPython implementation, but is a managed .NET application
and makes .NET libraries available. It was created by Brian Lloyd. For more information, see the Python for
.NET home page.

IronPython An alternate Python for .NET. Unlike Python.NET, this is a complete Python implementation that gen-
erates IL, and compiles Python code directly to .NET assemblies. It was created by Jim Hugunin, the original
creator of Jython. For more information, see the IronPython website.

PyPy An implementation of Python written completely in Python. It supports several advanced features not found
in other implementations like stackless support and a Just in Time compiler. One of the goals of the project is

http://www.jython.org/
https://pythonnet.github.io/
https://pythonnet.github.io/
http://ironpython.net/

The Python Language Reference, Release 3.5.5

to encourage experimentation with the language itself by making it easier to modify the interpreter (since it is
written in Python). Additional information is available on the PyPy project’s home page.

Each of these implementations varies in some way from the language as documented in this manual, or introduces
specific information beyond what’s covered in the standard Python documentation. Please refer to the implementation-
specific documentation to determine what else you need to know about the specific implementation you’re using.

1.2 Notation

The descriptions of lexical analysis and syntax use a modified BNF grammar notation. This uses the following style
of definition:

name = lc _letter (Ic_letter |
lc_letter alt.. gz

'V)*

The first line says that a name is an 1c_letter followed by a sequence of zero or more 1c_letter s and
underscores. An lc_letter in turn is any of the single characters 'a' through 'z' . (This rule is actually
adhered to for the names defined in lexical and grammar rules in this document.)

Each rule begins with a name (which is the name defined by the rule) and : : = . A vertical bar (|) is used to separate
alternatives; it is the least binding operator in this notation. A star (») means zero or more repetitions of the preceding
item; likewise, a plus (+) means one or more repetitions, and a phrase enclosed in square brackets ([]) means zero
or one occurrences (in other words, the enclosed phrase is optional). The * and + operators bind as tightly as possible;
parentheses are used for grouping. Literal strings are enclosed in quotes. White space is only meaningful to separate
tokens. Rules are normally contained on a single line; rules with many alternatives may be formatted alternatively
with each line after the first beginning with a vertical bar.

In lexical definitions (as the example above), two more conventions are used: Two literal characters separated by three
dots mean a choice of any single character in the given (inclusive) range of ASCII characters. A phrase between
angular brackets (<. . . >) gives an informal description of the symbol defined; e.g., this could be used to describe the
notion of ‘control character’ if needed.

Even though the notation used is almost the same, there is a big difference between the meaning of lexical and
syntactic definitions: a lexical definition operates on the individual characters of the input source, while a syntax
definition operates on the stream of tokens generated by the lexical analysis. All uses of BNF in the next chapter
(“Lexical Analysis™) are lexical definitions; uses in subsequent chapters are syntactic definitions.

4 Chapter 1. Introduction

http://pypy.org/

CHAPTER
TWO

LEXICAL ANALYSIS

A Python program is read by a parser. Input to the parser is a stream of fokens, generated by the lexical analyzer. This
chapter describes how the lexical analyzer breaks a file into tokens.

Python reads program text as Unicode code points; the encoding of a source file can be given by an encoding decla-
ration and defaults to UTF-8, see PEP 3120 for details. If the source file cannot be decoded, a SyntaxError is
raised.

2.1 Line structure

A Python program is divided into a number of logical lines.

2.1.1 Logical lines

The end of a logical line is represented by the token NEWLINE. Statements cannot cross logical line boundaries
except where NEWLINE is allowed by the syntax (e.g., between statements in compound statements). A logical line
is constructed from one or more physical lines by following the explicit or implicit line joining rules.

2.1.2 Physical lines

A physical line is a sequence of characters terminated by an end-of-line sequence. In source files, any of the standard
platform line termination sequences can be used - the Unix form using ASCII LF (linefeed), the Windows form using
the ASCII sequence CR LF (return followed by linefeed), or the old Macintosh form using the ASCII CR (return)
character. All of these forms can be used equally, regardless of platform.

When embedding Python, source code strings should be passed to Python APIs using the standard C conventions for
newline characters (the \n character, representing ASCII LF, is the line terminator).

2.1.3 Comments
A comment starts with a hash character (#) that is not part of a string literal, and ends at the end of the physical line. A

comment signifies the end of the logical line unless the implicit line joining rules are invoked. Comments are ignored
by the syntax; they are not tokens.

2.1.4 Encoding declarations

If a comment in the first or second line of the Python script matches the regular expression
coding[=:]\s* ([-\w.]+) , this comment is processed as an encoding declaration; the first group of this

https://www.python.org/dev/peps/pep-3120

The Python Language Reference, Release 3.5.5

expression names the encoding of the source code file. The encoding declaration must appear on a line of its own. If it
is the second line, the first line must also be a comment-only line. The recommended forms of an encoding expression
are

—#*— coding: <encoding—-name> —#*-—
which is recognized also by GNU Emacs, and

vim:fileencoding=<encoding—-name>
which is recognized by Bram Moolenaar’s VIM.

If no encoding declaration is found, the default encoding is UTF-8. In addition, if the first bytes of the file are the
UTF-8 byte-order mark (b ' \xef\xbb\xbf "'), the declared file encoding is UTF-8 (this is supported, among others,
by Microsoft’s notepad).

If an encoding is declared, the encoding name must be recognized by Python. The encoding is used for all lexical
analysis, including string literals, comments and identifiers.

2.1.5 Explicit line joining

Two or more physical lines may be joined into logical lines using backslash characters (\), as follows: when a physical
line ends in a backslash that is not part of a string literal or comment, it is joined with the following forming a single
logical line, deleting the backslash and the following end-of-line character. For example:

if 1900 < year < 2100 and 1 <= month <= 12 \
and 1 <= day <= 31 and 0 <= hour < 24 \
and 0 <= minute < 60 and 0 <= second < 60: # Looks like a valid date
return 1

A line ending in a backslash cannot carry a comment. A backslash does not continue a comment. A backslash does
not continue a token except for string literals (i.e., tokens other than string literals cannot be split across physical lines
using a backslash). A backslash is illegal elsewhere on a line outside a string literal.

2.1.6 Implicit line joining

Expressions in parentheses, square brackets or curly braces can be split over more than one physical line without using
backslashes. For example:

month_names = ['Januari', 'Februari', 'Maart', # These are the
'April', 'Mei', '"Juni', # Dutch names
'Juli’', 'Augustus', 'September’', # for the months
'Oktober', 'November', 'December'] # of the year

Implicitly continued lines can carry comments. The indentation of the continuation lines is not important. Blank
continuation lines are allowed. There is no NEWLINE token between implicit continuation lines. Implicitly continued
lines can also occur within triple-quoted strings (see below); in that case they cannot carry comments.

