The Python/C API
Release 3.4.9rc1

Guido van Rossum
and the Python development team

July 19, 2018

CONTENTS

Introduction

1.1 Include Files e
1.2 Objects, Types and Reference Counts o it
1.3 EXCeptioNS . . . o v v v i e e e e e e e e e
1.4 Embedding Python e e e e
1.5 Debugging Builds e e e e

Stable Application Binary Interface
The Very High Level Layer

Reference Counting

Exception Handling

5.1 Exception ObJectS o v v i e e e e e e e e e e e e e e e e e
5.2 Unicode Exception Objects v i i v i i e e e e e e e e e
5.3 Recursion Control L e
5.4 Standard Exceptions e e e e e e e e
Utilities

6.1 Operating System Utilities e
6.2 SystemFunctions. L e
6.3 ProcessControl e e e
6.4 Importing Modules e e e e e e e
6.5 Datamarshalling support L e e e e e e e e e
6.6 Parsing arguments and building values o oL oL
6.7 String conversion and formatting oL oL o e e e e
6.8 Reflection. L e
6.9 Codec registry and support functionso e e e e e e e e

Abstract Objects Layer

7.1 Object Protocol e e
7.2 Number Protocol e e e e
7.3 Sequence Protocol L e e e e e e
7.4 Mapping Protocol e e e e
7.5 Iterator Protocol L e e e e e e
7.6 Buffer Protocol e e e e e e
7.7 Old Buffer Protocol e e e e

Concrete Objects Layer
8.1 Fundamental Objects o L e e e e

11

13

19

21
26
27
28
28

10

11

12

8.2
8.3
8.4
8.5
8.6

Numeric ObJects o o o e e e e e e e
Sequence ObJECtS v v v i e
Container ObJECtS o o i e e e e e e e e e e
Function Objects
Other Objects o o e e

Initialization, Finalization, and Threads

9.1
9.2
9.3
9.4
9.5
9.6
9.7

Initializing and finalizing the interpretero
Process-wide parameterso e e e e
Thread State and the Global Interpreter Lock
Sub-interpreter SUPPOTt v v v e
Asynchronous Notifications L e e e e e
Profilingand Tracing L e
Advanced Debugger Support oL e e

Memory Management

10.1
10.2
10.3
10.4
10.5
10.6

OVETVIEW . . . o o o e e e e e e e e e e e
Raw Memory Interface e
Memory Interface L L L e e
Customize Memory AIlOCators o v v i e e e e e e e e e e e e e e
Customize PyObject Arena Allocator o o v i i i it e e e e e
Examples L e e e e

Object Implementation Support

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8

Allocating Objectsonthe Heap o . 0 e
Common Object Structuresottt e e e e e e
Type Objects o e e
Number Object Structures ottt e e e e e e e e e
Mapping Object SIHUCIUIES+ v v v o v e
Sequence Object Structures v v v v i it e e e e e e e e e e e e e e
Buffer Object Structures e e
Supporting Cyclic Garbage Collection o it

API and ABI Versioning

Glossary

About these documents

B.1

Contributors to the Python Documentation

History and License

C.1
C2
C3

History of the software e
Terms and conditions for accessing or otherwise using Python
Licenses and Acknowledgements for Incorporated Software

D Copyright

Index

117
117
118
121
126
127
127
129

131
131
132
132
133
134
135

137
137
138
141
155
156
156
157
158

161
163

173
173

175
175
176
178

191

193

The Python/C API, Release 3.4.9rc1

This manual documents the API used by C and C++ programmers who want to write extension modules or embed
Python. It is a companion to extending-index, which describes the general principles of extension writing but does not
document the API functions in detail.

CONTENTS 1

The Python/C API, Release 3.4.9rc1

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

The Application Programmer’s Interface to Python gives C and C++ programmers access to the Python interpreter at
a variety of levels. The API is equally usable from C++, but for brevity it is generally referred to as the Python/C
API. There are two fundamentally different reasons for using the Python/C API. The first reason is to write extension
modules for specific purposes; these are C modules that extend the Python interpreter. This is probably the most
common use. The second reason is to use Python as a component in a larger application; this technique is generally
referred to as embedding Python in an application.

Writing an extension module is a relatively well-understood process, where a “cookbook” approach works well. There
are several tools that automate the process to some extent. While people have embedded Python in other applications
since its early existence, the process of embedding Python is less straightforward than writing an extension.

Many API functions are useful independent of whether you’re embedding or extending Python; moreover, most ap-
plications that embed Python will need to provide a custom extension as well, so it’s probably a good idea to become
familiar with writing an extension before attempting to embed Python in a real application.

1.1 Include Files

All function, type and macro definitions needed to use the Python/C API are included in your code by the following
line:

’ #include "Python.h"

This implies inclusion of the following standard headers: <stdio.h>, <string.h>, <errno.h>, <limits.
h>, <assert.h> and <stdlib.h> (if available).

Note: Since Python may define some pre-processor definitions which affect the standard headers on some systems,
you must include Python . h before any standard headers are included.

All user visible names defined by Python.h (except those defined by the included standard headers) have one of the
prefixes Py or _Py. Names beginning with _Py are for internal use by the Python implementation and should not be
used by extension writers. Structure member names do not have a reserved prefix.

Important: user code should never define names that begin with Py or _Py. This confuses the reader, and jeopardizes
the portability of the user code to future Python versions, which may define additional names beginning with one of
these prefixes.

The header files are typically installed with Python. On Unix, these are located in the directories prefix/include/
pythonversion/ and exec prefix/include/pythonversion/, where prefix and exec_prefix
are defined by the corresponding parameters to Python’s configure script and version is sys.version[:3].
On Windows, the headers are installed in prefix/include, where prefix is the installation directory specified
to the installer.

The Python/C API, Release 3.4.9rc1

To include the headers, place both directories (if different) on your compiler’s search path for includes. Do not place
the parent directories on the search path and then use #include <pythonX.Y/Python.h>; this will break on
multi-platform builds since the platform independent headers under prefix include the platform specific headers
from exec_prefix.

C++ users should note that though the API is defined entirely using C, the header files do properly declare the entry
points to be extern "C", so there is no need to do anything special to use the API from C++.

1.2 Objects, Types and Reference Counts

Most Python/C API functions have one or more arguments as well as a return value of type PyOb ject . This type is
a pointer to an opaque data type representing an arbitrary Python object. Since all Python object types are treated the
same way by the Python language in most situations (e.g., assignments, scope rules, and argument passing), it is only
fitting that they should be represented by a single C type. Almost all Python objects live on the heap: you never declare
an automatic or static variable of type PyOb ject, only pointer variables of type PyOb ject # can be declared. The
sole exception are the type objects; since these must never be deallocated, they are typically static Py TypeOb ject
objects.

All Python objects (even Python integers) have a type and a reference count. An object’s type determines what kind of
object it is (e.g., an integer, a list, or a user-defined function; there are many more as explained in types). For each of
the well-known types there is a macro to check whether an object is of that type; for instance, PyList_Check (a)
is true if (and only if) the object pointed to by a is a Python list.

1.2.1 Reference Counts

The reference count is important because today’s computers have a finite (and often severely limited) memory size; it
counts how many different places there are that have a reference to an object. Such a place could be another object, or
a global (or static) C variable, or a local variable in some C function. When an object’s reference count becomes zero,
the object is deallocated. If it contains references to other objects, their reference count is decremented. Those other
objects may be deallocated in turn, if this decrement makes their reference count become zero, and so on. (There’s an
obvious problem with objects that reference each other here; for now, the solution is “don’t do that.”)

Reference counts are always manipulated explicitly. The normal way is to use the macro Py_ TNCREF () to increment
an object’s reference count by one, and Py DECREF () to decrement it by one. The Py DECREF () macro is
considerably more complex than the incref one, since it must check whether the reference count becomes zero and then
cause the object’s deallocator to be called. The deallocator is a function pointer contained in the object’s type structure.
The type-specific deallocator takes care of decrementing the reference counts for other objects contained in the object
if this is a compound object type, such as a list, as well as performing any additional finalization that’s needed. There’s
no chance that the reference count can overflow; at least as many bits are used to hold the reference count as there are
distinct memory locations in virtual memory (assuming sizeof (Py_ssize_t) >= sizeof (voidx)). Thus,
the reference count increment is a simple operation.

It is not necessary to increment an object’s reference count for every local variable that contains a pointer to an object.
In theory, the object’s reference count goes up by one when the variable is made to point to it and it goes down by
one when the variable goes out of scope. However, these two cancel each other out, so at the end the reference count
hasn’t changed. The only real reason to use the reference count is to prevent the object from being deallocated as long
as our variable is pointing to it. If we know that there is at least one other reference to the object that lives at least as
long as our variable, there is no need to increment the reference count temporarily. An important situation where this
arises is in objects that are passed as arguments to C functions in an extension module that are called from Python; the
call mechanism guarantees to hold a reference to every argument for the duration of the call.

However, a common pitfall is to extract an object from a list and hold on to it for a while without incrementing its
reference count. Some other operation might conceivably remove the object from the list, decrementing its reference
count and possible deallocating it. The real danger is that innocent-looking operations may invoke arbitrary Python

4 Chapter 1. Introduction

The Python/C API, Release 3.4.9rc1

code which could do this; there is a code path which allows control to flow back to the user from a Py DECREF (),
so almost any operation is potentially dangerous.

A safe approach is to always use the generic operations (functions whose name begins with PyObject_,
PyNumber_, PySequence_ or PyMapping_). These operations always increment the reference count of the
object they return. This leaves the caller with the responsibility to call Py DECREF () when they are done with the
result; this soon becomes second nature.

Reference Count Details

The reference count behavior of functions in the Python/C API is best explained in terms of ownership of references.
Ownership pertains to references, never to objects (objects are not owned: they are always shared). “Owning a
reference” means being responsible for calling Py_DECREEF on it when the reference is no longer needed. Ownership
can also be transferred, meaning that the code that receives ownership of the reference then becomes responsible for
eventually decref’ing it by calling Py. DECREF () or Py_ XDECREF () when it’s no longer needed—or passing on
this responsibility (usually to its caller). When a function passes ownership of a reference on to its caller, the caller is
said to receive a new reference. When no ownership is transferred, the caller is said to borrow the reference. Nothing
needs to be done for a borrowed reference.

Conversely, when a calling function passes in a reference to an object, there are two possibilities: the function steals
a reference to the object, or it does not. Stealing a reference means that when you pass a reference to a function, that
function assumes that it now owns that reference, and you are not responsible for it any longer.

Few functions steal references; the two notable exceptions are PyList_SetItem() and PyTuple SetItem(),
which steal a reference to the item (but not to the tuple or list into which the item is put!). These functions were
designed to steal a reference because of a common idiom for populating a tuple or list with newly created objects; for
example, the code to create the tuple (1, 2, "three") could look like this (forgetting about error handling for
the moment; a better way to code this is shown below):

PyObject =t;

t = PyTuple_New
PyTuple_SetItem
PyTuple_SetItem
PyTuple_SetItem

3)i

t, 0, PyLong_FromLong(lL));

t, 1, PyLong_FromLong(2L));

t, 2, PyUnicode_FromString("three"));

Here, PyLong_FromLong () returns a new reference which is immediately stolen by PyTuple SetItem().
When you want to keep using an object although the reference to it will be stolen, use Py_ TNCREF () to grab another
reference before calling the reference-stealing function.

Incidentally, PyTuple SetItem() is the only way to set tuple items; PySequence_SetItem() and
PyObject_SetItem() refuse to do this since tuples are an immutable data type. You should only use
PyTuple_SetItem () for tuples that you are creating yourself.

Equivalent code for populating a list can be written using PyList_New () and PyList_SetItem().

However, in practice, you will rarely use these ways of creating and populating a tuple or list. There’s a generic
function, Py BuildValue (), that can create most common objects from C values, directed by a format string.
For example, the above two blocks of code could be replaced by the following (which also takes care of the error
checking):

PyObject =tuple, +list;

tuple = Py_BuildvValue (" (iis)", 1, 2, "three");
list = Py_Buildvalue("[iis]", 1, 2, "three");

It is much more common to use PyOb ject_SetItem () and friends with items whose references you are only
borrowing, like arguments that were passed in to the function you are writing. In that case, their behaviour regarding

1.2. Objects, Types and Reference Counts 5

The Python/C API, Release 3.4.9rc1

reference counts is much saner, since you don’t have to increment a reference count so you can give a reference away
(“have it be stolen”). For example, this function sets all items of a list (actually, any mutable sequence) to a given item:

int
set_all (PyObject xtarget, PyObject xitem)
{

Py_ssize_t i, n;

n = PyObject_Length (target);
if (n < 0)
return -1;

for (i = 0; 1 < n; i++) {
PyObject xindex = PyLong_FromSsize_t (i);
if (!index)

return -1;
if (PyObject_SetItem(target, index, item) < 0) {
Py_DECREF (index) ;
return -1;
}
Py_DECREF (index) ;
}

return 0;

The situation is slightly different for function return values. While passing a reference to most functions does not
change your ownership responsibilities for that reference, many functions that return a reference to an object give you
ownership of the reference. The reason is simple: in many cases, the returned object is created on the fly, and the
reference you get is the only reference to the object. Therefore, the generic functions that return object references, like
PyObject_GetItem() and PySequence_GetItem (), always return a new reference (the caller becomes the
owner of the reference).

It is important to realize that whether you own a reference returned by a function depends on which function you call
only — the plumage (the type of the object passed as an argument to the function) doesn’t enter into it! Thus, if you
extract an item from a list using PyList_GetItem (), you don’t own the reference — but if you obtain the same
item from the same list using PySequence_GetItem () (which happens to take exactly the same arguments), you
do own a reference to the returned object.

Here is an example of how you could write a function that computes the sum of the items in a list of integers; once
using PyList_GetItem (), and once using PySequence_GetItem().

long

sum_list (PyObject xlist)

{
Py_ssize_t i, n;
long total = 0, value;
PyObject xitem;

n = PyList_Size(list);
if (n < 0)
return -1; /# Not a list */
for (i = 0; i < n; i++) {
item = PyList_GetItem(list, 1); /# Can't fail =*/
if (!PyLong_Check (item)) continue; /x Skip non-integers */
value = PyLong_AsLong(item);
if (value == -1 && PyErr_Occurred())
/+ Integer too big to fit in a C long, bail out #*/
return -1;
total += value;

(continues on next page)

6 Chapter 1. Introduction

The Python/C API, Release 3.4.9rc1

(continued from previous page)

}

return total;

long
sum_sequence (PyObject xsequence)
{
Py_ssize_t i, n;
long total = 0, value;
PyObject xitem;
n = PySequence_Length (sequence);
if (n < 0)
return -1; /% Has no length x/

for (i = 0; i < n; i++) {
item = PySequence_GetItem(sequence, 1i);
if (item == NULL)

return -1; /+ Not a sequence, or other failure x/
if (PyLong_Check (item)) {
value = PyLong_AsLong (item);
Py_DECREF (item) ;
if (value == -1 && PyErr_Occurred())
/* Integer too big to fit in a C long, bail out */
return -1;
total += value;
}
else {
Py_DECREF (item); /# Discard reference ownership #*/

}

return total;

1.2.2 Types

There are few other data types that play a significant role in the Python/C API; most are simple C types such as int,
long, double and char*. A few structure types are used to describe static tables used to list the functions exported
by a module or the data attributes of a new object type, and another is used to describe the value of a complex number.
These will be discussed together with the functions that use them.

1.3 Exceptions

The Python programmer only needs to deal with exceptions if specific error handling is required; unhandled exceptions
are automatically propagated to the caller, then to the caller’s caller, and so on, until they reach the top-level interpreter,
where they are reported to the user accompanied by a stack traceback.

For C programmers, however, error checking always has to be explicit. All functions in the Python/C API can raise
exceptions, unless an explicit claim is made otherwise in a function’s documentation. In general, when a function
encounters an error, it sets an exception, discards any object references that it owns, and returns an error indicator.
If not documented otherwise, this indicator is either NULL or -1, depending on the function’s return type. A few
functions return a Boolean true/false result, with false indicating an error. Very few functions return no explicit error
indicator or have an ambiguous return value, and require explicit testing for errors with PyErr Occurred (). These
exceptions are always explicitly documented.