2.1.7 Blank lines

A logical line that contains only spaces, tabs, formfeeds and possibly a comment, is ignored (i.e., no NEWLINE
token is generated). During interactive input of statements, handling of a blank line may differ depending on the
implementation of the read-eval-print loop. In the standard interactive interpreter, an entirely blank logical line (i.e.
one containing not even whitespace or a comment) terminates a multi-line statement.

6 Chapter 2. Lexical analysis

The Python Language Reference, Release 3.5.5

2.1.8 Indentation

Leading whitespace (spaces and tabs) at the beginning of a logical line is used to compute the indentation level of the
line, which in turn is used to determine the grouping of statements.

Tabs are replaced (from left to right) by one to eight spaces such that the total number of characters up to and including
the replacement is a multiple of eight (this is intended to be the same rule as used by Unix). The total number of spaces
preceding the first non-blank character then determines the line’s indentation. Indentation cannot be split over multiple
physical lines using backslashes; the whitespace up to the first backslash determines the indentation.

Indentation is rejected as inconsistent if a source file mixes tabs and spaces in a way that makes the meaning dependent
on the worth of a tab in spaces; a TabError is raised in that case.

Cross-platform compatibility note: because of the nature of text editors on non-UNIX platforms, it is unwise to use
a mixture of spaces and tabs for the indentation in a single source file. It should also be noted that different platforms
may explicitly limit the maximum indentation level.

A formfeed character may be present at the start of the line; it will be ignored for the indentation calculations above.
Formfeed characters occurring elsewhere in the leading whitespace have an undefined effect (for instance, they may
reset the space count to zero).

The indentation levels of consecutive lines are used to generate INDENT and DEDENT tokens, using a stack, as
follows.

Before the first line of the file is read, a single zero is pushed on the stack; this will never be popped off again. The
numbers pushed on the stack will always be strictly increasing from bottom to top. At the beginning of each logical
line, the line’s indentation level is compared to the top of the stack. If it is equal, nothing happens. If it is larger, it is
pushed on the stack, and one INDENT token is generated. If it is smaller, it must be one of the numbers occurring on
the stack; all numbers on the stack that are larger are popped off, and for each number popped off a DEDENT token is
generated. At the end of the file, a DEDENT token is generated for each number remaining on the stack that is larger
than zero.

Here is an example of a correctly (though confusingly) indented piece of Python code:

def perm(l):
Compute the list of all permutations of 1
if len(l) <= 1:
return [1]
r =[]
for i in range(len(l)):
s = 1[:1] + 1[i+1:]
p = perm(s)
for x in p:
r.append (1[i:i+1] + x)
return r

The following example shows various indentation errors:

def perm(l): # error: first line indented
for i in range(len(l)): # error: not indented
s = 1[:1] + 1[i+1:]
p = perm(1l[:1i] + 1[i+1:1]) # error: unexpected indent

for x in p:
r.append (1[i:i+1] + x)
return r # error: inconsistent dedent

(Actually, the first three errors are detected by the parser; only the last error is found by the lexical analyzer — the
indentation of return r does not match a level popped off the stack.)

2.1. Line structure 7

The Python Language Reference, Release 3.5.5

2.1.9 Whitespace between tokens

Except at the beginning of a logical line or in string literals, the whitespace characters space, tab and formfeed can be
used interchangeably to separate tokens. Whitespace is needed between two tokens only if their concatenation could
otherwise be interpreted as a different token (e.g., ab is one token, but a b is two tokens).

2.2 Other tokens

Besides NEWLINE, INDENT and DEDENT, the following categories of tokens exist: identifiers, keywords, literals,
operators, and delimiters. Whitespace characters (other than line terminators, discussed earlier) are not tokens, but
serve to delimit tokens. Where ambiguity exists, a token comprises the longest possible string that forms a legal token,
when read from left to right.

2.3 ldentifiers and keywords

Identifiers (also referred to as names) are described by the following lexical definitions.

The syntax of identifiers in Python is based on the Unicode standard annex UAX-31, with elaboration and changes as
defined below; see also PEP 3131 for further details.

Within the ASCII range (U+0001..U+007F), the valid characters for identifiers are the same as in Python 2.x: the
uppercase and lowercase letters A through Z , the underscore _ and, except for the first character, the digits O through
9.

Python 3.0 introduces additional characters from outside the ASCII range (see PEP 3131). For these characters, the
classification uses the version of the Unicode Character Database as included in the unicodedata module.

Identifiers are unlimited in length. Case is significant.

identifier n= xid _start xid _continue x

id_start = <all characters in general categories Lu,Ll,Lt,Lm,Lo,Nl,the underscore,
id_continue = <all characters in id_start ,plus characters in the categories Mn, Mc, Nc
xid_start = <all characters in id start whose NFKC normalization is in "~ "id_start
xid_continue = <all characters in i1d continue whose NFKC normalization is in ~ ~id_cor

The Unicode category codes mentioned above stand for:
e Lu - uppercase letters
e LI - lowercase letters
* Lt - titlecase letters
e Lm - modifier letters
* Lo - other letters
¢ NI - letter numbers
* Mn - nonspacing marks
* Mc - spacing combining marks
¢ Nd - decimal numbers

* Pc - connector punctuations

8 Chapter 2. Lexical analysis

https://www.python.org/dev/peps/pep-3131
https://www.python.org/dev/peps/pep-3131

The Python Language Reference, Release 3.5.5

* Other_ID_Start - explicit list of characters in PropList.txt to support backwards compatibility
* Other_ID_Continue - likewise
All identifiers are converted into the normal form NFKC while parsing; comparison of identifiers is based on NFKC.

A non-normative HTML file listing all valid identifier characters for Unicode 4.1 can be found at https://www.dcl.hpi.
uni-potsdam.de/home/loewis/table-3131.html.

2.3.1 Keywords

The following identifiers are used as reserved words, or keywords of the language, and cannot be used as ordinary
identifiers. They must be spelled exactly as written here:

False class finally is return
None continue for lambda try
True def from nonlocal while
and del global not with
as elif if or yield
assert else import pass

break except in raise

2.3.2 Reserved classes of identifiers

Certain classes of identifiers (besides keywords) have special meanings. These classes are identified by the patterns of
leading and trailing underscore characters:

_x Notimported by from module import = . The special identifier _ is used in the interactive interpreter to
store the result of the last evaluation; it is stored in the builtins module. When not in interactive mode,
has no special meaning and is not defined. See section The import statement.

Note: The name _ is often used in conjunction with internationalization; refer to the documentation for the
gettext module for more information on this convention.

*___ System-defined names. These names are defined by the interpreter and its implementation (including the
standard library). Current system names are discussed in the Special method names section and elsewhere.
More will likely be defined in future versions of Python. Any use of __+___ names, in any context, that does
not follow explicitly documented use, is subject to breakage without warning.

* Class-private names. Names in this category, when used within the context of a class definition, are re-written
to use a mangled form to help avoid name clashes between “private” attributes of base and derived classes. See
section Identifiers (Names).

2.4 Literals
Literals are notations for constant values of some built-in types.

2.4.1 String and Bytes literals

String literals are described by the following lexical definitions:

2.4. Literals 9

http://www.unicode.org/Public/8.0.0/ucd/PropList.txt
https://www.dcl.hpi.uni-potsdam.de/home/loewis/table-3131.html
https://www.dcl.hpi.uni-potsdam.de/home/loewis/table-3131.html

The Python Language Reference, Release 3.5.5

stringliteral = [stringprefix] (shortstring | longstring)

stringprefix = ‘'t Cu't | CCR'Y O UMY

shortstring = """ shortstringitem x " ''' | “''' shortstringitem % "~ ''
longstring = T'YvYY Jongstringitem x ' ''U | T vvrtUNY Jongstringitem x
shortstringitem :i= shortstringchar | stringescapeseq

longstringitem = longstringchar | stringescapeseq

shortstringchar = <any source character except "~ “\'' or newline or the quote>
longstringchar = <any source character except ~“\''>

stringescapeseq = "*\'' <any source character>

bytesliteral = bytesprefix (shortbytes | longbytes)

bytesprefix = Cbh''] UB'' | CCbr'' | CCBr'' | CCDLR' | CCUBR'' | Trb'' |
shortbytes = """ shortbytesitem x 7 ''' | " ''' shortbytesitem x ~''!'
longbytes = TTvY'YY Jongbytesitem x ' 'UU | T vrrt vy Jongbytesitem x !
shortbytesitem = shortbyteschar | bytesescapeseq

longbytesitem = longbyteschar | bytesescapeseq

shortbyteschar = <any ASCII character except "“\'' or newline or the quote>
longbyteschar = <any ASCII character except "~ "\''>

bytesescapeseq = "*\''" <any ASCII character>

One syntactic restriction not indicated by these productions is that whitespace is not allowed between the
stringprefix or bytesprefix and the rest of the literal. The source character set is defined by the encoding
declaration; it is UTF-8 if no encoding declaration is given in the source file; see section Encoding declarations.

In plain English: Both types of literals can be enclosed in matching single quotes (') or double quotes ("). They can
also be enclosed in matching groups of three single or double quotes (these are generally referred to as triple-quoted
strings). The backslash (\) character is used to escape characters that otherwise have a special meaning, such as
newline, backslash itself, or the quote character.

Bytes literals are always prefixed with 'b' or 'B' ; they produce an instance of the bytes type instead of the st r
type. They may only contain ASCII characters; bytes with a numeric value of 128 or greater must be expressed with
escapes.

As of Python 3.3 it is possible again to prefix string literals with a u prefix to simplify maintenance of dual 2.x and
3.x codebases.

Both string and bytes literals may optionally be prefixed with a letter 'r' or 'R’ ; such strings are called raw strings
and treat backslashes as literal characters. As a result, in string literals, '\U"' and '\u' escapes in raw strings are not
treated specially. Given that Python 2.x’s raw unicode literals behave differently than Python 3.x’s the 'ur' syntax
is not supported.

New in version 3.3: The 'rb' prefix of raw bytes literals has been added as a synonym of 'br"' .

New in version 3.3: Support for the unicode legacy literal (u'value') was reintroduced to simplify the maintenance
of dual Python 2.x and 3.x codebases. See PEP 414 for more information.

In triple-quoted literals, unescaped newlines and quotes are allowed (and are retained), except that three unescaped
quotes in a row terminate the literal. (A “quote” is the character used to open the literal, i.e. either ' or " .)

Unless an 'r' or 'R' prefix is present, escape sequences in string and bytes literals are interpreted according to
rules similar to those used by Standard C. The recognized escape sequences are:

10 Chapter 2. Lexical analysis

CC PR

https://www.python.org/dev/peps/pep-0414

The Python Language Reference, Release 3.5.5

Escape Sequence | Meaning Notes
\newline Backslash and newline ignored
AR\ Backslash (\)
\' Single quote (')
\" Double quote (")
\a ASCII Bell (BEL)
\b ASCII Backspace (BS)
\f ASCII Formfeed (FF)
\n ASCII Linefeed (LF)
\r ASCII Carriage Return (CR)
\t ASCII Horizontal Tab (TAB)
\v ASCII Vertical Tab (VT)
\ooo Character with octal value ooo | (1,3)
\xhh Character with hex value hh 2,3)
Escape sequences only recognized in string literals are:
Escape Sequence | Meaning Notes
\N{name} Character named name in the Unicode database | (4)
\uUxXxxx Character with 16-bit hex value xxxx (®)]
\UXXXXXXKXX Character with 32-bit hex value xxxxxxxx (6)
Notes:

1. Asin Standard C, up to three octal digits are accepted.
2. Unlike in Standard C, exactly two hex digits are required.

3. In a bytes literal, hexadecimal and octal escapes denote the byte with the given value. In a string literal, these
escapes denote a Unicode character with the given value.

4. Changed in version 3.3: Support for name aliases ' has been added.
5. Exactly four hex digits are required.
6. Any Unicode character can be encoded this way. Exactly eight hex digits are required.

Unlike Standard C, all unrecognized escape sequences are left in the string unchanged, i.e., the backslash is left in the
result. (This behavior is useful when debugging: if an escape sequence is mistyped, the resulting output is more easily
recognized as broken.) It is also important to note that the escape sequences only recognized in string literals fall into
the category of unrecognized escapes for bytes literals.

Even in a raw literal, quotes can be escaped with a backslash, but the backslash remains in the result; for example,
r"\"" is a valid string literal consisting of two characters: a backslash and a double quote; r"\" is not a valid
string literal (even a raw string cannot end in an odd number of backslashes). Specifically, a raw literal cannot end in
a single backslash (since the backslash would escape the following quote character). Note also that a single backslash
followed by a newline is interpreted as those two characters as part of the literal, not as a line continuation.

2.4.2 String literal concatenation

Multiple adjacent string or bytes literals (delimited by whitespace), possibly using different quoting conventions,
are allowed, and their meaning is the same as their concatenation. Thus, "hello" 'world' is equivalent to
"helloworld" . This feature can be used to reduce the number of backslashes needed, to split long strings conve-
niently across long lines, or even to add comments to parts of strings, for example:

! http://www.unicode.org/Public/8.0.0/ucd/NameAliases.txt

2.4. Literals 11

http://www.unicode.org/Public/8.0.0/ucd/NameAliases.txt

The Python Language Reference, Release 3.5.5

letter or underscore
letter,

re.compile (" [A-Za-z_]"
"[A-Za-z0-9_1«"
)

Note that this feature is defined at the syntactical level, but implemented at compile time. The

digit or underscore

‘+’ operator must be

used to concatenate string expressions at run time. Also note that literal concatenation can use different quoting styles

for each component (even mixing raw strings and triple quoted strings).

2.4.3 Numeric literals

There are three types of numeric literals: integers, floating point numbers, and imaginary numbers. There are no

complex literals (complex numbers can be formed by adding a real number and an imaginary nu

mber).