1.3. Exceptions 7

The Python/C API, Release 3.4.9rc1

Exception state is maintained in per-thread storage (this is equivalent to using global storage in an unthreaded appli-
cation). A thread can be in one of two states: an exception has occurred, or not. The function PyErr._Occurred ()
can be used to check for this: it returns a borrowed reference to the exception type object when an exception has
occurred, and NULL otherwise. There are a number of functions to set the exception state: PyErr SetString()
is the most common (though not the most general) function to set the exception state, and PyErr._Clear () clears
the exception state.

The full exception state consists of three objects (all of which can be NULL): the exception type, the corresponding
exception value, and the traceback. These have the same meanings as the Python result of sys.exc_info();
however, they are not the same: the Python objects represent the last exception being handled by a Python try ...
except statement, while the C level exception state only exists while an exception is being passed on between C
functions until it reaches the Python bytecode interpreter’s main loop, which takes care of transferring it to sys.
exc_info () and friends.

Note that starting with Python 1.5, the preferred, thread-safe way to access the exception state from Python code is
to call the function sys.exc_info (), which returns the per-thread exception state for Python code. Also, the
semantics of both ways to access the exception state have changed so that a function which catches an exception will
save and restore its thread’s exception state so as to preserve the exception state of its caller. This prevents common
bugs in exception handling code caused by an innocent-looking function overwriting the exception being handled; it
also reduces the often unwanted lifetime extension for objects that are referenced by the stack frames in the traceback.

As a general principle, a function that calls another function to perform some task should check whether the called
function raised an exception, and if so, pass the exception state on to its caller. It should discard any object references
that it owns, and return an error indicator, but it should not set another exception — that would overwrite the exception
that was just raised, and lose important information about the exact cause of the error.

A simple example of detecting exceptions and passing them on is shown in the sum_sequence () example above.
It so happens that this example doesn’t need to clean up any owned references when it detects an error. The following
example function shows some error cleanup. First, to remind you why you like Python, we show the equivalent Python
code:

def incr_item(dict, key):
try:
item = dict[key]
except KeyError:
item = 0
dict[key] = item + 1

Here is the corresponding C code, in all its glory:

int

incr_item(PyObject xdict, PyObject =xkey)

{
/#* Objects all initialized to NULL for Py XDECREF #*/
PyObject xitem = NULL, =xconst_one = NULL, *incremented_item = NULL;
int rv = -1; /% Return value initialized to -1 (failure) */

item = PyObject_GetItem(dict, key);
if (item == NULL) {
/* Handle KeyError only: #*/
if (!PyErr_ExceptionMatches (PyExc_KeyError))
goto error;

/#* Clear the error and use zero: */
PyErr_Clear();
item = PyLong_FromLong (0L);
if (item == NULL)
goto error;

(continues on next page)

8 Chapter 1. Introduction

The Python/C API, Release 3.4.9rc1

(continued from previous page)

}
const_one = PyLong_FromLong (1L);
if (const_one == NULL)

goto error;

incremented_item = PyNumber_Add(item, const_one);
if (incremented_item == NULL)
goto error;

if (PyObject_SetItem(dict, key, incremented_item) < 0)
goto error;

rv = 0; /% Success x/

/* Continue with cleanup code */

error:
/* Cleanup code, shared by success and failure path x/

/* Use Py _XDECREF () to ignore NULL references */
Py_XDECREF (item) ;

Py_XDECREF (const_one) ;

Py_XDECREF (incremented_item);

return rv; /+ -1 for error, 0 for success #*/

This example represents an endorsed use of the goto statement in C! It illustrates the use of
PyErr ExceptionMatches () and PyErr Clear () to handle specific exceptions, and the use of
Py_XDECREF () to dispose of owned references that may be NULL (note the 'X"' in the name; Py_DECREF ()
would crash when confronted with a NULL reference). It is important that the variables used to hold owned references
are initialized to NULL for this to work; likewise, the proposed return value is initialized to —1 (failure) and only set
to success after the final call made is successful.

1.4 Embedding Python

The one important task that only embedders (as opposed to extension writers) of the Python interpreter have to worry
about is the initialization, and possibly the finalization, of the Python interpreter. Most functionality of the interpreter
can only be used after the interpreter has been initialized.

The basic initialization function is Py Tnitialize (). This initializes the table of loaded modules, and creates the
fundamental modules builtins, ___main__, and sys. It also initializes the module search path (sys.path).

Py _Initialize () does not set the “script argument list” (sys.argv). If this variable is needed by Python
code that will be executed later, it must be set explicitly with a call to PySys_SetArgvEx (argc, argv,
updatepath) afterthe callto Py Tnitialize ().

On most systems (in particular, on Unix and Windows, although the details are slightly different),
Py _Initialize () calculates the module search path based upon its best guess for the location of the standard
Python interpreter executable, assuming that the Python library is found in a fixed location relative to the Python in-
terpreter executable. In particular, it looks for a directory named 1ib/pythonX. Y relative to the parent directory
where the executable named python is found on the shell command search path (the environment variable PATH).

For instance, if the Python executable is found in /usr/local/bin/python, it will assume that the libraries
are in /usr/local/lib/pythonX. Y. (In fact, this particular path is also the “fallback” location, used when no
executable file named python is found along PATH.) The user can override this behavior by setting the environment
variable PYTHONHOME, or insert additional directories in front of the standard path by setting PYTHONPATH.

1.4. Embedding Python 9

The Python/C API, Release 3.4.9rc1

The embedding application can steer the search by calling Py_SetProgramName (file) before calling
Py Initialize (). Note that PYTHONHOME still overrides this and PYTHONPATH is still inserted in front of the
standard path. An application that requires total control has to provide its own implementation of Py GetPath (),
Py GetPrefix (), Py GetExecPrefix(),and Py GetProgramFullPath () (all defined in Modules/
getpath.c).

Sometimes, it is desirable to “uninitialize” Python. For instance, the application may want to start over (make another
callto Py_Tnitialize ())orthe application is simply done with its use of Python and wants to free memory allo-
cated by Python. This can be accomplished by calling Py Finalize (). The function Py_TIsInitialized()
returns true if Python is currently in the initialized state. More information about these functions is given in a later
chapter. Notice that Py_Finalize () does not free all memory allocated by the Python interpreter, e.g. memory
allocated by extension modules currently cannot be released.

1.5 Debugging Builds

Python can be built with several macros to enable extra checks of the interpreter and extension modules. These checks
tend to add a large amount of overhead to the runtime so they are not enabled by default.

A full list of the various types of debugging builds is in the file Misc/SpecialBuilds. txt in the Python source
distribution. Builds are available that support tracing of reference counts, debugging the memory allocator, or low-
level profiling of the main interpreter loop. Only the most frequently-used builds will be described in the remainder of
this section.

Compiling the interpreter with the Py_ DEBUG macro defined produces what is generally meant by “a debug build” of
Python. Py_DEBUG is enabled in the Unix build by adding ——-with-pydebugtothe . /configure command. It
is also implied by the presence of the not-Python-specific _ DEBUG macro. When Py_DEBUG is enabled in the Unix
build, compiler optimization is disabled.

In addition to the reference count debugging described below, the following extra checks are performed:
» Extra checks are added to the object allocator.
 Extra checks are added to the parser and compiler.
* Downcasts from wide types to narrow types are checked for loss of information.

* A number of assertions are added to the dictionary and set implementations. In addition, the set object acquires
atest_c_api () method.

¢ Sanity checks of the input arguments are added to frame creation.
* The storage for ints is initialized with a known invalid pattern to catch reference to uninitialized digits.
* Low-level tracing and extra exception checking are added to the runtime virtual machine.
 Extra checks are added to the memory arena implementation.
 Extra debugging is added to the thread module.
There may be additional checks not mentioned here.

Defining Py_ TRACE_REF'S enables reference tracing. When defined, a circular doubly linked list of active objects
is maintained by adding two extra fields to every PyOb ject. Total allocations are tracked as well. Upon exit, all
existing references are printed. (In interactive mode this happens after every statement run by the interpreter.) Implied
by Py_DEBUG.

Please refer to Misc/SpecialBuilds.txt in the Python source distribution for more detailed information.

10 Chapter 1. Introduction

CHAPTER
TWO

STABLE APPLICATION BINARY INTERFACE

Traditionally, the C API of Python will change with every release. Most changes will be source-compatible, typically
by only adding API, rather than changing existing API or removing API (although some interfaces do get removed
after being deprecated first).

Unfortunately, the API compatibility does not extend to binary compatibility (the ABI). The reason is primarily the
evolution of struct definitions, where addition of a new field, or changing the type of a field, might not break the API,
but can break the ABI. As a consequence, extension modules need to be recompiled for every Python release (although
an exception is possible on Unix when none of the affected interfaces are used). In addition, on Windows, extension
modules link with a specific pythonXY.dll and need to be recompiled to link with a newer one.

Since Python 3.2, a subset of the API has been declared to guarantee a stable ABI. Extension modules wishing to
use this API (called “limited API”) need to define Py_ LIMITED_API. A number of interpreter details then become
hidden from the extension module; in return, a module is built that works on any 3.x version (x>=2) without recompi-
lation.

In some cases, the stable ABI needs to be extended with new functions. Extension modules wishing to use these new
APIsneed to set Py_ LIMITED_APT tothe PY_VERSION_HEX value (see APl and ABI Versioning) of the minimum
Python version they want to support (e.g. 0x03030000 for Python 3.3). Such modules will work on all subsequent
Python releases, but fail to load (because of missing symbols) on the older releases.

As of Python 3.2, the set of functions available to the limited API is documented in PEP 384. In the C API documen-
tation, API elements that are not part of the limited API are marked as “Not part of the limited APL.”

11

The Python/C API, Release 3.4.9rc1

12 Chapter 2. Stable Application Binary Interface

CHAPTER
THREE

THE VERY HIGH LEVEL LAYER

The functions in this chapter will let you execute Python source code given in a file or a buffer, but they will not let
you interact in a more detailed way with the interpreter.

Several of these functions accept a start symbol from the grammar as a parameter. The available start symbols are
Py_eval_input, Py_file_input, and Py_single_input. These are described following the functions
which accept them as parameters.

Note also that several of these functions take FILE+ parameters. One particular issue which needs to be handled
carefully is that the FILE structure for different C libraries can be different and incompatible. Under Windows (at
least), it is possible for dynamically linked extensions to actually use different libraries, so care should be taken that
FILE~* parameters are only passed to these functions if it is certain that they were created by the same library that the
Python runtime is using.

int Py_Main (int argc, wchar_t **argv)
The main program for the standard interpreter. This is made available for programs which embed Python. The
argc and argv parameters should be prepared exactly as those which are passed to a C program’s main ()
function (converted to wchar_t according to the user’s locale). It is important to note that the argument list may
be modified (but the contents of the strings pointed to by the argument list are not). The return value will be 0
if the interpreter exits normally (i.e., without an exception), 1 if the interpreter exits due to an exception, or 2 if
the parameter list does not represent a valid Python command line.

Note that if an otherwise unhandled SystemExit is raised, this function will not return 1, but exit the process,
as long as Py_InspectFlag is not set.

int PyRun_AnyFile (FILE *fp, const char *filename)

This is a simplified interface to PyRun_AnyFileExFlags () below, leaving closeit set to 0 and flags set to
NULL.

int PyRun_AnyFileFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving the closeit argument set to O.

int PyRun_AnyFileEx (FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving the flags argument set to NULL.

int PyRun_AnyFileExFlags (FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)
If fp refers to a file associated with an interactive device (console or terminal input or Unix pseudo-terminal),
return the value of PyRun_ InteractiveLoop (), otherwise return the result of PyRun_ SimpleFile ().
filename is decoded from the filesystem encoding (sys.getfilesystemencoding()). If filename is
NULL, this function uses "2 7?72 " as the filename.

int PyRun_SimpleString (const char *command)
This is a simplified interface to PyRun_SimpleStringFlags () below, leaving the PyCompilerFlags*
argument set to NULL.

int PyRun_SimpleStringFlags (const char *command, PyCompilerFlags *flags)
Executes the Python source code from command in the __main__ module according to the flags argument. If

13

The Python/C API, Release 3.4.9rc1

__main__ does not already exist, it is created. Returns 0 on success or -1 if an exception was raised. If there
was an error, there is no way to get the exception information. For the meaning of flags, see below.

Note that if an otherwise unhandled SystemExit is raised, this function will not return —1, but exit the
process, as long as Py_InspectFlag is not set.

int PyRun_SimpleFile (FILE *fp, const char *filename)
This is a simplified interface to PyRun_SimpleFileExFlags () below, leaving closeit set to 0 and flags
set to NULL.

int PyRun_SimpleFileEx (FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun_SimpleFileExFlags () below, leaving flags set to NULL.

int PyRun_SimpleFileExFlags (FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)
Similar to PyRun_SimpleStringFlags (), but the Python source code is read from fp instead of an in-
memory string. filename should be the name of the file, it is decoded from the filesystem encoding (sys.
getfilesystemencoding ()). If closeit is true, the file is closed before PyRun_SimpleFileExFlags re-
turns.

int PyRun_InteractiveOne (FILE *fp, const char *filename)
This is a simplified interface to PyRun_InteractiveOneFlags () below, leaving flags set to NULL.

int PyRun_InteractiveOneFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)
Read and execute a single statement from a file associated with an interactive device according to the flags
argument. The user will be prompted using sys.psl and sys.ps2. filename is decoded from the filesystem
encoding (sys.getfilesystemencoding ()).

Returns 0 when the input was executed successfully, —1 if there was an exception, or an error code from the
errcode. h include file distributed as part of Python if there was a parse error. (Note that errcode . h is not
included by Python . h, so must be included specifically if needed.)

int PyRun_InteractiveLoop (FILE *fp, const char *filename)
This is a simplified interface to PyRun_TnteractiveLoopFlags () below, leaving flags set to NULL.

int PyRun_InteractiveLoopFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)
Read and execute statements from a file associated with an interactive device until EOF is reached. The user
will be prompted using sys.psl and sys.ps2. filename is decoded from the filesystem encoding (sys.
getfilesystemencoding ()). Returns 0 at EOF.

int (*PyOS_InputHook) (void)
Can be set to point to a function with the prototype int func (void). The function will be called when
Python’s interpreter prompt is about to become idle and wait for user input from the terminal. The return value
is ignored. Overriding this hook can be used to integrate the interpreter’s prompt with other event loops, as done
in the Modules/_tkinter. c in the Python source code.

char* (*PyOS_ReadlineFunctionPointer) (FILE * FILE *, const char *)
Can be set to point to a function with the prototype char func (FILE xstdin, FILE *stdout,
char xprompt), overriding the default function used to read a single line of input at the interpreter’s prompt.
The function is expected to output the string prompt if it’s not NULL, and then read a line of input from the
provided standard input file, returning the resulting string. For example, The readline module sets this hook
to provide line-editing and tab-completion features.

The result must be a string allocated by PyMem RawMalloc () or PyMem RawRealloc (), or NULL if an
error occurred.

Changed in version 3.4: The result must be allocated by PyMem RawMalloc () or
PyMem_RawRealloc (), instead of being allocated by PyMem Malloc () or PyMem _Realloc ().

struct _node* PyParser_SimpleParseString (const char *str, int start)
This is a simplified interface to PyParser. SimpleParseStringFlagsFilename () below, leaving
filename set to NULL and flags set to O.

14 Chapter 3. The Very High Level Layer

The Python/C API, Release 3.4.9rc1

struct _node* PyParser_SimpleParseStringFlags (const char *str, int start, int flags)
This is a simplified interface to PyParser_SimpleParseStringFlagsFilename () below, leaving
filename set to NULL.

struct _node* PyParser_SimpleParseStringFlagsFilename (const char *str, const char *filename,
int start, int flags)
Parse Python source code from str using the start token start according to the flags argument. The result can be
used to create a code object which can be evaluated efficiently. This is useful if a code fragment must be evalu-
ated many times. filename is decoded from the filesystem encoding (sys.getfilesystemencoding()).

struct _node* PyParser_ SimpleParseFile (FILE *fp, const char *filename, int start)
This is a simplified interface to PyParser SimpleParseFileFlags () below, leaving flags setto O.

struct _node* PyParser_SimpleParseFileFlags (FILE *fp, const char *filename, int start, int flags)
Similar to PyParser_SimpleParseStringFlagsFilename (), but the Python source code is read
from fp instead of an in-memory string.

PyObject* PyRun_String (const char *str, int start, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyRun_StringFlags () below, leaving flags
set to NULL.

PyObject* PyRun_StringFlags (const char *str, int start, PyObject *globals, PyObject *locals, PyCompil-
erFlags *flags)
Return value: New reference. Execute Python source code from str in the context specified by the dictionaries
globals and locals with the compiler flags specified by flags. The parameter start specifies the start token that
should be used to parse the source code.

Returns the result of executing the code as a Python object, or NULL if an exception was raised.

PyObject* PyRun_File (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyRun_FileExFlags () below, leaving closeit
set to 0 and flags set to NULL.

PyObject* PyRun_FileEx (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals,

int closeit)
Return value: New reference. This is a simplified interface to PyRun_FileExFlags () below, leaving flags

set to NULL.

PyObject* PyRun_FileFlags (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *lo-
cals, PyCompilerFlags *flags)
Return value: New reference. This is a simplified interface to PyRun_FileExFlags () below, leaving closeit
set to 0.

PyObject* PyRun_FileExFlags (FILE *fp, const char *filename, int start, PyObject *globals, PyOb-
Ject *locals, int closeit, PyCompilerFlags *flags)
Return value: New reference. Similar to PyRun_StringFlags (), but the Python source code is read
from fp instead of an in-memory string. filename should be the name of the file, it is decoded from the
filesystem encoding (sys.getfilesystemencoding()). If closeit is true, the file is closed before
PyRun_FileExFlags () returns.

PyObject* Py_CompileString (const char *str, const char *filename, int start)
Return value: New reference. This is a simplified interface to Py CompileStringFlags () below, leaving
flags setto NULL.

PyObject* Py_CompileStringFlags (const char *str, const char *filename, int start, PyCompiler-
Flags *flags)
Return value: New reference. This is a simplified interface to Py CompileStringExFlags () below, with
optimize setto —1.

PyObject* Py_CompileStringObject (const char *str, PyObject *filename, int start, PyCompiler-
Flags *flags, int optimize)
Parse and compile the Python source code in str, returning the resulting code object. The start token is given

15

The Python/C API, Release 3.4.9rc1

by start; this can be used to constrain the code which can be compiled and should be Py_eval_input,
Py_file_input,or Py_single_input. The filename specified by filename is used to construct the code
object and may appear in tracebacks or SyntaxError exception messages. This returns NULL if the code
cannot be parsed or compiled.

The integer optimize specifies the optimization level of the compiler; a value of —1 selects the optimization level
of the interpreter as given by —O options. Explicit levels are 0 (no optimization; ___debug___is true), 1 (asserts
are removed, ___debug___is false) or 2 (docstrings are removed too).

New in version 3.4.

PyObject* Py_CompileStringExFlags (const char *str, const char *filename, int start, PyCompiler-
Flags *flags, int optimize)
Like Py_CompileStringExFlags (), but filename is a byte string decoded from the filesystem encoding
(os.fsdecode ()).

New in version 3.2.

PyObject* PyEval_EvalCode (PyObject *co, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyEval_EvalCodeEx (), with just the code
object, and the dictionaries of global and local variables. The other arguments are set to NULL.

PyObject* PyEval_EvalCodeEx (PyObject *co, PyObject *globals, PyObject *locals, PyObject **args,
int argcount, PyObject **kws, int kwcount, PyObject **defs, int defcount,
PyObject *closure)
Evaluate a precompiled code object, given a particular environment for its evaluation. This environment consists
of dictionaries of global and local variables, arrays of arguments, keywords and defaults, and a closure tuple of
cells.

PyObject* PyEval_EvalFrame (PyFrameObject *f)
Evaluate an execution frame. This is a simplified interface to PyEval_EvalFrameEXx, for backward compatibility.

PyObject* PyEval_EvalFrameEx (PyFrameObject *f, int throwflag)
This is the main, unvarnished function of Python interpretation. It is literally 2000 lines long. The code object
associated with the execution frame f is executed, interpreting bytecode and executing calls as needed. The
additional throwflag parameter can mostly be ignored - if true, then it causes an exception to immediately be
thrown; this is used for the throw () methods of generator objects.

Changed in version 3.4: This function now includes a debug assertion to help ensure that it does not silently
discard an active exception.

int PyEval_MergeCompilerFlags (PyCompilerFlags *cf)
This function changes the flags of the current evaluation frame, and returns true on success, false on failure.

int Py_eval_input
The start symbol from the Python grammar for isolated expressions; for use with Py CompileString ().

intPy_file_input
The start symbol from the Python grammar for sequences of statements as read from a file or other source; for
use with Py CompileString (). This is the symbol to use when compiling arbitrarily long Python source
code.

int Py_single_input
The start symbol from the Python grammar for a single statement; for use with Py CompileString (). This
is the symbol used for the interactive interpreter loop.

struct PyCompilerFlags
This is the structure used to hold compiler flags. In cases where code is only being compiled, it is passed as
int flags, and in cases where code is being executed, it is passed as PyCompilerFlags *flags. In
this case, from __future_ import can modify flags.

16 Chapter 3. The Very High Level Layer

The Python/C API, Release 3.4.9rc1

Whenever PyCompilerFlags »flagsis NULL, cf_flags is treated as equal to 0, and any modification
dueto from _ future_ import is discarded.

struct PyCompilerFlags {
int cf_flags;
}

int CO_FUTURE_DIVISION

This bit can be set in flags to cause division operator / to be interpreted as “true division” according to PEP
238.

17

https://www.python.org/dev/peps/pep-0238
https://www.python.org/dev/peps/pep-0238

The Python/C API, Release 3.4.9rc1

18 Chapter 3. The Very High Level Layer

CHAPTER
FOUR

REFERENCE COUNTING

The macros in this section are used for managing reference counts of Python objects.

void Py_ INCREF (PyObject *0)
Increment the reference count for object o. The object must not be NULL; if you aren’t sure that it isn’t NULL,
use Py_XINCREF ().

void Py_XINCREF (PyObject *0)
Increment the reference count for object 0. The object may be NULL, in which case the macro has no effect.

void Py_DECREF (PyObject *o)
Decrement the reference count for object 0. The object must not be NULL; if you aren’t sure that it isn’t NULL,
use Py_XDECREF (). If the reference count reaches zero, the object’s type’s deallocation function (which must
not be NULL) is invoked.

Warning: The deallocation function can cause arbitrary Python code to be invoked (e.g. when a class
instance witha___del__ () method is deallocated). While exceptions in such code are not propagated, the
executed code has free access to all Python global variables. This means that any object that is reachable
from a global variable should be in a consistent state before Py DECREF () is invoked. For example, code
to delete an object from a list should copy a reference to the deleted object in a temporary variable, update
the list data structure, and then call Py DECREF () for the temporary variable.

void Py_XDECREF (PyObject *0)
Decrement the reference count for object 0. The object may be NULL, in which case the macro has no effect;
otherwise the effect is the same as for Py DECREF (), and the same warning applies.

void Py_ CLEAR (PyObject *o)
Decrement the reference count for object 0. The object may be NULL, in which case the macro has no effect;
otherwise the effect is the same as for Py DECREF (), except that the argument is also set to NULL. The
warning for Py_ DECREF () does not apply with respect to the object passed because the macro carefully uses
a temporary variable and sets the argument to NULL before decrementing its reference count.

It is a good idea to use this macro whenever decrementing the value of a variable that might be traversed during
garbage collection.

The following functions are for runtime dynamic embedding of Python: Py_IncRef (PyObject <o),
Py_DecRef (PyObject =x0). They are simply exported function versions of Py XTNCREF () and
Py_XDECREF (), respectively.

The following functions or macros are only for use within the interpreter core: _Py_Dealloc(),
_Py_ForgetReference (),_Py_NewReference (), as well as the global variable _Py_RefTotal.

19

The Python/C API, Release 3.4.9rc1

20 Chapter 4. Reference Counting

CHAPTER
FIVE

EXCEPTION HANDLING

The functions described in this chapter will let you handle and raise Python exceptions. It is important to understand
some of the basics of Python exception handling. It works somewhat like the Unix errno variable: there is a global
indicator (per thread) of the last error that occurred. Most functions don’t clear this on success, but will set it to indicate
the cause of the error on failure. Most functions also return an error indicator, usually NULL if they are supposed to
return a pointer, or -1 if they return an integer (exception: the PyArg_* () functions return 1 for success and 0 for
failure).

When a function must fail because some function it called failed, it generally doesn’t set the error indicator; the
function it called already set it. It is responsible for either handling the error and clearing the exception or returning
after cleaning up any resources it holds (such as object references or memory allocations); it should not continue
normally if it is not prepared to handle the error. If returning due to an error, it is important to indicate to the caller
that an error has been set. If the error is not handled or carefully propagated, additional calls into the Python/C API
may not behave as intended and may fail in mysterious ways.

The error indicator consists of three Python objects corresponding to the result of sys.exc_info (). API functions
exist to interact with the error indicator in various ways. There is a separate error indicator for each thread.

void PyErr_PrintEx (int set_sys_last_vars)
Print a standard traceback to sys . stderr and clear the error indicator. Call this function only when the error
indicator is set. (Otherwise it will cause a fatal error!)

If set_sys_last_vars is nonzero, the variables sys.last_type, sys.last_value and sys.
last_traceback will be set to the type, value and traceback of the printed exception, respectively.

void PyErr Print ()
Alias for PyErr_PrintEx (1).

PyObject* PyErr_Occurred ()
Return value: Borrowed reference. Test whether the error indicator is set. If set, return the exception type (the
first argument to the last call to one of the PyErr_Set« () functions or to PyErr_Restore ()). If not set,
return NULL. You do not own a reference to the return value, so you do not need to Py DECREF () it.

Note: Do not compare the return value to a specific exception; use PyErr._ExceptionMatches () instead,
shown below. (The comparison could easily fail since the exception may be an instance instead of a class, in the
case of a class exception, or it may be a subclass of the expected exception.)

int PyErr_ ExceptionMatches (PyObject *exc)
Equivalent to PyErr_GivenExceptionMatches (PyErr_Occurred (), exc). This should only be
called when an exception is actually set; a memory access violation will occur if no exception has been raised.

int PyErr_GivenExceptionMatches (PyObject *given, PyObject *exc)
Return true if the given exception matches the exception in exc. If exc is a class object, this also returns true

21

The Python/C API, Release 3.4.9rc1

when given is an instance of a subclass. If exc is a tuple, all exceptions in the tuple (and recursively in subtuples)
are searched for a match.

void PyErr_NormalizeException (PyObject**exc, PyObject**val, PyObject**tb)
Under certain circumstances, the values returned by PyErr._Fetch () below can be “unnormalized”, meaning
that xexc is a class object but xval is not an instance of the same class. This function can be used to instantiate
the class in that case. If the values are already normalized, nothing happens. The delayed normalization is
implemented to improve performance.

Note: This function does not implicitly set the ___traceback___ attribute on the exception value. If setting
the traceback appropriately is desired, the following additional snippet is needed:

if (tb != NULL) {
PyException_SetTraceback (val, tb);
}

void PyErr_Clear ()
Clear the error indicator. If the error indicator is not set, there is no effect.

void PyErr_Fetch (PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)
Retrieve the error indicator into three variables whose addresses are passed. If the error indicator is not set, set
all three variables to NULL. If it is set, it will be cleared and you own a reference to each object retrieved. The
value and traceback object may be NULL even when the type object is not.

Note: This function is normally only used by code that needs to handle exceptions or by code that needs to
save and restore the error indicator temporarily.

void PyErr_Restore (PyObject *type, PyObject *value, PyObject *traceback)
Set the error indicator from the three objects. If the error indicator is already set, it is cleared first. If the objects
are NULL, the error indicator is cleared. Do not pass a NULL type and non-NULL value or traceback. The
exception type should be a class. Do not pass an invalid exception type or value. (Violating these rules will
cause subtle problems later.) This call takes away a reference to each object: you must own a reference to each
object before the call and after the call you no longer own these references. (If you don’t understand this, don’t
use this function. I warned you.)

Note: This function is normally only used by code that needs to save and restore the error indicator temporarily;
use PyErr_ Fetch () to save the current exception state.

void PyErr_GetExcInfo (PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)
Retrieve the exception info, as known from sys.exc_info (). This refers to an exception that was already
caught, not to an exception that was freshly raised. Returns new references for the three objects, any of which
may be NULL. Does not modify the exception info state.

Note: This function is not normally used by code that wants to handle exceptions. Rather, it can be used when
code needs to save and restore the exception state temporarily. Use PyErr _SetExcInfo () to restore or
clear the exception state.

New in version 3.3.

void PyErr_SetExcInfo (PyObject *type, PyObject *value, PyObject *traceback)
Set the exception info, as known from sys.exc_info (). This refers to an exception that was already

22 Chapter 5. Exception Handling

The Python/C API, Release 3.4.9rc1

caught, not to an exception that was freshly raised. This function steals the references of the arguments. To
clear the exception state, pass NULL for all three arguments. For general rules about the three arguments, see
PyErr._Restore().

Note: This function is not normally used by code that wants to handle exceptions. Rather, it can be used
when code needs to save and restore the exception state temporarily. Use PyErr_GetExcInfo () toread the
exception state.

New in version 3.3.

void PyErr_SetString (PyObject *type, const char *message)
This is the most common way to set the error indicator. The first argument specifies the exception type; it is
normally one of the standard exceptions, e.g. PyExc_RuntimeError. You need not increment its reference
count. The second argument is an error message; it is decoded from 'ut £-8’.

void PyErr_SetObject (PyObject *type, PyObject *value)
This function is similar to PyErr SetString () but lets you specify an arbitrary Python object for the
“value” of the exception.

PyObject* PyExrr_Format (PyObject *exception, const char *format, ...)
Return value: Always NULL. This function sets the error indicator and returns NULL. exception should be a
Python exception class. The format and subsequent parameters help format the error message; they have the
same meaning and values as in PyUnicode FromFormat (). format is an ASCII-encoded string.

void PyErr_SetNone (PyObject *type)
This is a shorthand for PyErr_SetObject (type, Py_None).

int PyErr BadArgument ()
This is a shorthand for PyErr_SetString (PyExc_TypeError, message), where message indicates
that a built-in operation was invoked with an illegal argument. It is mostly for internal use.

PyObject* PyErr_NoMemory ()
Return value: Always NULL. This is a shorthand for PyErr_SetNone (PyExc_MemoryError); it returns
NULL so an object allocation function can write return PyErr_NoMemory () ; when it runs out of mem-
ory.

PyObject* PyErr_SetFromErrno (PyObject *type)

Return value: Always NULL. This is a convenience function to raise an exception when a C library function
has returned an error and set the C variable errno. It constructs a tuple object whose first item is the integer
errno value and whose second item is the corresponding error message (gotten from strerror ()), and
then calls PyErr_SetObject (type, object). On Unix, when the errno value is EINTR, indicating
an interrupted system call, this calls PyErr_CheckSignals (), and if that set the error indicator, leaves it
set to that. The function always returns NULL, so a wrapper function around a system call can write return
PyErr_SetFromErrno (type) ; when the system call returns an error.

PyObject* PyErr_SetFromErrnoWithFilenameObiject (PyObject *type, PyObject *filenameObject)
Similar to PyErr_SetFromErrno (), with the additional behavior that if filenameObject is not NULL, it is
passed to the constructor of fype as a third parameter. In the case of OSError exception, this is used to define
the £ilename attribute of the exception instance.

PyObject* PyErr_SetFromErrnoWithFilenameObjects (PyObject *type, PyObject *filenameOb-
Jject, PyObject *filenameObject2)
Similarto PyErr_SetFromErrnoWithFilenameOb ject (), buttakes a second filename object, for rais-
ing errors when a function that takes two filenames fails.

New in version 3.4.

23

The Python/C API, Release 3.4.9rc1

PyObject* PyErr_SetFromErrnoWithFilename (PyObject *type, const char *filename)
Return value: Always NULL. Similar to PyErr._SetFromErrnoWithFilenameOb ject (), but the file-
name is given as a C string. filename is decoded from the filesystem encoding (os . fsdecode ()).