Note that numeric literals do not include a sign; a phrase like —1 is actually an expression composed of the unary

operator ‘- ‘ and the literal 1 .

2.4.4 Integer literals

Integer literals are described by the following lexical definitions:

integer decimalinteger | octinteger | hexinteger
decimalinteger = nonzerodigit digit = | ~T0''+
nonzerodigit = AN

digit = orrLLutrony

octinteger = T0'Y (T Co'' "O'') octdigit +
hexinteger = O (x| "X''") hexdigit +
bininteger = 0'" (CCb'"' | "°B'') bindigit +

octdigit = orrLLutrne

hexdigit = digit | ~ta''.. Ve AT L VTR
bindigit = R

| bininteger

There is no limit for the length of integer literals apart from what can be stored in available memory.

Note that leading zeros in a non-zero decimal number are not allowed. This is for disambiguation with C-style octal

literals, which Python used before version 3.0.

Some examples of integer literals:

7 2147483647 00177 0b100110111
3 79228162514264337593543950336 00377 Oxdeadbeef
2.4.5 Floating point literals
Floating point literals are described by the following lexical definitions:
floatnumber = pointfloat | exponentfloat
pointfloat = [intpart 1 fraction | intpart ''.'!'
exponentfloat = (intpart | pointfloat) exponent
intpart = digit +
fraction = ‘v digit +
exponent = (\‘ell ‘ “E'l) [ll+'l | _\\] dlglt +
12 Chapter 2. Lexical analysis

The Python Language Reference, Release 3.5.5

Note that the integer and exponent parts are always interpreted using radix 10. For example, 077010 is legal, and
denotes the same number as 77e10 . The allowed range of floating point literals is implementation-dependent. Some
examples of floating point literals:

3.14 10. .001 1lel00 3.14e-10 0e0

Note that numeric literals do not include a sign; a phrase like —1 is actually an expression composed of the unary
operator — and the literal 1 .

2.4.6 Imaginary literals

Imaginary literals are described by the following lexical definitions:

imagnumber = (floatnumber | intpart) (" "3'' | ~°J'")

An imaginary literal yields a complex number with a real part of 0.0. Complex numbers are represented as a pair of
floating point numbers and have the same restrictions on their range. To create a complex number with a nonzero real
part, add a floating point number to it, e.g., (3+47) . Some examples of imaginary literals:

3.145 10.9 105 .001§ 1el00j 3.14e-103

2.5 Operators

The following tokens are operators:

+ - * * * / // % @
<< >> & [A ~

< > <= >= == =

2.6 Delimiters

The following tokens serve as delimiters in the grammar:

() [] { }

, : . ; @ = ->

+= —= *= /= //= %= @=

&= | = = >>= <<= * %=

The period can also occur in floating-point and imaginary literals. A sequence of three periods has a special meaning
as an ellipsis literal. The second half of the list, the augmented assignment operators, serve lexically as delimiters, but
also perform an operation.

The following printing ASCII characters have special meaning as part of other tokens or are otherwise significant to
the lexical analyzer:

|l n # \

The following printing ASCII characters are not used in Python. Their occurrence outside string literals and comments
is an unconditional error:

$?

2.5. Operators 13

The Python Language Reference, Release 3.5.5

14 Chapter 2. Lexical analysis

CHAPTER
THREE

DATA MODEL

3.1 Objects, values and types

Objects are Python’s abstraction for data. All data in a Python program is represented by objects or by relations
between objects. (In a sense, and in conformance to Von Neumann’s model of a “stored program computer,” code is
also represented by objects.)

Every object has an identity, a type and a value. An object’s identity never changes once it has been created; you
may think of it as the object’s address in memory. The ‘is ‘ operator compares the identity of two objects; the 1d ()
function returns an integer representing its identity.

CPython implementation detail: For CPython, id (x) is the memory address where x 1is stored.

An object’s type determines the operations that the object supports (e.g., “does it have a length?”’) and also defines
the possible values for objects of that type. The type () function returns an object’s type (which is an object itself).
Like its identity, an object’s fype is also unchangeable. '

The value of some objects can change. Objects whose value can change are said to be mutable; objects whose value is
unchangeable once they are created are called immutable. (The value of an immutable container object that contains a
reference to a mutable object can change when the latter’s value is changed; however the container is still considered
immutable, because the collection of objects it contains cannot be changed. So, immutability is not strictly the same
as having an unchangeable value, it is more subtle.) An object’s mutability is determined by its type; for instance,
numbers, strings and tuples are immutable, while dictionaries and lists are mutable.

Objects are never explicitly destroyed; however, when they become unreachable they may be garbage-collected. An
implementation is allowed to postpone garbage collection or omit it altogether — it is a matter of implementation
quality how garbage collection is implemented, as long as no objects are collected that are still reachable.

CPython implementation detail: CPython currently uses a reference-counting scheme with (optional) delayed de-
tection of cyclically linked garbage, which collects most objects as soon as they become unreachable, but is not
guaranteed to collect garbage containing circular references. See the documentation of the gc module for informa-
tion on controlling the collection of cyclic garbage. Other implementations act differently and CPython may change.
Do not depend on immediate finalization of objects when they become unreachable (so you should always close files
explicitly).

Note that the use of the implementation’s tracing or debugging facilities may keep objects alive that would normally
be collectable. Also note that catching an exception witha ‘try ...except ‘ statement may keep objects alive.

Some objects contain references to “external” resources such as open files or windows. It is understood that these
resources are freed when the object is garbage-collected, but since garbage collection is not guaranteed to happen,
such objects also provide an explicit way to release the external resource, usually a close () method. Programs are
strongly recommended to explicitly close such objects. The ‘try ...finally ‘statement and the ‘with ‘ statement
provide convenient ways to do this.

U1t is possible in some cases to change an object’s type, under certain controlled conditions. It generally isn’t a good idea though, since it can
lead to some very strange behaviour if it is handled incorrectly.

15

The Python Language Reference, Release 3.5.5

Some objects contain references to other objects; these are called containers. Examples of containers are tuples, lists
and dictionaries. The references are part of a container’s value. In most cases, when we talk about the value of a
container, we imply the values, not the identities of the contained objects; however, when we talk about the mutability
of a container, only the identities of the immediately contained objects are implied. So, if an immutable container (like
a tuple) contains a reference to a mutable object, its value changes if that mutable object is changed.

Types affect almost all aspects of object behavior. Even the importance of object identity is affected in some sense:
for immutable types, operations that compute new values may actually return a reference to any existing object with
the same type and value, while for mutable objects this is not allowed. E.g., aftera = 1; b = 1,a and b may
or may not refer to the same object with the value one, depending on the implementation, but afterc = []; d =
[1,c and d are guaranteed to refer to two different, unique, newly created empty lists. (Note thatc = d = []
assigns the same object to both ¢ and d .)