PyObject* PyErr_SetFromWindowsErr (int ierr)

Return value: Always NULL. This is a convenience function to raise WindowsError. If called
with ijerr of 0, the error code returned by a call to GetLastError () is used instead. It calls
the Win32 function FormatMessage () to retrieve the Windows description of error code given by
ierr or GetLastError (), then it constructs a tuple object whose first item is the ierr value and
whose second item is the corresponding error message (gotten from FormatMessage ()), and then calls
PyErr_SetObject (PyExc_WindowsError, object). This function always returns NULL. Avail-
ability: Windows.

PyObject* PyErr_SetExcFromWindowsErr (PyObject *type, int ierr)
Return value: Always NULL. Similar to PyErr SetFromWindowsErr (), with an additional parameter
specifying the exception type to be raised. Availability: Windows.

PyObject* PyErr_SetFromWindowsErrWithFilename (int ierr, const char *filename)
Return value: Always NULL. Similar to PyErr_SetFromWindowsErrWithFilenameObject (), but
the filename is given as a C string. filename is decoded from the filesystem encoding (os.fsdecode ()).
Availability: Windows.

PyObject* PyErr_SetExcFromWindowsErrWithFilenameObject (PyObject *type, int ierr, PyOb-
Ject *filename)
Similar to PyErr_SetFromWindowsErrWithFilenameObject (), with an additional parameter spec-
ifying the exception type to be raised. Availability: Windows.

PyObject* PyErr_SetExcFromWindowsErrWithFilenameObjects (PyObject *type, intierr, PyOb-
Jject *filename, PyObject *file-

name2)
Similar to PyErr._SetExcFromWindowsErrWithFilenameOb ject (), but accepts a second filename

object. Availability: Windows.
New in version 3.4.

PyObject* PyErr_SetExcFromWindowsErrWithFilename (PyObject *type, int ierr, const char *file-

name)
Return value: Always NULL. Similar to PyErr._SetFromWindowsErrWithFilename (), with an addi-

tional parameter specifying the exception type to be raised. Availability: Windows.

PyObject* PyErr_SetImportError (PyObject *msg, PyObject *name, PyObject *path)
This is a convenience function to raise ImportError. msg will be set as the exception’s message string. name
and path, both of which can be NULL, will be set as the ImportError’s respective name and path attributes.

New in version 3.3.

void PyErr_SyntaxLocationObject (PyObject *filename, int lineno, int col_offset)
Set file, line, and offset information for the current exception. If the current exception is not a SyntaxError,
then it sets additional attributes, which make the exception printing subsystem think the exception is a
SyntaxError.

New in version 3.4.

void PyErr_SyntaxLocationEx (const char *filename, int lineno, int col_offset)
Like PyErr SyntaxLocationObject (), but filename is a byte string decoded from the filesystem en-
coding (os . fsdecode ()).

New in version 3.2.

void PyErr SyntaxLocation (const char *filename, int lineno)
Like PyErr_SyntaxLocationEx (), but the col_offset parameter is omitted.

24 Chapter 5. Exception Handling

The Python/C API, Release 3.4.9rc1

void PyErr_BadInternalCall ()
This is a shorthand for PyErr_SetString (PyExc_SystemError, message), where message indi-
cates that an internal operation (e.g. a Python/C API function) was invoked with an illegal argument. It is
mostly for internal use.

int PyErr_WarnEx (PyObject *category, const char *message, Py_ssize_t stack_level)
Issue a warning message. The category argument is a warning category (see below) or NULL; the message
argument is an UTF-8 encoded string. stack_level is a positive number giving a number of stack frames; the
warning will be issued from the currently executing line of code in that stack frame. A stack_level of 1 is the
function calling PyErr._WarnEx (), 2 is the function above that, and so forth.

This function normally prints a warning message to sys.stderr; however, it is also possible that the user has
specified that warnings are to be turned into errors, and in that case this will raise an exception. It is also possible
that the function raises an exception because of a problem with the warning machinery (the implementation
imports the warnings module to do the heavy lifting). The return value is O if no exception is raised, or —1
if an exception is raised. (It is not possible to determine whether a warning message is actually printed, nor
what the reason is for the exception; this is intentional.) If an exception is raised, the caller should do its normal
exception handling (for example, Py DECREF () owned references and return an error value).

Warning categories must be subclasses of Warning; the default warning category is Runt imeWarning.
The standard Python warning categories are available as global variables whose names are PyExc_
followed by the Python exception name. These have the type PyObject x; they are all class ob-
jects. Their names are PyExc_Warning, PyExc_UserWarning, PyExc_UnicodeWarning,
PyExc_DeprecationWarning, PyExc_SyntaxWarning, PyExc_RuntimeWarning, and
PyExc_FutureWarning. PyExc_Warning is a subclass of PyExc_Exception; the other warn-
ing categories are subclasses of PyExc_Warning.

For information about warning control, see the documentation for the warnings module and the —~W option in
the command line documentation. There is no C API for warning control.

int PyErr WarnExplicitObject (PyObject *category, PyObject *message, PyObject *filename,
int lineno, PyObject *module, PyObject *registry)
Issue a warning message with explicit control over all warning attributes. This is a straightforward wrapper
around the Python function warnings.warn_explicit (), see there for more information. The module
and registry arguments may be set to NULL to get the default effect described there.

New in version 3.4.

int PyErr WarnExplicit (PyObject *category, const char *message, const char *filename, int lineno, const
char *module, PyObject *registry)
Similar to PyErr._WarnExplicitObject () except that message and module are UTF-8 encoded strings,
and filename is decoded from the filesystem encoding (os . fsdecode ()).

int PyErr_ WarnFormat (PyObject *category, Py_ssize_t stack_level, const char *format, ...)
Function similar to PyErr WarnEx (), butuse PyUnicode FromFormat () to format the warning mes-
sage. format is an ASCII-encoded string.

New in version 3.2.

int PyErr CheckSignals ()
This function interacts with Python’s signal handling. It checks whether a signal has been sent to the processes
and if so, invokes the corresponding signal handler. If the signal module is supported, this can invoke a signal
handler written in Python. In all cases, the default effect for SIGINT is to raise the KeyboardInterrupt
exception. If an exception is raised the error indicator is set and the function returns —1; otherwise the function
returns 0. The error indicator may or may not be cleared if it was previously set.

void PyErr_SetInterrupt ()
This function simulates the effect of a SIGINT signal arriving — the next time PyErr._CheckSignals ()
is called, KeyboardInterrupt will be raised. It may be called without holding the interpreter lock.

25

The Python/C API, Release 3.4.9rc1

int PySignal_SetWakeupFd (int fd)
This utility function specifies a file descriptor to which a '\ 0 ' byte will be written whenever a signal is received.
It returns the previous such file descriptor. The value —1 disables the feature; this is the initial state. This is
equivalent to signal.set_wakeup_£d () in Python, but without any error checking. fd should be a valid
file descriptor. The function should only be called from the main thread.

PyObject* PyErr_NewException (const char *name, PyObject *base, PyObject *dict)
Return value: New reference. This utility function creates and returns a new exception class. The name argu-
ment must be the name of the new exception, a C string of the form module.classname. The base and
dict arguments are normally NULL. This creates a class object derived from Exception (accessible in C as
PyExc_Exception).

The __module___ attribute of the new class is set to the first part (up to the last dot) of the name argument,
and the class name is set to the last part (after the last dot). The base argument can be used to specify alternate
base classes; it can either be only one class or a tuple of classes. The dict argument can be used to specify a
dictionary of class variables and methods.

PyObject* PyErr_NewExceptionWithDoc (const char *name, const char *doc, PyObject *base, PyOb-
Ject *dict)
Return value: New reference. Same as PyErr _NewException (), except that the new exception class can
easily be given a docstring: If doc is non-NULL, it will be used as the docstring for the exception class.

New in version 3.2.

void PyErr_WriteUnraisable (PyObject *obj)
This utility function prints a warning message to sy s . stderr when an exception has been set but it is impos-
sible for the interpreter to actually raise the exception. It is used, for example, when an exception occurs in an
del__ () method.

The function is called with a single argument obj that identifies the context in which the unraisable exception
occurred. The repr of obj will be printed in the warning message.

5.1 Exception Objects

PyObject* PyException_GetTraceback (PyObject *ex)
Return value: New reference. Return the traceback associated with the exception as a new reference, as acces-
sible from Python through __traceback__ . If there is no traceback associated, this returns NULL.

int PyException_SetTraceback (PyObject *ex, PyObject *tb)
Set the traceback associated with the exception to th. Use Py_None to clear it.

PyObject* PyException_GetContext (PyObject *ex)
Return the context (another exception instance during whose handling ex was raised) associated with the excep-
tion as a new reference, as accessible from Python through __context__. If there is no context associated,
this returns NULL.

void PyException_SetContext (PyObject *ex, PyObject *ctx)
Set the context associated with the exception to ctx. Use NULL to clear it. There is no type check to make sure
that czx is an exception instance. This steals a reference to ctx.

PyObject* PyException_GetCause (PyObject *ex)
Return the cause (either an exception instance, or None, setby raise ... from .. .)associated with the
exception as a new reference, as accessible from Python through ___cause__.

void PyException_SetCause (PyObject *ex, PyObject *cause)
Set the cause associated with the exception to cause. Use NULL to clear it. There is no type check to make sure
that cause is either an exception instance or None. This steals a reference to cause.

26 Chapter 5. Exception Handling

The Python/C API, Release 3.4.9rc1

__suppress_context___is implicitly set to True by this function.

5.2 Unicode Exception Objects

The following functions are used to create and modify Unicode exceptions from C.

PyObject* PyUnicodeDecodeError_Create (const char *encoding, const char *object,
Py_ssize_t length, Py_ssize_t start, Py_ssize_t end,

) _const char *reason)
Create a UnicodeDecodeError object with the attributes encoding, object, length, start, end and reason.

encoding and reason are UTF-8 encoded strings.

PyObject* PyUnicodeEncodeError_Create (const char *encoding, const Py _UNICODE *object,
Py_ssize_t length, Py_ssize_t start, Py_ssize_t end, const

) _char *reason)
Create a UnicodeEncodeError object with the attributes encoding, object, length, start, end and reason.

encoding and reason are UTF-8 encoded strings.

PyObject* PyUnicodeTranslateError_Create (const Py UNICODE *object, Py_ssize_t length,

Py_ssize_t start, Py_ssize_t end, const char *reason)
Create a UnicodeTranslateError object with the attributes object, length, start, end and reason. reason

is an UTF-8 encoded string.

PyObject* PyUnicodeDecodeError_ GetEncoding (PyObject *exc)
PyObject* PyUnicodeEncodeError_GetEncoding (PyObject *exc)
Return the encoding attribute of the given exception object.

PyObject* PyUnicodeDecodeError_GetObject (PyObject *exc)

PyObject* PyUnicodeEncodeError_GetObject (PyObject *exc)

PyObject* PyUnicodeTranslateError_GetObject (PyObject *exc)
Return the object attribute of the given exception object.

int PyUnicodeDecodeError_GetStart (PyObject *exc, Py_ssize_t *start)

int PyUnicodeEncodeError_GetStart (PyObject *exc, Py_ssize_t *start)

int PyUnicodeTranslateError_GetStart (PyObject *exc, Py_ssize_t *start)
Get the start attribute of the given exception object and place it into *start. start must not be NULL. Return 0
on success, —1 on failure.

int PyUnicodeDecodeError_SetStart (PyObject *exc, Py_ssize_t start)
int PyUnicodeEncodeError_SetStart (PyObject *exc, Py_ssize_t start)
int PyUnicodeTranslateError_SetStart (PyObject *exc, Py_ssize_t start)
Set the start attribute of the given exception object to start. Return 0 on success, —1 on failure.

int PyUnicodeDecodeError_GetEnd (PyObject *exc, Py_ssize_t *end)

int PyUnicodeEncodeError_GetEnd (PyObject *exc, Py_ssize_t *end)

int PyUnicodeTranslateError_GetEnd (PyObject *exc, Py_ssize_t *end)
Get the end attribute of the given exception object and place it into *end. end must not be NULL. Return 0 on
success, —1 on failure.

int PyUnicodeDecodeError_SetEnd (PyObject *exc, Py_ssize_t end)
int PyUnicodeEncodeError_SetEnd (PyObject *exc, Py_ssize_t end)
int PyUnicodeTranslateError_SetEnd (PyObject *exc, Py_ssize_t end)
Set the end attribute of the given exception object to end. Return 0 on success, —1 on failure.

PyObject* PyUnicodeDecodeError_GetReason (PyObject *exc)

PyObject* PyUnicodeEncodeError_GetReason (PyObject *exc)

PyObject* PyUnicodeTranslateError_GetReason (PyObject *exc)
Return the reason attribute of the given exception object.

5.2. Unicode Exception Objects 27

The Python/C API, Release 3.4.9rc1

int PyUnicodeDecodeError_SetReason (PyObject *exc, const char *reason)
int PyUnicodeEncodeError_SetReason (PyObject *exc, const char *reason)
int PyUnicodeTranslateError_SetReason (PyObject *exc, const char *reason)
Set the reason attribute of the given exception object to reason. Return 0 on success, —1 on failure.

5.3 Recursion Control

These two functions provide a way to perform safe recursive calls at the C level, both in the core and in extension
modules. They are needed if the recursive code does not necessarily invoke Python code (which tracks its recursion
depth automatically).

int Py_EnterRecursiveCall (const char *where)
Marks a point where a recursive C-level call is about to be performed.

If USE_STACKCHECK is defined, this function checks if the OS stack overflowed using
Py0OS_CheckStack (). In this is the case, it sets a MemoryError and returns a nonzero value.

The function then checks if the recursion limit is reached. If this is the case, a RuntimeError is set and a
nonzero value is returned. Otherwise, zero is returned.

where should be a string such as " in instance check" to be concatenated to the RuntimeError
message caused by the recursion depth limit.

void Py_LeaveRecursiveCall ()
Ends a Py EnterRecursiveCall (). Must be called once for each successful invocation of
Py EnterRecursiveCall ().

Properly implementing tp_ repr for container types requires special recursion handling. In addition to protecting the
stack, tp_ repr also needs to track objects to prevent cycles. The following two functions facilitate this functionality.
Effectively, these are the C equivalent to reprlib.recursive_repr ().

int Py_ReprEnter (PyObject *object)
Called at the beginning of the t p_ repr implementation to detect cycles.

If the object has already been processed, the function returns a positive integer. In that case the tp_repr
implementation should return a string object indicating a cycle. As examples, dict objects return { ...} and
list objectsreturn [...].

The function will return a negative integer if the recursion limit is reached. In that case the tp_repr imple-
mentation should typically return NULL.

Otherwise, the function returns zero and the t p_ repr implementation can continue normally.

void Py_ReprLeave (PyObject *object)
Ends a Py ReprEnter (). Must be called once for each invocation of Py_ReprEnter () that returns zero.

5.4 Standard Exceptions

All standard Python exceptions are available as global variables whose names are PyExc_ followed by the Python
exception name. These have the type PyOb ject «; they are all class objects. For completeness, here are all the
variables:

C Name Python Name Notes
PyExc_BaseException BaseException @)
PyExc_Exception Exception)]

Continued on next page

28 Chapter 5. Exception Handling

The Python/C API, Release 3.4.9rc1

Table 1 — continued from previous page

C Name Python Name Notes
PyExc_ArithmeticError ArithmeticError @)
PyExc_LookupError LookupError Q)
PyExc_AssertionError AssertionError
PyExc_AttributeError AttributeError
PyExc_BlockingIOError BlockingIOError
PyExc_BrokenPipeError BrokenPipeError
PyExc_ChildProcessError ChildProcessError
PyExc_ConnectionError ConnectionError

PyExc_ConnectionAbortedError | ConnectionAbortedError
PyExc_ConnectionRefusedError | ConnectionRefusedError
PyExc_ConnectionResetError ConnectionResetError

PyExc_FileExistsError FileExistsError
PyExc_FileNotFoundError FileNotFoundError
PyExc_EOFError EOFError
PyExc_FloatingPointError FloatingPointError
PyExc_ImportError ImportError
PyExc_IndexError IndexError
PyExc_InterruptedError InterruptedError
PyExc_IsADirectoryError IsADirectoryError
PyExc_KeyError KeyError
PyExc_KeyboardInterrupt KeyboardInterrupt
PyExc_MemoryError MemoryError
PyExc_NameError NameError

PyExc_NotADirectoryError

NotADirectoryError

PyExc_NotImplementedError

NotImplementedError

PyExc_OSError

OSError

@

PyExc_OverflowError OverflowError
PyExc_PermissionError PermissionError
PyExc_ProcessLookupError ProcessLookupError
PyExc_ReferenceError ReferenceError 2)
PyExc_RuntimeError RuntimeError
PyExc_SyntaxError SyntaxError
PyExc_SystemError SystemError
PyExc_TimeoutError TimeoutError
PyExc_SystemExit SystemExit
PyExc_TypeError TypeError
PyExc_ValueError ValueError

PyExc_ZeroDivisionError

ZeroDivisionError

New in version 3.3:
PyExc_ChildProcessError,

PyExc_BlockingIOError, PyExc_BrokenPipeError,
PyExc_ConnectionError, PyExc_ConnectionAbortedError,
PyExc_ConnectionRefusedError, PyExc_ConnectionResetError, PyExc_FileExistsError,
PyExc_FileNotFoundError, PyExc_InterruptedError, PyExc_IsADirectoryError,
PyExc_NotADirectoryError, PyExc_PermissionError, PyExc_ProcessLookupError and
PyExc_TimeoutError were introduced following PEP 3151.