3.2 The standard type hierarchy

Below is a list of the types that are built into Python. Extension modules (written in C, Java, or other languages,
depending on the implementation) can define additional types. Future versions of Python may add types to the type
hierarchy (e.g., rational numbers, efficiently stored arrays of integers, etc.), although such additions will often be
provided via the standard library instead.

Some of the type descriptions below contain a paragraph listing ‘special attributes.” These are attributes that provide
access to the implementation and are not intended for general use. Their definition may change in the future.

None This type has a single value. There is a single object with this value. This object is accessed through the built-in
name None . It is used to signify the absence of a value in many situations, e.g., it is returned from functions
that don’t explicitly return anything. Its truth value is false.

NotImplemented This type has a single value. There is a single object with this value. This object is accessed
through the built-in name Not Implemented . Numeric methods and rich comparison methods should return
this value if they do not implement the operation for the operands provided. (The interpreter will then try the
reflected operation, or some other fallback, depending on the operator.) Its truth value is true.

See implementing-the-arithmetic-operations for more details.

Ellipsis This type has a single value. There is a single object with this value. This object is accessed through the
literal . . . or the built-in name E11ipsis . Its truth value is true.

numbers.Number These are created by numeric literals and returned as results by arithmetic operators and arith-
metic built-in functions. Numeric objects are immutable; once created their value never changes. Python
numbers are of course strongly related to mathematical numbers, but subject to the limitations of numerical
representation in computers.

Python distinguishes between integers, floating point numbers, and complex numbers:

numbers.Integral These represent elements from the mathematical set of integers (positive and nega-
tive).

There are two types of integers:
Integers (int)

These represent numbers in an unlimited range, subject to available (virtual) memory only. For
the purpose of shift and mask operations, a binary representation is assumed, and negative num-
bers are represented in a variant of 2’s complement which gives the illusion of an infinite string
of sign bits extending to the left.

Booleans (bool) These represent the truth values False and True. The two objects representing the
values False and True are the only Boolean objects. The Boolean type is a subtype of the integer
type, and Boolean values behave like the values O and 1, respectively, in almost all contexts, the

16 Chapter 3. Data model

The Python Language Reference, Release 3.5.5

exception being that when converted to a string, the strings "False" or "True" are returned,
respectively.

The rules for integer representation are intended to give the most meaningful interpretation of shift and
mask operations involving negative integers.

numbers.Real (float) These represent machine-level double precision floating point numbers. You are
at the mercy of the underlying machine architecture (and C or Java implementation) for the accepted range
and handling of overflow. Python does not support single-precision floating point numbers; the savings in
processor and memory usage that are usually the reason for using these are dwarfed by the overhead of
using objects in Python, so there is no reason to complicate the language with two kinds of floating point
numbers.

numbers.Complex (complex) These represent complex numbers as a pair of machine-level double pre-
cision floating point numbers. The same caveats apply as for floating point numbers. The real and imagi-
nary parts of a complex number z can be retrieved through the read-only attributes z . real and z . imag

Sequences These represent finite ordered sets indexed by non-negative numbers. The built-in function len () re-
turns the number of items of a sequence. When the length of a sequence is n, the index set contains the numbers
0, 1, ..., n-1. Item i of sequence a is selected by a [i] .

Sequences also support slicing: a[i:j] selects all items with index k such that i <= k < j. When used as an
expression, a slice is a sequence of the same type. This implies that the index set is renumbered so that it starts
at 0.

Some sequences also support “extended slicing” with a third “step” parameter: a [1: J:k] selects all items of
a withindex x where x = 1 + n*k,n>= 0 andi<= x< j.

Sequences are distinguished according to their mutability:

Immutable sequences An object of an immutable sequence type cannot change once it is created. (If the object
contains references to other objects, these other objects may be mutable and may be changed; however,
the collection of objects directly referenced by an immutable object cannot change.)

The following types are immutable sequences:

Strings A string is a sequence of values that represent Unicode code points. All the code points in the
range U+0000 —-U+10FFFF can be represented in a string. Python doesn’t have a char type;
instead, every code point in the string is represented as a string object with length 1 . The built-in
function ord () converts a code point from its string form to an integer in the range 0 —-10FFFF ;
chr () converts an integer in the range 0 —10FFFF to the corresponding length 1 string object.
str.encode () can be used to convert a str to bytes using the given text encoding, and
bytes.decode () can be used to achieve the opposite.

Tuples The items of a tuple are arbitrary Python objects. Tuples of two or more items are formed by
comma-separated lists of expressions. A tuple of one item (a ‘singleton’) can be formed by affixing
a comma to an expression (an expression by itself does not create a tuple, since parentheses must be
usable for grouping of expressions). An empty tuple can be formed by an empty pair of parentheses.

Bytes A bytes object is an immutable array. The items are 8-bit bytes, represented by integers in the
range 0 <= x < 256. Bytes literals (like b 'abc ') and the built-in function bytes () can be used to
construct bytes objects. Also, bytes objects can be decoded to strings via the decode () method.

Mutable sequences Mutable sequences can be changed after they are created. The subscription and slicing
notations can be used as the target of assignment and de 1 (delete) statements.

There are currently two intrinsic mutable sequence types:

Lists The items of a list are arbitrary Python objects. Lists are formed by placing a comma-separated list
of expressions in square brackets. (Note that there are no special cases needed to form lists of length

3.2. The standard type hierarchy 17

The Python Language Reference, Release 3.5.5

Oorl.)

Byte Arrays A bytearray object is a mutable array. They are created by the built-in bytearray ()
constructor. Aside from being mutable (and hence unhashable), byte arrays otherwise provide the
same interface and functionality as immutable bytes objects.

The extension module array provides an additional example of a mutable sequence type, as does the
collections module.

Set types These represent unordered, finite sets of unique, immutable objects. As such, they cannot be indexed by
any subscript. However, they can be iterated over, and the built-in function len () returns the number of
items in a set. Common uses for sets are fast membership testing, removing duplicates from a sequence, and
computing mathematical operations such as intersection, union, difference, and symmetric difference.

For set elements, the same immutability rules apply as for dictionary keys. Note that numeric types obey the
normal rules for numeric comparison: if two numbers compare equal (e.g., 1 and 1.0), only one of them can
be contained in a set.

There are currently two intrinsic set types:

Sets These represent a mutable set. They are created by the built-in set () constructor and can be modified
afterwards by several methods, such as add () .

Frozen sets These represent an immutable set. They are created by the built-in frozenset () constructor.
As a frozenset is immutable and hashable, it can be used again as an element of another set, or as a
dictionary key.

Mappings These represent finite sets of objects indexed by arbitrary index sets. The subscript notation a [k] selects
the item indexed by k from the mapping a ; this can be used in expressions and as the target of assignments or
del statements. The built-in function 1en () returns the number of items in a mapping.