These are compatibility aliases to PyExc_OSError:

5.4. Standard Exceptions 29

https://www.python.org/dev/peps/pep-3151

The Python/C API, Release 3.4.9rc1

C Name Notes
PyExc_EnvironmentError
PyExc_IOError
PyExc_WindowsError 3

Changed in version 3.3: These aliases used to be separate exception types.

Notes:

1. This is a base class for other standard exceptions.

2. This is the same as weakref .ReferenceError.

3. Only defined on Windows; protect code that uses this by testing that the preprocessor macro MS_WINDOWS is

defined.

30

Chapter 5. Exception Handling

CHAPTER
SIX

UTILITIES

The functions in this chapter perform various utility tasks, ranging from helping C code be more portable across
platforms, using Python modules from C, and parsing function arguments and constructing Python values from C
values.

6.1 Operating System Utilities

int Py_FdIsInteractive (FILE *fp, const char *filename)
Return true (nonzero) if the standard I/O file fp with name filename is deemed interactive. This is the case for files
for which isatty (fileno (fp)) is true. If the global flag Py_ InteractiveFlagq is true, this function

also returns true if the filename pointer is NULL or if the name is equal to one of the strings '<stdin>"' or
12727210

void PyOS_AfterFork ()
Function to update some internal state after a process fork; this should be called in the new process if the Python
interpreter will continue to be used. If a new executable is loaded into the new process, this function does not
need to be called.

int PyOS_CheckStack ()
Return true when the interpreter runs out of stack space. This is a reliable check, but is only available
when USE_STACKCHECK is defined (currently on Windows using the Microsoft Visual C++ compiler).
USE_STACKCHECK will be defined automatically; you should never change the definition in your own code.

PyOS_sighandler_t PyOS_getsig (int i)
Return the current signal handler for signal i. This is a thin wrapper around either sigaction () or
signal (). Do not call those functions directly! PyOS_sighandler_t is a typedef alias for void
(%) (int).

PyOS_sighandler_t PyOS_setsig (int i, PyOS_sighandler_t /)
Set the signal handler for signal i to be &; return the old signal handler. This is a thin wrapper around either
sigaction () or signal (). Do not call those functions directly! PyOS_sighandler_t is a typedef
alias for void (*) (int).

6.2 System Functions

These are utility functions that make functionality from the sys module accessible to C code. They all work with the
current interpreter thread’s sy s module’s dict, which is contained in the internal thread state structure.

PyObject *PySys_GetObject (const char *name)
Return value: Borrowed reference. Return the object name from the sy s module or NULL if it does not exist,
without setting an exception.

31

The Python/C API, Release 3.4.9rc1

int PySys_SetObject (const char *name, PyObject *v)
Set name in the sy s module to v unless v is NULL, in which case name is deleted from the sys module. Returns
0 on success, —1 on error.

void PySys_ResetWarnOptions ()
Reset sys.warnoptions to an empty list.

void PySys_AddWarnOption (wchar_t *s)
Append s to sys.warnoptions.

void PySys_AddWarnOptionUnicode (PyObject *unicode)
Append unicode to sys .warnoptions.

void PySys_SetPath (wchar_t *path)
Set sy s .path to alist object of paths found in path which should be a list of paths separated with the platform’s
search path delimiter (: on Unix, ; on Windows).

void PySys_WriteStdout (const char *format, ...)
Write the output string described by format to sys.stdout. No exceptions are raised, even if truncation
occurs (see below).

format should limit the total size of the formatted output string to 1000 bytes or less — after 1000 bytes, the
output string is truncated. In particular, this means that no unrestricted “%s” formats should occur; these should
be limited using “%.<N>s” where <N> is a decimal number calculated so that <N> plus the maximum size of
other formatted text does not exceed 1000 bytes. Also watch out for “%f”, which can print hundreds of digits
for very large numbers.

If a problem occurs, or sys . stdout is unset, the formatted message is written to the real (C level) stdout.

void PySys_WriteStderr (const char *format, ...)
As PySys WriteStdout (),but write to sys.stderr or stderr instead.

void PySys_FormatStdout (const char *format, ...)
Function similar to PySys_WriteStdout() but format the message using PyUnicode FromFormatV () and
don’t truncate the message to an arbitrary length.

New in version 3.2.

void PySys_FormatStderr (const char *format, ...)
As PySys_FormatStdout (), but write to sys . stderr or stderr instead.

New in version 3.2.

void PySys_AddXOption (const wchar_t *s)
Parse s as a set of -X options and add them to the current options mapping as returned by
PySys_GetXOptions ().

New in version 3.2.

PyObject *PySys_GetXOptions ()
Return value: Borrowed reference. Return the current dictionary of —X options, similarly to sys._xoptions.
On error, NULL is returned and an exception is set.

New in version 3.2.

6.3 Process Control

void Py_FatalError (const char *message)
Print a fatal error message and kill the process. No cleanup is performed. This function should only be invoked
when a condition is detected that would make it dangerous to continue using the Python interpreter; e.g., when

32 Chapter 6. Utilities

The Python/C API, Release 3.4.9rc1

the object administration appears to be corrupted. On Unix, the standard C library function abort () is called
which will attempt to produce a core file.

void Py_Exit (int status)
Exit the current process. This calls Py _Finalize () and then calls the standard C library function
exit (status).

int Py_AtExit (void (*func)())
Register a cleanup function to be called by Py Finalize (). The cleanup function will be called with no
arguments and should return no value. At most 32 cleanup functions can be registered. When the registration
is successful, Py_ AtExit () returns O; on failure, it returns —1. The cleanup function registered last is called
first. Each cleanup function will be called at most once. Since Python’s internal finalization will have completed
before the cleanup function, no Python APIs should be called by func.

6.4 Importing Modules

PyObject* PyImport_ImportModule (const char *name)

Return value: New reference. This is a simplified interface to PyImport_ImportModuleEx () below,
leaving the globals and locals arguments set to NULL and level set to 0. When the name argument contains
a dot (when it specifies a submodule of a package), the fromlist argument is set to the list ['+ '] so that the
return value is the named module rather than the top-level package containing it as would otherwise be the
case. (Unfortunately, this has an additional side effect when name in fact specifies a subpackage instead of a
submodule: the submodules specified in the package’s __all__ variable are loaded.) Return a new reference
to the imported module, or NULL with an exception set on failure. A failing import of a module doesn’t leave
the module in sys.modules.

This function always uses absolute imports.

PyObject* PyImport_ImportModuleNoBlock (const char *name)
This function is a deprecated alias of Py Import_ImportModule ().

Changed in version 3.3: This function used to fail immediately when the import lock was held by another thread.
In Python 3.3 though, the locking scheme switched to per-module locks for most purposes, so this function’s
special behaviour isn’t needed anymore.

PyObject* PyImport_ImportModuleEx (const char *name, PyObject *globals, PyObject *locals, PyOb-
Ject *fromlist)
Return value: New reference. Import a module. This is best described by referring to the built-in Python function
__import__ ().

The return value is a new reference to the imported module or top-level package, or NULL with an exception
set on failure. Like for ___import__ (), the return value when a submodule of a package was requested is
normally the top-level package, unless a non-empty fromlist was given.

Failing imports remove incomplete module objects, like with Py ITmport_ImportModule ().

PyObject* PyImport_ImportModuleLevelObject (PyObject *name, PyObject *globals, PyOb-
Jject *locals, PyObject *fromlist, int level)
Import a module. This is best described by referring to the built-in Python function __import__ (), as the
standard __import__ () function calls this function directly.

The return value is a new reference to the imported module or top-level package, or NULL with an exception
set on failure. Like for __import__ (), the return value when a submodule of a package was requested is
normally the top-level package, unless a non-empty fromlist was given.

New in version 3.3.

6.4. Importing Modules 33

The Python/C API, Release 3.4.9rc1

PyObject* PyImport_ImportModuleLevel (const char *name, PyObject *globals, PyObject *locals,

PyObject *fromlist, int level)
Return value: New reference. Similar to Py Import_ImportModuleLevelObject (), but the name is an
UTF-8 encoded string instead of a Unicode object.

Changed in version 3.3: Negative values for level are no longer accepted.

PyObject* PyImport_Import (PyObject *name)

Return value: New reference. This is a higher-level interface that calls the current “import hook function”
(with an explicit level of 0, meaning absolute import). It invokes the _ import__ () function from the
__builtins__ of the current globals. This means that the import is done using whatever import hooks are
installed in the current environment.

This function always uses absolute imports.

PyObject* PyImport_ReloadModule (PyObject *m)

Return value: New reference. Reload a module. Return a new reference to the reloaded module, or NULL with
an exception set on failure (the module still exists in this case).

PyObject* PyImport_AddModuleObiject (PyObject *name)

Return the module object corresponding to a module name. The name argument may be of the form package.
module. First check the modules dictionary if there’s one there, and if not, create a new one and insert it in the
modules dictionary. Return NULL with an exception set on failure.

Note: This function does not load or import the module; if the module wasn’t already loaded, you will get an
empty module object. Use Py Import_ImportModule () or one of its variants to import a module. Package
structures implied by a dotted name for name are not created if not already present.

New in version 3.3.

PyObject* PyImport_AddModule (const char *name)

Return value: Borrowed reference. Similar to Py Import_AddModuleOb ject (), but the name is a UTF-8
encoded string instead of a Unicode object.

PyObject* PyImport_ExecCodeModule (const char *name, PyObject *co)

Return value: New reference. Given a module name (possibly of the form package.module) and a code
object read from a Python bytecode file or obtained from the built-in function compile (), load the mod-
ule. Return a new reference to the module object, or NULL with an exception set if an error occurred. name
is removed from sys.modules in error cases, even if name was already in sys.modules on entry to
PyImport_ExecCodeModule (). Leaving incompletely initialized modules in sys.modules is danger-
ous, as imports of such modules have no way to know that the module object is an unknown (and probably
damaged with respect to the module author’s intents) state.

The module’s __spec___and __loader___ will be set, if not set already, with the appropriate values. The
spec’s loader will be set to the module’s ___1oader__ (if set) and to an instance of SourceFileLoader
otherwise.

The module’s ___file__ attribute will be set to the code object’s co_filename. If applicable,
__cached___ will also be set.

This function will reload the module if it was already imported. See Py Import_ReloadModule () for the
intended way to reload a module.

If name points to a dotted name of the form package.module, any package structures not already created
will still not be created.

See also PyImport_ExecCodeModuleEx () and PyImport_ExecCodeModuleWithPathnames ().

34

Chapter 6. Utilities

The Python/C API, Release 3.4.9rc1

PyObject* PyImport_ExecCodeModuleEx (const char *name, PyObject *co, const char *pathname)
Return value: New reference. Like Py Import_ExecCodeModule (), butthe __file_ attribute of the
module object is set to pathname if it is non-NULL.

See also PyImport_ExecCodeModuleWithPathnames ().

PyObject* PyImport_ExecCodeModuleObject (PyObject *name, PyObject *co, PyObject *pathname,
PyObject *cpathname)
Like PyImport_ExecCodeModuleEx (), but the __cached__ attribute of the module object is set to
cpathname if it is non-NULL. Of the three functions, this is the preferred one to use.

New in version 3.3.

PyObject* PyImport_ExecCodeModuleWithPathnames (const char *name, PyObject *co, const

char *pathname, const char *cpathname)
Like PyImport_ExecCodeModuleObject (), but name, pathname and cpathname are UTF-8 encoded

strings. Attempts are also made to figure out what the value for pathname should be from cpathname if the
former is set to NULL.

New in version 3.2.

Changed in version 3.3: Uses imp.source_from_cache () in calculating the source path if only the byte-
code path is provided.

long PyImport_GetMagicNumber ()
Return the magic number for Python bytecode files (a.k.a. . pyc and . pyo files). The magic number should be
present in the first four bytes of the bytecode file, in little-endian byte order. Returns -1 on error.

Changed in version 3.3: Return value of -1 upon failure.

const char * PyImport_GetMagicTag ()
Return the magic tag string for PEP 3147 format Python bytecode file names. Keep in mind that the value at
sys.implementation.cache_tag is authoritative and should be used instead of this function.

New in version 3.2.

PyObject* PyImport_GetModuleDict ()
Return value: Borrowed reference. Return the dictionary used for the module administration (a.k.a. sys.
modules). Note that this is a per-interpreter variable.

PyObject* PyImport_GetImporter (PyObject *path)
Return an importer object for a sys.path/pkg.__path__ item path, possibly by fetching it from the sys .
path_importer_cache dict. If it wasn’t yet cached, traverse sys.path_hooks until a hook is found
that can handle the path item. Return None if no hook could; this tells our caller it should fall back to the
built-in import mechanism. Cache the result in sys.path_importer_cache. Return a new reference to
the importer object.

void _PyImport_Init ()
Initialize the import mechanism. For internal use only.

void PyImport_Cleanup ()
Empty the module table. For internal use only.

void _PyImport_Fini ()
Finalize the import mechanism. For internal use only.

PyObject* _PyImport_FindExtension (char *, char *)
For internal use only.

PyObject* _PyImport_FixupExtension (char *, char *)
For internal use only.

6.4. Importing Modules 35

https://www.python.org/dev/peps/pep-3147

The Python/C API, Release 3.4.9rc1

int PyImport_ImportFrozenModuleObiject (PyObject *name)
Load a frozen module named name. Return 1 for success, 0 if the module is not found, and —1 with
an exception set if the initialization failed. To access the imported module on a successful load, use
PyImport_ImportModule (). (Note the misnomer — this function would reload the module if it was
already imported.)

New in version 3.3.
Changed in version 3.4: The __file___ attribute is no longer set on the module.

int PyImport_ImportFrozenModule (const char *name)
Similar to Py Import_ImportFrozenModuleObject (), butthe name is a UTF-8 encoded string instead
of a Unicode object.

struct _frozen
This is the structure type definition for frozen module descriptors, as generated by the freeze utility (see
Tools/freeze/ in the Python source distribution). Its definition, found in Include/import.h, is:

struct _frozen {
char sname;
unsigned char x*code;
int size;

}i

struct _frozen* PyImport_FrozenModules
This pointer is initialized to point to an array of st ruct _frozen records, terminated by one whose members
are all NULL or zero. When a frozen module is imported, it is searched in this table. Third-party code could
play tricks with this to provide a dynamically created collection of frozen modules.

int PyImport_AppendInittab (const char *name, PyObject* (*initfunc)(void))
Add a single module to the existing table of built-in modules. This is a convenience wrapper around
PyImport_ExtendInittab (), returning -1 if the table could not be extended. The new module can
be imported by the name name, and uses the function initfunc as the initialization function called on the first
attempted import. This should be called before Py Tnitialize ().

struct _inittab
Structure describing a single entry in the list of built-in modules. Each of these structures gives the name and ini-
tialization function for a module built into the interpreter. The name is an ASCII encoded string. Programs which
embed Python may use an array of these structures in conjunction with Py ITmport_ExtendInittab () to
provide additional built-in modules. The structure is defined in Include/import .h as:

struct _inittab {
char *name; /* ASCII encoded string #*/
PyObject* (xinitfunc) (void);

}i

int PyImport_ExtendInittab (struct _inittab *newtab)
Add a collection of modules to the table of built-in modules. The newtab array must end with a sentinel entry
which contains NULL for the name field; failure to provide the sentinel value can result in a memory fault.
Returns O on success or -1 if insufficient memory could be allocated to extend the internal table. In the event
of failure, no modules are added to the internal table. This should be called before Py Tnitialize ().