There is currently a single intrinsic mapping type:

Dictionaries These represent finite sets of objects indexed by nearly arbitrary values. The only types of values
not acceptable as keys are values containing lists or dictionaries or other mutable types that are compared
by value rather than by object identity, the reason being that the efficient implementation of dictionaries
requires a key’s hash value to remain constant. Numeric types used for keys obey the normal rules for nu-
meric comparison: if two numbers compare equal (e.g., 1 and 1. 0) then they can be used interchangeably
to index the same dictionary entry.

Dictionaries are mutable; they can be created by the { . . . } notation (see section Dictionary displays).

The extension modules dbm.ndbm and dbm.gnu provide additional examples of mapping types, as
does the collections module.

Callable types These are the types to which the function call operation (see section Calls) can be applied:

User-defined functions A user-defined function object is created by a function definition (see section Function
definitions). It should be called with an argument list containing the same number of items as the function’s
formal parameter list.

Special attributes:

18 Chapter 3. Data model

The Python Language Reference, Release 3.5.5

Attribute Meaning

_ _doc___ The function’s documentation string, or None if unavailable; Writable
not inherited by subclasses

__name___ The function’s name Writable

__qualname_ The function’s qgualified name Writable
New in version 3.3.

__module___ The name of the module the function was defined in, or None | Writable
if unavailable.

__defaults___ A tuple containing default argument values for those Writable

arguments that have defaults, or None if no arguments have a
default value

__code___ The code object representing the compiled function body. Writable
__globals__ A reference to the dictionary that holds the function’s global Read-only
variables — the global namespace of the module in which the
function was defined.

_dict__ The namespace supporting arbitrary function attributes. Writable

__closure___ None or a tuple of cells that contain bindings for the Read-only
function’s free variables.

__annotations___ | A dict containing annotations of parameters. The keys of the Writable

dict are the parameter names, and 'return' for the return
annotation, if provided.
_ _kwdefaults_ A dict containing defaults for keyword-only parameters. Writable

Most of the attributes labelled “Writable” check the type of the assigned value.

Function objects also support getting and setting arbitrary attributes, which can be used, for example, to
attach metadata to functions. Regular attribute dot-notation is used to get and set such attributes. Note that
the current implementation only supports function attributes on user-defined functions. Function attributes
on built-in functions may be supported in the future.

Additional information about a function’s definition can be retrieved from its code object; see the descrip-
tion of internal types below.

Instance methods An instance method object combines a class, a class instance and any callable object (nor-
mally a user-defined function).

Special read-only attributes: ___self__ is the class instance object, ___func___ is the function object;
__doc___ is the method’s documentation (same as ___func___._ doc__);__ _name___ is the method
name (same as ___func___._ name__); _ module___ is the name of the module the method was
defined in, or None if unavailable.

Methods also support accessing (but not setting) the arbitrary function attributes on the underlying function
object.

User-defined method objects may be created when getting an attribute of a class (perhaps via an instance
of that class), if that attribute is a user-defined function object or a class method object.

When an instance method object is created by retrieving a user-defined function object from a class via
one of its instances, its __self__ attribute is the instance, and the method object is said to be bound.
The new method’s ___func___ attribute is the original function object.

When a user-defined method object is created by retrieving another method object from a class or instance,
the behaviour is the same as for a function object, except that the __func___ attribute of the new instance
is not the original method object butits ___func___ attribute.

When an instance method object is created by retrieving a class method object from a class or instance, its
__self___ attribute is the class itself, and its __func___ attribute is the function object underlying the
class method.

3.2. The standard type hierarchy 19

The Python Language Reference, Release 3.5.5

When an instance method object is called, the underlying function (__func___) is called, inserting the
class instance (__self__) in front of the argument list. For instance, when C is a class which contains
a definition for a function f () , and x 1is an instance of C , calling x.f (1) is equivalent to calling
C.f(x,1).

When an instance method object is derived from a class method object, the “class instance” stored in
__self__ will actually be the class itself, so that calling either x. £ (1) or C.f (1) is equivalent to
calling £ (C, 1) where £ is the underlying function.

Note that the transformation from function object to instance method object happens each time the attribute
is retrieved from the instance. In some cases, a fruitful optimization is to assign the attribute to a local
variable and call that local variable. Also notice that this transformation only happens for user-defined
functions; other callable objects (and all non-callable objects) are retrieved without transformation. It is
also important to note that user-defined functions which are attributes of a class instance are not converted
to bound methods; this only happens when the function is an attribute of the class.

Generator functions A function or method which uses the yield statement (see section The yield statement)
is called a generator function. Such a function, when called, always returns an iterator object which can
be used to execute the body of the function: calling the iterator’s iterator.__next__ () method
will cause the function to execute until it provides a value using the yield statement. When the function
executes a return statement or falls off the end, a StopIteration exception israised and the iterator
will have reached the end of the set of values to be returned.

Coroutine functions A function or method which is defined using async def is called a coroutine function.
Such a function, when called, returns a coroutine object. It may contain await expressions, as well as
async with and async for statements. See also the Coroutine Objects section.

Built-in functions A built-in function object is a wrapper around a C function. Examples of built-in functions
are len () and math.sin() (math is a standard built-in module). The number and type of the
arguments are determined by the C function. Special read-only attributes: ___doc___ is the function’s
documentation string, or None if unavailable; __name___ is the function’s name; __self___ issetto
None (but see the next item); _ _module__ is the name of the module the function was defined in or

None if unavailable.

Built-in methods This is really a different disguise of a built-in function, this time containing an object passed
to the C function as an implicit extra argument. An example of a built-in method is alist .append () ,
assuming alist is a list object. In this case, the special read-only attribute __self__ is set to the object
denoted by alist.

Classes Classes are callable. These objects normally act as factories for new instances of themselves, but
variations are possible for class types that override ___new__ () . The arguments of the call are passed to
__new__ () and,in the typical case,to___init__ () to initialize the new instance.

Class Instances Instances of arbitrary classes can be made callable by defininga ___call__ () method in
their class.

Modules Modules are a basic organizational unit of Python code, and are created by the import sys-

tem as invoked either by the import statement (see import), or by calling functions such as
importlib.import_module () and built-in __import__ () . A module object has a namespace im-
plemented by a dictionary object (this is the dictionary referenced by the __globals__ attribute of functions
defined in the module). Attribute references are translated to lookups in this dictionary, e.g., m. x is equivalent
tom.__dict__ ["x"] . A module object does not contain the code object used to initialize the module (since
it isn’t needed once the initialization is done).

Attribute assignment updates the module’s namespace dictionary, e.g., m.x = 1 is equivalent to
m.__dict__["x"] = 1.

Special read-only attribute: ___dict__ is the module’s namespace as a dictionary object.

20

Chapter 3. Data model

The Python Language Reference, Release 3.5.5

CPython implementation detail: Because of the way CPython clears module dictionaries, the module dictio-
nary will be cleared when the module falls out of scope even if the dictionary still has live references. To avoid
this, copy the dictionary or keep the module around while using its dictionary directly.