6.5 Data marshalling support

These routines allow C code to work with serialized objects using the same data format as the marshal module.
There are functions to write data into the serialization format, and additional functions that can be used to read the
data back. Files used to store marshalled data must be opened in binary mode.

36 Chapter 6. Utilities

The Python/C API, Release 3.4.9rc1

Numeric values are stored with the least significant byte first.

The module supports two versions of the data format: version O is the historical version, version 1 shares in-
terned strings in the file, and upon unmarshalling. Version 2 uses a binary format for floating point numbers.
Py_MARSHAL_VERSION indicates the current file format (currently 2).

void PyMarshal_WriteLongToFile (long value, FILE *file, int version)
Marshal a 1ong integer, value, to file. This will only write the least-significant 32 bits of value; regardless of
the size of the native 1ong type. version indicates the file format.

void PyMarshal_WriteObjectToFile (PyObject *value, FILE *file, int version)
Marshal a Python object, value, to file. version indicates the file format.

PyObject* PyMarshal_WriteObjectToString (PyObject *value, int version)
Return value: New reference. Return a string object containing the marshalled representation of value. version
indicates the file format.

The following functions allow marshalled values to be read back in.

XXX What about error detection? It appears that reading past the end of the file will always result in a negative
numeric value (where that’s relevant), but it’s not clear that negative values won’t be handled properly when there’s no
error. What’s the right way to tell? Should only non-negative values be written using these routines?

long PyMarshal_ReadLongFromFile (FILE *file)
Return a C 1ong from the data stream in a FILE « opened for reading. Only a 32-bit value can be read in using
this function, regardless of the native size of 1long.

On error, raise an exception and return —1.

int PyMarshal_ReadShortFromFile (FILE *file)
Return a C short from the data stream in a FILE* opened for reading. Only a 16-bit value can be read in
using this function, regardless of the native size of short.

On error, raise an exception and return —1.

PyObject* PyMarshal_ReadObjectFromFile (FILE *file)
Return value: New reference. Return a Python object from the data stream in a FILE » opened for reading.

On error, sets the appropriate exception (EOFError or TypeError) and returns NULL.

PyObject* PyMarshal_ReadLastObjectFromFile (FILE *file)
Return value: New reference. Return a Python object from the data stream in a FILE« opened for reading.
Unlike PyMarshal_ReadObjectFromFile (), this function assumes that no further objects will be read
from the file, allowing it to aggressively load file data into memory so that the de-serialization can operate from
data in memory rather than reading a byte at a time from the file. Only use these variant if you are certain that
you won’t be reading anything else from the file.

On error, sets the appropriate exception (EOFError or TypeError) and returns NULL.

PyObject* PyMarshal_ReadObjectFromString (const char *string, Py_ssize_t len)
Return value: New reference. Return a Python object from the data stream in a character buffer containing /en
bytes pointed to by string.

On error, sets the appropriate exception (EOFError or TypeError) and returns NULL.

6.6 Parsing arguments and building values

These functions are useful when creating your own extensions functions and methods. Additional information and
examples are available in extending-index.

6.6. Parsing arguments and building values 37

The Python/C API, Release 3.4.9rc1

The first three of these functions described, PyArg ParseTuple (), PyArg ParseTupleAndKeywords (),
and PyArg_Parse (), all use format strings which are used to tell the function about the expected arguments. The
format strings use the same syntax for each of these functions.

6.6.1 Parsing arguments

A format string consists of zero or more “format units.” A format unit describes one Python object; it is usually a single
character or a parenthesized sequence of format units. With a few exceptions, a format unit that is not a parenthesized
sequence normally corresponds to a single address argument to these functions. In the following description, the
quoted form is the format unit; the entry in (round) parentheses is the Python object type that matches the format unit;
and the entry in [square] brackets is the type of the C variable(s) whose address should be passed.

Strings and buffers

These formats allow to access an object as a contiguous chunk of memory. You don’t have to provide raw storage for
the returned unicode or bytes area. Also, you won’t have to release any memory yourself, except with the es, es#,
et and et # formats.

However, when a Py_buf fer structure gets filled, the underlying buffer is locked so that the caller can subsequently
use the buffer even inside a Py BEGIN_ALLOW_THREADS block without the risk of mutable data being resized or
destroyed. As a result, you have to call PyBuffer. Release () after you have finished processing the data (or in
any early abort case).

Unless otherwise stated, buffers are not NUL-terminated.

Note: For all # variants of formats (s#, y#, etc.), the type of the length argument (int or Py_ssize_t)is controlled
by defining the macro PY_SSIZE_T_CLEAN before including Python.h. If the macro was defined, length is a
Py_ssize_t ratherthan an int. This behavior will change in a future Python version to only support Py_ssize_t
and drop int support. It is best to always define PY_SSIZE_T_CLEAN.

s (str) [const char *] Convert a Unicode object to a C pointer to a character string. A pointer to an existing string
is stored in the character pointer variable whose address you pass. The C string is NUL-terminated. The Python
string must not contain embedded NUL bytes; if it does, a TypeError exception is raised. Unicode objects
are converted to C strings using 'ut £-8"' encoding. If this conversion fails, a UnicodeError is raised.

Note: This format does not accept bytes-like objects. If you want to accept filesystem paths and convert them
to C character strings, it is preferable to use the O& format with PyUnicode FSConverter () as converter.

s* (str or bytes-like object) [Py_buffer] This format accepts Unicode objects as well as bytes-like objects. It fills
a Py buffer structure provided by the caller. In this case the resulting C string may contain embedded NUL
bytes. Unicode objects are converted to C strings using 'ut £-8"' encoding.

s# (str, read-only bytes-like object) [const char *, int or Py_ssize_t] Like s*, except that it doesn’t accept
mutable bytes-like objects such as bytearray. The result is stored into two C variables, the first one a
pointer to a C string, the second one its length. The string may contain embedded null bytes. Unicode objects
are converted to C strings using 'ut £-8"' encoding.

z (str or None) [const char *] Like s, but the Python object may also be None, in which case the C pointer is set
to NULL.

z* (str, bytes-like object or None) [Py_buffer] Like s, but the Python object may also be None, in which case
the buf member of the Py_buffer structure is set to NULL.

38 Chapter 6. Utilities

The Python/C API, Release 3.4.9rc1

z# (str, read-only byfes-like object or None) [const char *, int] Like s#, but the Python object may also be
None, in which case the C pointer is set to NULL.

y (read-only bytes-like object) [const char *] This format converts a bytes-like object to a C pointer to a character
string; it does not accept Unicode objects. The bytes buffer must not contain embedded NUL bytes; if it does, a
TypeError exception is raised.

y* (bytes-like object) [Py_buffer] This variant on s doesn’t accept Unicode objects, only bytes-like objects. This
is the recommended way to accept binary data.

y# (read-only bytes-like object) [const char *, int] This variant on s# doesn’t accept Unicode objects, only bytes-
like objects.

S (bytes) [PyBytesObject *] Requires that the Python object is a bytes object, without attempting any con-
version. Raises TypeError if the object is not a bytes object. The C variable may also be declared as
PyObject *.

Y (bytearray) [PyByteArrayObject *] Requires that the Python object is a bytearray object, without attempt-
ing any conversion. Raises TypeError if the object is not a bytearray object. The C variable may also be
declared as PyOb ject *.

u (str) [Py_UNICODE *] Convert a Python Unicode object to a C pointer to a NUL-terminated buffer of Unicode
characters. You must pass the address of a Py UNICODE pointer variable, which will be filled with the pointer
to an existing Unicode buffer. Please note that the width of a Py_ UNTCODE character depends on compilation
options (it is either 16 or 32 bits). The Python string must not contain embedded NUL characters; if it does, a
TypeError exception is raised.

Note: Since u doesn’t give you back the length of the string, and it may contain embedded NUL characters, it
is recommended to use u# or U instead.

u# (str) [Py_UNICODE *, int] This variant on u stores into two C variables, the first one a pointer to a Unicode
data buffer, the second one its length.

Z (str or None) [Py_UNICODE *] Like u, but the Python object may also be None, in which case the
Py_UNICODE pointer is set to NULL.

Z# (str or None) [Py_UNICODE *, int] Like u#, but the Python object may also be None, in which case the
Py_UNICODE pointer is set to NULL.

U (str) [PyObject *] Requires that the Python object is a Unicode object, without attempting any conversion. Raises
TypeError if the object is not a Unicode object. The C variable may also be declared as PyOb ject *.

wx (bytearray or read-write byte-oriented buffer) [Py_buffer] This format accepts any object which imple-
ments the read-write buffer interface. It fills a Py buf fer structure provided by the caller. The buffer may
contain embedded null bytes. The caller have to call PyBuffer Release () when itis done with the buffer.

es (str) [const char *encoding, char **buffer] This variant on s is used for encoding Unicode into a character
buffer. It only works for encoded data without embedded NUL bytes.

This format requires two arguments. The first is only used as input, and must be a const char which points
to the name of an encoding as a NUL-terminated string, or NULL, in which case 'ut £-8"' encoding is used.
An exception is raised if the named encoding is not known to Python. The second argument must be a char* «;
the value of the pointer it references will be set to a buffer with the contents of the argument text. The text will
be encoded in the encoding specified by the first argument.

PyArg_ParseTuple () will allocate a buffer of the needed size, copy the encoded data into this buffer and
adjust *buffer to reference the newly allocated storage. The caller is responsible for calling PyMem Free ()
to free the allocated buffer after use.

6.6. Parsing arguments and building values 39

The Python/C API, Release 3.4.9rc1

et (str, bytes or bytearray) [const char *encoding, char **buffer] Same as es except that byte string ob-
jects are passed through without recoding them. Instead, the implementation assumes that the byte string object
uses the encoding passed in as parameter.

es# (str) [const char *encoding, char **buffer, int *buffer_length] This variant on s# is used for encoding Uni-
code into a character buffer. Unlike the e s format, this variant allows input data which contains NUL characters.

It requires three arguments. The first is only used as input, and must be a const char* which points to the
name of an encoding as a NUL-terminated string, or NULL, in which case 'ut£-8"' encoding is used. An
exception is raised if the named encoding is not known to Python. The second argument must be a char*x;
the value of the pointer it references will be set to a buffer with the contents of the argument text. The text will
be encoded in the encoding specified by the first argument. The third argument must be a pointer to an integer;
the referenced integer will be set to the number of bytes in the output buffer.

There are two modes of operation:

If *buffer points a NULL pointer, the function will allocate a buffer of the needed size, copy the encoded data
into this buffer and set *buffer to reference the newly allocated storage. The caller is responsible for calling
PyMem_Free () to free the allocated buffer after usage.

If *buffer points to a non-NULL pointer (an already allocated buffer), PyArg ParseTuple () will use this
location as the buffer and interpret the initial value of *buffer_length as the buffer size. It will then copy the
encoded data into the buffer and NUL-terminate it. If the buffer is not large enough, a ValueError will be
set.

In both cases, *buffer_length is set to the length of the encoded data without the trailing NUL byte.

et# (str,bytes or bytearray) [const char *encoding, char **buffer, int *buffer_length] Same as es# ex-
cept that byte string objects are passed through without recoding them. Instead, the implementation assumes
that the byte string object uses the encoding passed in as parameter.

Numbers
b (int) [unsigned char] Convert a nonnegative Python integer to an unsigned tiny int, stored in a C unsigned
char.

B (int) [unsigned char] Convert a Python integer to a tiny int without overflow checking, stored in a C unsigned
char.

h (int) [short int] Convert a Python integer to a C short int.

H (int) [unsigned short int] Converta Python integertoaCunsigned short int, withoutoverflow checking.
i (int) [int] Convert a Python integer to a plain C int.

I (int) [unsigned int] Convert a Python integer to a C unsigned int, without overflow checking.

1 (int) [long int] Convert a Python integer to a C long int.

k (int) [unsigned long] Convert a Python integer to a C unsigned long without overflow checking.

L (int) [PY_LONG_LONG] Convert a Python integer to a C Long long. This format is only available on plat-
forms that support long long (or _int 64 on Windows).

K (int) [unsigned PY_LONG_LONG] Convert a Python integer to a C unsigned long long without over-
flow checking. This format is only available on platforms that support unsigned long long (or
unsigned _int64 on Windows).

n (int) [Py_ssize_t] Convert a Python integer toa C Py_ssize_t.

c (bytes or bytearray of length 1) [char] Convert a Python byte, represented as a bytes or bytearray ob-
jectof length 1, to a C char.

40 Chapter 6. Utilities

The Python/C API, Release 3.4.9rc1

Changed in version 3.3: Allow bytearray objects.
C (str of length 1) [int] Convert a Python character, represented as a st r object of length 1, to a C int.
f (float) [float] Convert a Python floating point number to a C float.
d (float) [double] Convert a Python floating point number to a C double.

D (complex) [Py_complex] Convert a Python complex number to a C Py_complex structure.

Other objects

O (object) [PyObject *] Store a Python object (without any conversion) in a C object pointer. The C program thus
receives the actual object that was passed. The object’s reference count is not increased. The pointer stored is
not NULL.

0! (object) [typeobject, PyObject *] Store a Python object in a C object pointer. This is similar to O, but takes two
C arguments: the first is the address of a Python type object, the second is the address of the C variable (of
type PyOb ject) into which the object pointer is stored. If the Python object does not have the required type,
TypeError is raised.

0& (object) [converter, anything] Convert a Python object to a C variable through a converter function. This takes
two arguments: the first is a function, the second is the address of a C variable (of arbitrary type), converted to
void =. The converter function in turn is called as follows:

status = converter (object, address);

where object is the Python object to be converted and address is the void+ argument that was passed to
the PyArg Parsex () function. The returned status should be 1 for a successful conversion and 0 if the
conversion has failed. When the conversion fails, the converter function should raise an exception and leave the
content of address unmodified.

If the converter returns Py_CLEANUP__SUPPORTED, it may get called a second time if the argument parsing
eventually fails, giving the converter a chance to release any memory that it had already allocated. In this second
call, the object parameter will be NULL; address will have the same value as in the original call.

Changed in version 3.1: Py_CLEANUP_SUPPORTED was added.

p (bool) [int] Tests the value passed in for truth (a boolean predicate) and converts the result to its equivalent C
true/false integer value. Sets the int to 1 if the expression was true and 0 if it was false. This accepts any valid
Python value. See truth for more information about how Python tests values for truth.

New in version 3.3.

(items) (tuple) [matching-items] The object must be a Python sequence whose length is the number of format
units in ifems. The C arguments must correspond to the individual format units in items. Format units for
sequences may be nested.

It is possible to pass “long” integers (integers whose value exceeds the platform’s LONG_MAX) however no proper
range checking is done — the most significant bits are silently truncated when the receiving field is too small to
receive the value (actually, the semantics are inherited from downcasts in C — your mileage may vary).

A few other characters have a meaning in a format string. These may not occur inside nested parentheses. They are:

| Indicates that the remaining arguments in the Python argument list are optional. The C variables corresponding to
optional arguments should be initialized to their default value — when an optional argument is not specified,
PyArg_ParseTuple () does not touch the contents of the corresponding C variable(s).

$ PyArg ParseTupleAndKeywords () only: Indicates that the remaining arguments in the Python argument
list are keyword-only. Currently, all keyword-only arguments must also be optional arguments, so | must always
be specified before $ in the format string.

6.6. Parsing arguments and building values 41

The Python/C API, Release 3.4.9rc1

New in version 3.3.

: The list of format units ends here; the string after the colon is used as the function name in error messages (the
“associated value” of the exception that PyArg ParseTuple () raises).

; The list of format units ends here; the string after the semicolon is used as the error message instead of the default
error message. : and ; mutually exclude each other.

Note that any Python object references which are provided to the caller are borrowed references; do not decrement
their reference count!

Additional arguments passed to these functions must be addresses of variables whose type is determined by the format
string; these are used to store values from the input tuple. There are a few cases, as described in the list of format units
above, where these parameters are used as input values; they should match what is specified for the corresponding
format unit in that case.

For the conversion to succeed, the arg object must match the format and the format must be exhausted. On success, the
PyArg_Parsex () functions return true, otherwise they return false and raise an appropriate exception. When the
PyArg Parsex () functions fail due to conversion failure in one of the format units, the variables at the addresses
corresponding to that and the following format units are left untouched.