Predefined (writable) attributes: __name__ is the module’s name; _ doc__ is the module’s documentation
string, or None if unavailable; __ file is the pathname of the file from which the module was loaded, if
it was loaded from a file. The __ file attribute may be missing for certain types of modules, such as C
modules that are statically linked into the interpreter; for extension modules loaded dynamically from a shared
library, it is the pathname of the shared library file.

Custom classes Custom class types are typically created by class definitions (see section Class definitions). A class
has a namespace implemented by a dictionary object. Class attribute references are translated to lookups in this
dictionary, e.g., C.x istranslatedto C.__dict__ ["x"] (although there are a number of hooks which allow
for other means of locating attributes). When the attribute name is not found there, the attribute search continues
in the base classes. This search of the base classes uses the C3 method resolution order which behaves correctly
even in the presence of ‘diamond’ inheritance structures where there are multiple inheritance paths leading back
to a common ancestor. Additional details on the C3 MRO used by Python can be found in the documentation
accompanying the 2.3 release at https://www.python.org/download/releases/2.3/mro/.

When a class attribute reference (for class C , say) would yield a class method object, it is transformed into
an instance method object whose ___self _ attributes is C . When it would yield a static method object, it
is transformed into the object wrapped by the static method object. See section Implementing Descriptors for
another way in which attributes retrieved from a class may differ from those actually contained inits __dict___

Class attribute assignments update the class’s dictionary, never the dictionary of a base class.
A class object can be called (see above) to yield a class instance (see below).

Special attributes: __name___ is the class name; __module__ is the module name in which the class was
defined; __dict__ is the dictionary containing the class’s namespace; __bases___ is a tuple containing
the base classes, in the order of their occurrence in the base class list; ___doc___ is the class’s documentation
string, or None if undefined.

Class instances A class instance is created by calling a class object (see above). A class instance has a namespace
implemented as a dictionary which is the first place in which attribute references are searched. When an attribute
is not found there, and the instance’s class has an attribute by that name, the search continues with the class at-
tributes. If a class attribute is found that is a user-defined function object, it is transformed into an instance
method object whose ___self attribute is the instance. Static method and class method objects are also
transformed; see above under “Classes”. See section Implementing Descriptors for another way in which at-
tributes of a class retrieved via its instances may differ from the objects actually stored in the class’s __dict___
. If no class attribute is found, and the object’s classhasa___getattr__ () method, that is called to satisfy
the lookup.

Attribute assignments and deletions update the instance’s dictionary, never a class’s dictionary. If the class has
a___setattr__ () or__delattr.__ () method, this is called instead of updating the instance dictionary
directly.

Class instances can pretend to be numbers, sequences, or mappings if they have methods with certain special
names. See section Special method names.

Special attributes: ___dict__ is the attribute dictionary; __class___ is the instance’s class.

I/0 objects (also known as file objects) A file object represents an open file. Various shortcuts are available to create
file objects: the open () built-in function, and also os.popen () , os.fdopen () , and the makefile ()
method of socket objects (and perhaps by other functions or methods provided by extension modules).

The objects sys.stdin, sys.stdout and sys.stderr are initialized to file objects corresponding to
the interpreter’s standard input, output and error streams; they are all open in text mode and therefore follow the
interface defined by the 10.Text IOBase abstract class.

3.2. The standard type hierarchy 21

https://www.python.org/download/releases/2.3/mro/

The Python Language Reference, Release 3.5.5

Internal types A few types used internally by the interpreter are exposed to the user. Their definitions may change

with future versions of the interpreter, but they are mentioned here for completeness.

Code objects Code objects represent byte-compiled executable Python code, or bytecode. The difference be-

tween a code object and a function object is that the function object contains an explicit reference to the
function’s globals (the module in which it was defined), while a code object contains no context; also the
default argument values are stored in the function object, not in the code object (because they represent val-
ues calculated at run-time). Unlike function objects, code objects are immutable and contain no references
(directly or indirectly) to mutable objects.

Special read-only attributes: co_name gives the function name; co_argcount is the number of
positional arguments (including arguments with default values); co_nlocals is the number of local
variables used by the function (including arguments); co_varnames is a tuple containing the names of
the local variables (starting with the argument names); co_cellvars is a tuple containing the names of
local variables that are referenced by nested functions; co_freevars is a tuple containing the names of
free variables; co_code is a string representing the sequence of bytecode instructions; co_consts isa
tuple containing the literals used by the bytecode; co_names is a tuple containing the names used by the
bytecode; co_filename is the filename from which the code was compiled; co_firstlineno is
the first line number of the function; co__1lnotab is a string encoding the mapping from bytecode offsets
to line numbers (for details see the source code of the interpreter); co_stacksize is the required stack
size (including local variables); co_flags is an integer encoding a number of flags for the interpreter.

The following flag bits are defined for co_flags : bit 0x04 is set if the function uses the xarguments
syntax to accept an arbitrary number of positional arguments; bit 0x08 is set if the function uses the
x+keywords syntax to accept arbitrary keyword arguments; bit 0x20 is set if the function is a generator.

Future feature declarations (from __ future_ import division) also use bitsin co_flags
to indicate whether a code object was compiled with a particular feature enabled: bit 0x2000 is set if
the function was compiled with future division enabled; bits 0x10 and 0x1000 were used in earlier
versions of Python.

Other bits in co_flags are reserved for internal use.

If a code object represents a function, the first item in co_consts is the documentation string of the
function, or None if undefined.

Frame objects Frame objects represent execution frames. They may occur in traceback objects (see below).

Special read-only attributes: f_back is to the previous stack frame (towards the caller), or None if
this is the bottom stack frame; £_code is the code object being executed in this frame; £_locals is
the dictionary used to look up local variables; £_globals is used for global variables; £_builtins
is used for built-in (intrinsic) names; £_lasti gives the precise instruction (this is an index into the
bytecode string of the code object).

Special writable attributes: £_trace , if not None , is a function called at the start of each source code
line (this is used by the debugger); £_lineno is the current line number of the frame — writing to this
from within a trace function jumps to the given line (only for the bottom-most frame). A debugger can
implement a Jump command (aka Set Next Statement) by writing to f_lineno.

Frame objects support one method:

frame. clear ()
This method clears all references to local variables held by the frame. Also, if the frame belonged to
a generator, the generator is finalized. This helps break reference cycles involving frame objects (for
example when catching an exception and storing its traceback for later use).

RuntimeError israised if the frame is currently executing.

New in version 3.4.

22

Chapter 3. Data model

The Python Language Reference, Release 3.5.5

Traceback objects Traceback objects represent a stack trace of an exception. A traceback object is created
when an exception occurs. When the search for an exception handler unwinds the execution stack, at
each unwound level a traceback object is inserted in front of the current traceback. When an exception
handler is entered, the stack trace is made available to the program. (See section The try statement.) It is
accessible as the third item of the tuple returned by sys.exc_info () . When the program contains no
suitable handler, the stack trace is written (nicely formatted) to the standard error stream; if the interpreter
is interactive, it is also made available to the user as sys.last_traceback.