API Functions

int PyArg ParseTuple (PyObject *args, const char *format, ...)
Parse the parameters of a function that takes only positional parameters into local variables. Returns true on
success; on failure, it returns false and raises the appropriate exception.

int PyArg_VaParse (PyObject *args, const char *format, va_list vargs)
Identical to PyArg ParseTuple (), except that it accepts a va_list rather than a variable number of argu-
ments.

int PyArg ParseTupleAndKeywords (PyObject *args, PyObject *kw, const char *format, char *key-

words[], ...)
Parse the parameters of a function that takes both positional and keyword parameters into local variables. Re-

turns true on success; on failure, it returns false and raises the appropriate exception.

int PyArg VaParseTupleAndKeywords (PyObject *args, PyObject *kw, const char *format, char *key-
words[], va_list vargs)
Identical to PyArg ParseTupleAndKeywords (), except that it accepts a va_list rather than a variable

number of arguments.

int PyArg ValidateKeywordArguments (PyObject *)
Ensure that the keys in the keywords argument dictionary are strings. This is only needed if
PyArg_ParseTupleAndKeywords () is not used, since the latter already does this check.

New in version 3.2.

int PyArg_Parse (PyObject *args, const char *format, ...)
Function used to deconstruct the argument lists of “old-style” functions — these are functions which use the
METH_OLDARGS parameter parsing method, which has been removed in Python 3. This is not recommended
for use in parameter parsing in new code, and most code in the standard interpreter has been modified to no
longer use this for that purpose. It does remain a convenient way to decompose other tuples, however, and may
continue to be used for that purpose.

int PyArg_UnpackTuple (PyObject *args, const char *name, Py_ssize_t min, Py_ssize_t max, ...)
A simpler form of parameter retrieval which does not use a format string to specify the types of the arguments.
Functions which use this method to retrieve their parameters should be declared as METH_VARARGS in function
or method tables. The tuple containing the actual parameters should be passed as args; it must actually be
a tuple. The length of the tuple must be at least min and no more than max; min and max may be equal.
Additional arguments must be passed to the function, each of which should be a pointer to a PyOb ject

42 Chapter 6. Utilities

The Python/C API, Release 3.4.9rc1

variable; these will be filled in with the values from args; they will contain borrowed references. The variables
which correspond to optional parameters not given by args will not be filled in; these should be initialized by
the caller. This function returns true on success and false if args is not a tuple or contains the wrong number of
elements; an exception will be set if there was a failure.

This is an example of the use of this function, taken from the sources for the _weakref helper module for
weak references:

static PyObject =
weakref_ref (PyObject xself, PyObject *args)
{

PyObject xobject;

PyObject xcallback = NULL;

PyObject xresult = NULL;

if (PyArg_UnpackTuple (args, "ref", 1, 2, &object, &callback)) {
result = PyWeakref_ NewRef (object, callback);
}

return result;

The call to PyArg UnpackTuple () in this example is entirely equivalent to this call to
PyArg _ParseTuple():

PyArg_ParseTuple (args, "O|O:ref", &object, &callback)

6.6.2 Building values

PyObject* Py_BuildValue (const char *format, ...)

Return value: New reference. Create a new value based on a format string similar to those accepted by the
PyArg_Parsex () family of functions and a sequence of values. Returns the value or NULL in the case of an
error; an exception will be raised if NULL is returned.

Py _BuildValue () does not always build a tuple. It builds a tuple only if its format string contains two or
more format units. If the format string is empty, it returns None; if it contains exactly one format unit, it returns
whatever object is described by that format unit. To force it to return a tuple of size O or one, parenthesize the
format string.

When memory buffers are passed as parameters to supply data to build objects, as for the s and s# for-
mats, the required data is copied. Buffers provided by the caller are never referenced by the objects cre-
ated by Py _BuildValue (). In other words, if your code invokes malloc () and passes the allo-
cated memory to Py_BuildValue (), your code is responsible for calling free () for that memory once
Py _BuildValue () returns.

In the following description, the quoted form is the format unit; the entry in (round) parentheses is the Python
object type that the format unit will return; and the entry in [square] brackets is the type of the C value(s) to be
passed.

The characters space, tab, colon and comma are ignored in format strings (but not within format units such as
si#). This can be used to make long format strings a tad more readable.

s (str or None) [char *] Convert a null-terminated C string to a Python st r object using 'ut£-8"' encod-
ing. If the C string pointer is NULL, None is used.

s# (str or None) [char *, int] Convert a C string and its length to a Python str object using 'utf-8'
encoding. If the C string pointer is NULL, the length is ignored and None is returned.

6.6. Parsing arguments and building values 43

The Python/C API, Release 3.4.9rc1

y (bytes) [char *] This converts a C string to a Python bytes object. If the C string pointer is NULL, None
is returned.

y# (bytes) [char *, int] This converts a C string and its lengths to a Python object. If the C string pointer is
NULL, None is returned.

z (str or None) [char *] Same as s.
z# (str or None) [char *, int] Same as s+#.

u (str) [Py_UNICODE *] Convert a null-terminated buffer of Unicode (UCS-2 or UCS-4) data to a Python
Unicode object. If the Unicode buffer pointer is NULL, None is returned.

u# (str) [Py_UNICODE #*, int] Convert a Unicode (UCS-2 or UCS-4) data buffer and its length to a Python
Unicode object. If the Unicode buffer pointer is NULL, the length is ignored and None is returned.

U (str or None) [char *] Same as s.

U# (str or None) [char *, int] Same as s#.

i (int) [int] Convert a plain C int to a Python integer object.

b (int) [char] Convert a plain C char to a Python integer object.

h (int) [short int] Convert a plain C short int to a Python integer object.

1 (int) [long int] Convert aC long int to a Python integer object.

B (int) [unsigned char] Convert a C unsigned char to a Python integer object.

H (int) [unsigned short int] Convert a C unsigned short int to a Python integer object.
I (int) [unsigned int] Converta C unsigned int to a Python integer object.

k (int) [unsigned long] Convert a C unsigned long to a Python integer object.

L (int) [PY_LONG_LONG] Convert a C 1ong long to a Python integer object. Only available on plat-
forms that support long long (or _int 64 on Windows).

K (int) [unsigned PY_LONG_LONG] Convert a C unsigned long long to a Python integer object.
Only available on platforms that support unsigned long long (or unsigned _int64 on Win-
dows).

n (int) [Py_ssize_t] Converta C Py_ssize_t to a Python integer.

c (bytes of length 1) [char] Convert a C int representing a byte to a Python bytes object of length 1.
C (str of length 1) [int] Convert a C int representing a character to Python st r object of length 1.

d (float) [double] Convert a C double to a Python floating point number.

f (float) [float] Converta C float to a Python floating point number.

D (complex) [Py_complex *] Converta C Py_complex structure to a Python complex number.

O (object) [PyObject *] Pass a Python object untouched (except for its reference count, which is incremented
by one). If the object passed in is a NULL pointer, it is assumed that this was caused because the call
producing the argument found an error and set an exception. Therefore, Py BuildValue () will return
NULL but won’t raise an exception. If no exception has been raised yet, SystemError is set.

S (object) [PyObject *] Same as O.

N (object) [PyObject *] Same as O, except it doesn’t increment the reference count on the object. Useful when
the object is created by a call to an object constructor in the argument list.

44

Chapter 6. Utilities

The Python/C API, Release 3.4.9rc1

O& (object) [converter, anything] Convert anything to a Python object through a converter function. The func-
tion is called with anything (which should be compatible with void) as its argument and should return
a “new” Python object, or NULL if an error occurred.

(items) (tuple) [matching-items] Convert a sequence of C values to a Python tuple with the same number
of items.

[items] (1ist) [matching-items] Convert a sequence of C values to a Python list with the same number of
items.

{items} (dict) [matching-items] Convert a sequence of C values to a Python dictionary. Each pair of con-
secutive C values adds one item to the dictionary, serving as key and value, respectively.

If there is an error in the format string, the SystemError exception is set and NULL returned.

PyObject* Py_VaBuildValue (const char *format, va_list vargs)
Identical to Py BuildValue (), except that it accepts a va_list rather than a variable number of arguments.

6.7 String conversion and formatting

Functions for number conversion and formatted string output.

int PyOS_snprint £ (char *str, size_t size, const char *format, ...)
Output not more than size bytes to str according to the format string format and the extra arguments. See the
Unix man page snprintf (2).

int PyOS_vsnprint£ (char *str, size_t size, const char *format, va_list va)
Output not more than size bytes to str according to the format string format and the variable argument list va.
Unix man page vsnprintf (2).

PyOS_snprintf () and PyOS_vsnprintf () wrap the Standard C library functions snprintf () and
vsnprintf (). Their purpose is to guarantee consistent behavior in corner cases, which the Standard C functions
do not.

The wrappers ensure that str*[*size-1] is always '\ 0 ' upon return. They never write more than size bytes (including
the trailing ' \ 0 ') into str. Both functions require that str != NULL, size > Oand format != NULL.

If the platform doesn’t have vsnprintf () and the buffer size needed to avoid truncation exceeds size by more than
512 bytes, Python aborts with a Py_FatalError.

The return value (rv) for these functions should be interpreted as follows:

e When 0 <= rv < size, the output conversion was successful and rv characters were written to str (exclud-
ing the trailing '\ 0 "' byte at str*[*rv]).
* When rv >= size, the output conversion was truncated and a buffer with rv + 1 bytes would have been

needed to succeed. str¥[*size-1]is '\ 0" in this case.

e When rv < 0, “something bad happened.” str*[*size-1] is '\ 0" in this case too, but the rest of str is unde-
fined. The exact cause of the error depends on the underlying platform.

The following functions provide locale-independent string to number conversions.

double PyOS_string_ to_double (const char *s, char **endptr, PyObject *overflow_exception)
Convert a string s to a double, raising a Python exception on failure. The set of accepted strings corresponds
to the set of strings accepted by Python’s f1oat () constructor, except that s must not have leading or trailing
whitespace. The conversion is independent of the current locale.

If endptr is NULL, convert the whole string. Raise ValueError and return -1 . 0 if the string is not a valid
representation of a floating-point number.

6.7. String conversion and formatting 45

The Python/C API, Release 3.4.9rc1

If endptr is not NULL, convert as much of the string as possible and set xendpt r to point to the first unconverted
character. If no initial segment of the string is the valid representation of a floating-point number, set xendptr
to point to the beginning of the string, raise ValueError, and return -1 . 0.

If s represents a value that is too large to store in a float (for example, "1e500" is such a string on many
platforms) then if overflow_exception is NULL return Py_HUGE_VAL (with an appropriate sign) and
don’t set any exception. Otherwise, overflow_exception must point to a Python exception object; raise
that exception and return —1 . 0. In both cases, set xendptr to point to the first character after the converted
value.

If any other error occurs during the conversion (for example an out-of-memory error), set the appropriate Python
exception and return -1 . 0.

New in version 3.1.

char* PyOS_double_to_string (double val, char format_code, int precision, int flags, int *ptype)
Convert a double val to a string using supplied format_code, precision, and flags.

format_code mustbeoneof 'e', 'E', "', 'F', 'g', 'G"' or 'r'. For 'r', the supplied precision must be
0 and is ignored. The ' r' format code specifies the standard repr () format.

flags can be zero or more of the values Py_DTSF_SIGN, Py_DTSF_ADD_DOT_0, or Py_DTSF_ALT, or-ed
together:

e Py_DTSF_SIGN means to always precede the returned string with a sign character, even if val is non-
negative.

e Py_DTSF_ADD_DOT_0 means to ensure that the returned string will not look like an integer.

e Py DTSF _ALT means to apply “alternate” formatting rules. See the documentation for the
PyOS_snprintf () '#"' specifier for details.

If ptype is non-NULL, then the value it points to will be set to one of Py_DTST_FINITE, Py_DTST_INFINITE,
or Py_DTST_NAN, signifying that val is a finite number, an infinite number, or not a number, respectively.

The return value is a pointer to buffer with the converted string or NULL if the conversion failed. The caller is
responsible for freeing the returned string by calling PyMem Free ().

New in version 3.1.

int PyOS_stricmp (const char *s/, const char *s2)
Case insensitive comparison of strings. The function works almost identically to strcmp () except that it
ignores the case.

int PyOS_strnicmp (const char *s/, const char *s2, Py_ssize_t size)
Case insensitive comparison of strings. The function works almost identically to st rncmp () except that it
ignores the case.

6.8 Reflection

PyObject* PyEval_GetBuiltins ()
Return value: Borrowed reference. Return a dictionary of the builtins in the current execution frame, or the
interpreter of the thread state if no frame is currently executing.

PyObject* PyEval_GetLocals ()
Return value: Borrowed reference. Return a dictionary of the local variables in the current execution frame, or
NULL if no frame is currently executing.

46 Chapter 6. Utilities

The Python/C API, Release 3.4.9rc1

PyObject* PyEval_GetGlobals ()
Return value: Borrowed reference. Return a dictionary of the global variables in the current execution frame, or
NULL if no frame is currently executing.

PyFrameObject* PyEval GetFrame ()
Return value: Borrowed reference. Return the current thread state’s frame, which is NULL if no frame is
currently executing.

int PyFrame_GetLineNumber (PyFrameObject *frame)
Return the line number that frame is currently executing.

const char* PyEval_GetFuncName (PyObject *func)
Return the name of func if it is a function, class or instance object, else the name of funcs type.

const char* PyEval_GetFuncDesc (PyObject *func)
Return a description string, depending on the type of func. Return values include “()” for functions and methods,

” constructor”, ” instance”, and ” object”. Concatenated with the result of PyEval GetFuncName (), the
result will be a description of func.

6.9 Codec registry and support functions

int PyCodec_Register (PyObject *search_function)
Register a new codec search function.

As side effect, this tries to load the encodings package, if not yet done, to make sure that it is always first in
the list of search functions.

int PyCodec_KnownEncoding (const char *encoding)
Return 1 or 0 depending on whether there is a registered codec for the given encoding.

PyObject* PyCodec_Encode (PyObject *object, const char *encoding, const char *errors)
Generic codec based encoding API.

object is passed through the encoder function found for the given encoding using the error handling method de-
fined by errors. errors may be NULL to use the default method defined for the codec. Raises a LookupError
if no encoder can be found.

PyObject* PyCodec_Decode (PyObject *object, const char *encoding, const char *errors)
Generic codec based decoding API.

object is passed through the decoder function found for the given encoding using the error handling method de-
fined by errors. errors may be NULL to use the default method defined for the codec. Raises a LookupError
if no encoder can be found.

6.9.1 Codec lookup API

In the following functions, the encoding string is looked up converted to all lower-case characters, which makes
encodings looked up through this mechanism effectively case-insensitive. If no codec is found, a KeyError is set
and NULL returned.

PyObject* PyCodec_Encoder (const char *encoding)
Get an encoder function for the given encoding.

PyObject* PyCodec_Decoder (const char *encoding)
Get a decoder function for the given encoding.

PyObject* PyCodec_IncrementalEncoder (const char *encoding, const char *errors)
Get an IncrementalEncoder object for the given encoding.

6.9. Codec registry and support functions 47

The Python/C API, Release 3.4.9rc1

PyObject* PyCodec_IncrementalDecoder (const char *encoding, const char *errors)
Get an IncrementalDecoder object for the given encoding.

PyObject* PyCodec_StreamReader (const char *encoding, PyObject *stream, const char *errors)
Get a St reamReader factory function for the given encoding.

PyObject* PyCodec_StreamWriter (const char *encoding, PyObject *stream, const char *errors)
Geta StreamWriter factory function for the given encoding.

6.9.2 Registry API for Unicode encoding error handlers

int PyCodec_RegisterError (const char *name, PyObject *error)
Register the error handling callback function error under the given name. This callback function will be called
by a codec when it encounters unencodable characters/undecodable bytes and name is specified as the error
parameter in the call to the encode/decode function.

The callback gets a single argument, an instance of UnicodeEncodeError, UnicodeDecodeError or
UnicodeTranslateError that holds information about the problematic sequence of characters or bytes
and their offset in the original string (see Unicode Exception Objects for functions to extract this information).
The callback must either raise the given exception, or return a two-item tuple containing the replacement for the
problematic sequence, and an integer giving the offset in the original string at which encoding/decoding should
be resumed.

Return 0 on success, —1 on error.