Special read-only attributes: tb_next is the next level in the stack trace (towards the frame where the
exception occurred), or None if there is no next level; tb_frame points to the execution frame of the
current level; tb_lineno gives the line number where the exception occurred; tb_lasti indicates the
precise instruction. The line number and last instruction in the traceback may differ from the line number
of its frame object if the exception occurred in a t ry statement with no matching except clause or with a
finally clause.

Slice objects Slice objects are used to represent slices for___getitem _ () methods. They are also created
by the built-in s1lice () function.

Special read-only attributes: start is the lower bound; stop is the upper bound; step is the step
value; each is None if omitted. These attributes can have any type.

Slice objects support one method:

slice. indices (self, length)
This method takes a single integer argument length and computes information about the slice that the
slice object would describe if applied to a sequence of length items. It returns a tuple of three integers;
respectively these are the start and stop indices and the step or stride length of the slice. Missing or
out-of-bounds indices are handled in a manner consistent with regular slices.

Static method objects Static method objects provide a way of defeating the transformation of function objects
to method objects described above. A static method object is a wrapper around any other object, usually a
user-defined method object. When a static method object is retrieved from a class or a class instance, the
object actually returned is the wrapped object, which is not subject to any further transformation. Static
method objects are not themselves callable, although the objects they wrap usually are. Static method
objects are created by the built-in staticmethod () constructor.

Class method objects A class method object, like a static method object, is a wrapper around another object
that alters the way in which that object is retrieved from classes and class instances. The behaviour of
class method objects upon such retrieval is described above, under “User-defined methods”. Class method
objects are created by the built-in classmethod () constructor.

3.3 Special method names

A class can implement certain operations that are invoked by special syntax (such as arithmetic operations or sub-
scripting and slicing) by defining methods with special names. This is Python’s approach to operator overload-
ing, allowing classes to define their own behavior with respect to language operators. For instance, if a class de-
fines a method named ___getitem _ () , and x 1is an instance of this class, then x [1] is roughly equivalent to
type (x) .__getitem__ (x,1) . Except where mentioned, attempts to execute an operation raise an exception
when no appropriate method is defined (typically AttributeError or TypeError).

When implementing a class that emulates any built-in type, it is important that the emulation only be implemented
to the degree that it makes sense for the object being modelled. For example, some sequences may work well with
retrieval of individual elements, but extracting a slice may not make sense. (One example of this is the NodeList
interface in the W3C’s Document Object Model.)

3.3. Special method names 23

The Python Language Reference, Release 3.5.5

3.3.1 Basic customization

object. _ new__ (cls[,])

Called to create a new instance of class cIs. ___new__ () 1is a static method (special-cased so you need not
declare it as such) that takes the class of which an instance was requested as its first argument. The remaining
arguments are those passed to the object constructor expression (the call to the class). The return value of
__new__ () should be the new object instance (usually an instance of cls).

Typical implementations create a new instance of the class by invoking the superclass’s ___new__ () method
using super () .__new__(cls[,...]) with appropriate arguments and then modifying the newly-
created instance as necessary before returning it.

If _ _new () returns an instance of cls, then the new instance’s __init__ () method will be invoked like
__init_ (self[,...]) , where self is the new instance and the remaining arguments are the same as
were passedto___new__ () .

If _ _new () does not return an instance of cls, then the new instance’s ___init__ () method will not be
invoked.

__new__ () isintended mainly to allow subclasses of immutable types (like int, str, or tuple) to customize
instance creation. It is also commonly overridden in custom metaclasses in order to customize class creation.

object. __init__ (self[,..])

Called after the instance has been created (by ___new__ ()), but before it is returned to the caller. The
arguments are those passed to the class constructor expression. If a base classhasan___init__ () method,
the derived class’s ___init__ () method, if any, must explicitly call it to ensure proper initialization of the
base class part of the instance; for example: super () .__init__ ([args...]) .

Because __new_ () and __init__ () work together in constructing objects (__new__ () to create it,
and ___init__ () to customize it), no non-None value may be returned by ___init__ () ; doing so will
cause a TypeError to be raised at runtime.

object. __del__ (self)

Called when the instance is about to be destroyed. This is also called a destructor. If a base class has a
__del__ () method, the derived class’s__del___ () method, if any, must explicitly call it to ensure proper
deletion of the base class part of the instance. Note that it is possible (though not recommended!) for the
__del__ () method to postpone destruction of the instance by creating a new reference to it. It may then be
called at a later time when this new reference is deleted. It is not guaranteed that ___del () methods are
called for objects that still exist when the interpreter exits.

Note: del x doesn’t directly call x.__del__ () — the former decrements the reference count for x by
one, and the latter is only called when x ‘s reference count reaches zero. Some common situations that may
prevent the reference count of an object from going to zero include: circular references between objects (e.g.,
a doubly-linked list or a tree data structure with parent and child pointers); a reference to the object on the
stack frame of a function that caught an exception (the traceback stored in sys.exc_info () [2] keeps
the stack frame alive); or a reference to the object on the stack frame that raised an unhandled exception in
interactive mode (the traceback stored in sys.last_traceback keeps the stack frame alive). The first
situation can only be remedied by explicitly breaking the cycles; the second can be resolved by freeing the
reference to the traceback object when it is no longer useful, and the third can be resolved by storing None
in sys.last_traceback . Circular references which are garbage are detected and cleaned up when the
cyclic garbage collector is enabled (it’s on by default). Refer to the documentation for the gc module for more
information about this topic.

24

Chapter 3. Data model

The Python Language Reference, Release 3.5.5

Warning: Due to the precarious circumstances under which___ del () methods are invoked, exceptions
that occur during their execution are ignored, and a warning is printed to sys.stderr instead. Also,
when ___del_ () isinvoked in response to a module being deleted (e.g., when execution of the program
is done), other globals referenced by the __del__ () method may already have been deleted or in the
process of being torn down (e.g. the import machinery shutting down). For this reason, ___del__ ()
methods should do the absolute minimum needed to maintain external invariants. Starting with version 1.5,
Python guarantees that globals whose name begins with a single underscore are deleted from their module
before other globals are deleted; if no other references to such globals exist, this may help in assuring that
imported modules are still available at the time whenthe __del () method is called.

object. __repr__ (self)
Called by the repr () built-in function to compute the “official” string representation of an object. If at
all possible, this should look like a valid Python expression that could be used to recreate an object with
the same value (given an appropriate environment). If this is not possible, a string of the form <. . . some
useful description...> should be returned. The return value must be a string object. If a class defines
__repr__ () butnot__str__ () ,then___repr__ () is also used when an “informal” string representa-
tion of instances of that class is required.

This is typically used for debugging, so it is important that the representation is information-rich and unambigu-
ous.

object. __str___ (self)
Called by str (object) and the built-in functions format () and print () to compute the “informal”
or nicely printable string representation of an object. The return value must be a string object.

This method differs from object.___repr () in that there is no expectation that __str () return a
valid Python expres