PyObject* PyCodec_LookupError (const char *name)
Lookup the error handling callback function registered under name. As a special case NULL can be passed, in
which case the error handling callback for “strict” will be returned.

PyObject* PyCodec_StrictErrors (PyObject *exc)
Raise exc as an exception.

PyObject* PyCodec_IgnoreErrors (PyObject *exc)
Ignore the unicode error, skipping the faulty input.

PyObject* PyCodec_ReplaceErrors (PyObject *exc)
Replace the unicode encode error with ? or U+FFFD.

PyObject* PyCodec_XMLCharRefReplaceErrors (PyObject *exc)
Replace the unicode encode error with XML character references.

PyObject* PyCodec_BackslashReplaceErrors (PyObject *exc)
Replace the unicode encode error with backslash escapes (\x, \u and \U).

48 Chapter 6. Utilities

CHAPTER
SEVEN

ABSTRACT OBJECTS LAYER

The functions in this chapter interact with Python objects regardless of their type, or with wide classes of object types
(e.g. all numerical types, or all sequence types). When used on object types for which they do not apply, they will
raise a Python exception.

It is not possible to use these functions on objects that are not properly initialized, such as a list object that has been
created by PyList_New (), but whose items have not been set to some non-NULL value yet.

7.1 Object Protocol

PyObject* Py_NotImplemented
The Not Implemented singleton, used to signal that an operation is not implemented for the given type
combination.

Py RETURN_NOTIMPLEMENTED
Properly handle returning Py Not Implemented from within a C function (that is, increment the reference
count of Notlmplemented and return it).

int PyObject_Print (PyObject *o, FILE *fp, int flags)
Print an object o, on file fp. Returns -1 on error. The flags argument is used to enable certain printing options.
The only option currently supported is Py_PRINT_RAW; if given, the st r () of the object is written instead of
the repr ().

int PyObject_HasAttr (PyObject *o, PyObject *attr_name)
Returns 1 if o has the attribute attr_name, and 0 otherwise. This is equivalent to the Python expression
hasattr (o, attr_name). This function always succeeds.

int PyObject_HasAttrString (PyObject *o, const char *attr_name)
Returns 1 if o has the attribute attr_name, and 0 otherwise. This is equivalent to the Python expression
hasattr (o, attr_name). This function always succeeds.

PyObject* PyObject_GetAttr (PyObject *o, PyObject *attr_name)
Return value: New reference. Retrieve an attribute named attr_name from object 0. Returns the attribute value
on success, or NULL on failure. This is the equivalent of the Python expression o.attr_name.

PyObject* PyObject_GetAttrString (PyObject *o, const char *attr_name)
Return value: New reference. Retrieve an attribute named attr_name from object o. Returns the attribute value
on success, or NULL on failure. This is the equivalent of the Python expression o.attr_name.

PyObject* PyObject_GenericGetAttr (PyObject *o, PyObject *name)
Generic attribute getter function that is meant to be put into a type object’s tp_getattro slot. It looks for
a descriptor in the dictionary of classes in the object’s MRO as well as an attribute in the object’s __dict_
(if present). As outlined in descriptors, data descriptors take preference over instance attributes, while non-data
descriptors don’t. Otherwise, an AttributeError is raised.

49

The Python/C API, Release 3.4.9rc1

int PyObject_SetAttr (PyObject *o, PyObject *attr_name, PyObject *v)
Set the value of the attribute named attr_name, for object o, to the value v. Returns —1 on failure. This is the
equivalent of the Python statement 0. attr_name = wv.

int PyObject_SetAttrString (PyObject *o, const char *attr_name, PyObject *v)
Set the value of the attribute named attr_name, for object o, to the value v. Returns —1 on failure. This is the
equivalent of the Python statement 0. attr_name = wv.

int PyObject_GenericSetAttr (PyObject *o, PyObject *name, PyObject *value)
Generic attribute setter function that is meant to be put into a type object’s tp_setattro slot. It looks for
a data descriptor in the dictionary of classes in the object’s MRO, and if found it takes preference over setting
the attribute in the instance dictionary. Otherwise, the attribute is set in the object’s ___dict___ (if present).
Otherwise, an AttributeError is raised and —1 is returned.

int PyObject_DelAttr (PyObject *o, PyObject *attr_name)
Delete attribute named attr_name, for object 0. Returns —1 on failure. This is the equivalent of the Python
statement del o.attr_name.

int PyObject_DelAttrString (PyObject *o, const char *attr_name)
Delete attribute named attr_name, for object 0. Returns —1 on failure. This is the equivalent of the Python
statement del o.attr_name.

PyObject* PyObject_GenericGetDict (PyObject *o, void *context)
A generic implementation for the getter of a___dict___ descriptor. It creates the dictionary if necessary.

New in version 3.3.

int PyObject_GenericSetDict (PyObject *o, void *context)
A generic implementation for the setter of a ___dict__ descriptor. This implementation does not allow the
dictionary to be deleted.

New in version 3.3.

PyObject* PyObject_RichCompare (PyObject *ol, PyObject *o02, int opid)
Return value: New reference. Compare the values of ol and 02 using the operation specified by opid, which
must be one of Py_LT, Py_LE, Py_EQ, Py_NE, Py_GT, or Py_GE, corresponding to <, <=, ==, != >,
or >= respectively. This is the equivalent of the Python expression o1 op o2, where op is the operator
corresponding to opid. Returns the value of the comparison on success, or NULL on failure.

int PyObject_RichCompareBool (PyObject *ol, PyObject *02, int opid)
Compare the values of o/ and o2 using the operation specified by opid, which must be one of Py_LT, Py_LE,
Py_EQ, Py_NE, Py_GT, or Py_GE, corresponding to <, <=, ==, !=, >, or >= respectively. Returns —1 on
error, O if the result is false, 1 otherwise. This is the equivalent of the Python expression o1 op 02, where op
is the operator corresponding to opid.

Note: If o/ and 02 are the same object, PyOb ject_RichCompareBool () will always return 1 for Py_EQ and
0 for Py_NE.

PyObject* PyObject_Repr (PyObject *o)
Return value: New reference. Compute a string representation of object 0. Returns the string representation on
success, NULL on failure. This is the equivalent of the Python expression repr (o). Called by the repr ()
built-in function.

Changed in version 3.4: This function now includes a debug assertion to help ensure that it does not silently
discard an active exception.

PyObject* PyObject_ASCII (PyObject *0)
As PyOb ject_Repr (), compute a string representation of object o, but escape the non-ASCII characters in

50 Chapter 7. Abstract Objects Layer

The Python/C API, Release 3.4.9rc1

the string returned by PyOb ject_Repr () with \x, \u or \U escapes. This generates a string similar to that
returned by PyOb ject_Repr () in Python 2. Called by the ascii () built-in function.

PyObject* PyObject_Strx (PyObject *0)
Return value: New reference. Compute a string representation of object 0. Returns the string representation
on success, NULL on failure. This is the equivalent of the Python expression str (o). Called by the str ()
built-in function and, therefore, by the print () function.

Changed in version 3.4: This function now includes a debug assertion to help ensure that it does not silently
discard an active exception.

PyObject* PyObject_Bytes (PyObject *0)
Compute a bytes representation of object o. NULL is returned on failure and a bytes object on success. This is
equivalent to the Python expression bytes (o), when o is not an integer. Unlike bytes (o), a TypeError is
raised when o is an integer instead of a zero-initialized bytes object.

int PyObject_IsSubclass (PyObject *derived, PyObject *cls)
Return 1 if the class derived is identical to or derived from the class cls, otherwise return 0. In case of an error,
return —1.

If cls is a tuple, the check will be done against every entry in cls. The result will be 1 when at least one of the
checks returns 1, otherwise it will be 0.

If clshasa__ subclasscheck__ () method, it will be called to determine the subclass status as described
in PEP 3119. Otherwise, derived is a subclass of cls if it is a direct or indirect subclass, i.e. contained in
cls.__mro

Normally only class objects, i.e. instances of type or a derived class, are considered classes. However, objects
can override this by having a ___bases___ attribute (which must be a tuple of base classes).

int PyObject_IsInstance (PyObject *inst, PyObject *cls)
Return 1 if inst is an instance of the class cls or a subclass of c¢ls, or 0 if not. On error, returns —1 and sets an
exception.

If cls is a tuple, the check will be done against every entry in cls. The result will be 1 when at least one of the
checks returns 1, otherwise it will be O.

If clshasa___instancecheck__ () method, it will be called to determine the subclass status as described
in PEP 3119. Otherwise, inst is an instance of cls if its class is a subclass of cls.

An instance inst can override what is considered its class by having a ___class___ attribute.

An object cls can override if it is considered a class, and what its base classes are, by having a __bases___
attribute (which must be a tuple of base classes).

int PyCallable_Check (PyObject *0)
Determine if the object o is callable. Return 1 if the object is callable and O otherwise. This function always
succeeds.

PyObject* PyObject_Call (PyObject *callable_object, PyObject *args, PyObject *kw)
Return value: New reference. Call a callable Python object callable_object, with arguments given by the tuple
args, and named arguments given by the dictionary kw. If no named arguments are needed, kw may be NULL.
args must not be NULL, use an empty tuple if no arguments are needed. Returns the result of the call on success,
or NULL on failure. This is the equivalent of the Python expression callable_object (xargs, *x*kw).

PyObject* PyObject_CallObiject (PyObject *callable_object, PyObject *args)
Return value: New reference. Call a callable Python object callable_object, with arguments given by the tuple
args. If no arguments are needed, then args may be NULL. Returns the result of the call on success, or NULL
on failure. This is the equivalent of the Python expression callable_object (xargs).

PyObject* PyObject_CallFunction (PyObject *callable, const char *format, ...)
Return value: New reference. Call a callable Python object callable, with a variable number of C arguments.

7.1. Object Protocol 51

https://www.python.org/dev/peps/pep-3119
https://www.python.org/dev/peps/pep-3119

The Python/C API, Release 3.4.9rc1

The C arguments are described using a Py BuildValue () style format string. The format may be NULL,
indicating that no arguments are provided. Returns the result of the call on success, or NULL on failure. This is
the equivalent of the Python expression callable (xargs). Note that if you only pass PyObject * args,
PyObject_CallFunctionObjArgs () is a faster alternative.

Changed in version 3.4: The type of format was changed from char «.

PyObject* PyObject_CallMethod (PyObject *o, const char *method, const char *format, ...)
Return value: New reference. Call the method named method of object o with a variable number of C arguments.
The C arguments are described by a Py BuildValue () format string that should produce a tuple. The format
may be NULL, indicating that no arguments are provided. Returns the result of the call on success, or NULL
on failure. This is the equivalent of the Python expression o.method (args). Note that if you only pass
PyObject xargs, PyObject_CallMethodObjArgs () is afaster alternative.

Changed in version 3.4: The types of method and format were changed from char =.

PyObject* PyObject_CallFunctionObjArgs (PyObject *callable, ..., NULL)
Return value: New reference. Call a callable Python object callable, with a variable number of PyOb ject *
arguments. The arguments are provided as a variable number of parameters followed by NULL. Returns the
result of the call on success, or NULL on failure.

PyObject* PyObject_CallMethodObjArgs (PyObject *o, PyObject *name, ..., NULL)
Return value: New reference. Calls a method of the object o, where the name of the method is given as a
Python string object in name. It is called with a variable number of PyOb ject » arguments. The arguments
are provided as a variable number of parameters followed by NULL. Returns the result of the call on success, or
NULL on failure.

Py_hash_t PyObject_Hash (PyObject *o)
Compute and return the hash value of an object 0. On failure, return —1. This is the equivalent of the Python
expression hash (o).

Changed in version 3.2: The return type is now Py_hash_t. This is a signed integer the same size as Py_ssize_t.

Py_hash_t PyObject_HashNotImplemented (PyObject *o)
Set a TypeError indicating that type (o) is not hashable and return —1. This function receives special

treatment when stored in a tp_hash slot, allowing a type to explicitly indicate to the interpreter that it is not
hashable.

int PyObject_IsTrue (PyObject *0)
Returns 1 if the object o is considered to be true, and 0 otherwise. This is equivalent to the Python expression
not not o. On failure, return - 1.

int PyObject_Not (PyObject *o)
Returns 0 if the object o is considered to be true, and 1 otherwise. This is equivalent to the Python expression
not o. On failure, return —1.

PyObject* PyObject_Type (PyObject *o)
Return value: New reference. When o is non-NULL, returns a type object corresponding to the object type
of object 0. On failure, raises SystemError and returns NULL. This is equivalent to the Python expression
type (o). This function increments the reference count of the return value. There’s really no reason to use this
function instead of the common expression o—>ob_type, which returns a pointer of type Py TypeOb ject *,
except when the incremented reference count is needed.

int PyObject_TypeCheck (PyObject *o, PyTypeObject *type)
Return true if the object o is of type type or a subtype of rype. Both parameters must be non-NULL.

Py_ssize_t PyObject_Length (PyObject *0)

Py_ssize_t PyObject_Size (PyObject *0)
Return the length of object o. If the object o provides either the sequence and mapping protocols, the sequence
length is returned. On error, —1 is returned. This is the equivalent to the Python expression len (o).

52 Chapter 7. Abstract Objects Layer

The Python/C API, Release 3.4.9rc1

Py_ssize_t PyObject_LengthHint (PyObject *o, Py_ssize_t default)
Return an estimated length for the object o. First try to return its actual length, then an estimate using
__length_hint__ (), and finally return the default value. On error return —1. This is the equivalent to
the Python expression operator.length_hint (o, default).

New in version 3.4.

PyObject* PyObject_GetItem (PyObject *o, PyObject *key)
Return value: New reference. Return element of o corresponding to the object key or NULL on failure. This is
the equivalent of the Python expression o [key].

int PyObject_SetItem (PyObject *o, PyObject *key, PyObject *v)
Map the object key to the value v. Returns —1 on failure. This is the equivalent of the Python statement o [key]
= V.

int PyObject_DelItem (PyObject *o, PyObject *key)
Delete the mapping for key from o. Returns —1 on failure. This is the equivalent of the Python statement del
olkeyl].

PyObject* PyObject_Dir (PyObject *o)
Return value: New reference. This is equivalent to the Python expression dir (o), returning a (possibly empty)
list of strings appropriate for the object argument, or NULL if there was an error. If the argument is NULL, this
is like the Python dir (), returning the names of the current locals; in this case, if no execution frame is active
then NULL is returned but PyErr_Occurred () will return false.

PyObject* PyObject_GetIter (PyObject *0)
Return value: New reference. This is equivalent to the Python expression iter (o). It returns a new iterator
for the object argument, or the object itself if the object is already an iterator. Raises TypeError and returns
NULL if the object cannot be iterated.

7.2 Number Protocol

int PyNumber_Check (PyObject *0)
Returns 1 if the object o provides numeric protocols, and false otherwise. This function always succeeds.

PyObject* PyNumber_Add (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of adding o/ and 02, or NULL on failure. This is the equivalent
of the Python expression o1 + o02.

PyObject* PyNumber_Subtract (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of subtracting 02 from o/, or NULL on failure. This is the
equivalent of the Python expression o1 - 02.

PyObject* PyNumber_Multiply (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of multiplying o/ and 02, or NULL on failure. This is the
equivalent of the Python expression o1 * o02.

PyObject* PyNumber_FloorDivide (PyObject *ol, PyObject *02)
Return value: New reference. Return the floor of o/ divided by 02, or NULL on failure. This is equivalent to the
“classic” division of integers.

PyObject* PyNumber_TrueDivide (PyObject *ol, PyObject *02)
Return value: New reference. Return a reasonable approximation for the mathematical value of o/ divided by 02,
or NULL on failure. The return value is “approximate” because binary floating point numbers are approximate;
it is not possible to represent all real numbers in base two. This function can return a floating point value when
passed two integers.

7.2. Number Protocol 53

The Python/C API, Release 3.4.9rc1

PyObject* PyNumber_Remainder (PyObject *ol, PyObject *02)
Return value: New reference. Returns the remainder of dividing ol by 02, or NULL on failure. This is the
equivalent of the Python expression o1 % 02.

PyObject* PyNumber_Divmod (PyObject *ol, PyObject *02)
Return value: New reference. See the built-in function divmod (). Returns NULL on failure. This is the
equivalent of the Python expression divmod (0l, 02).

PyObject* PyNumber_Power (PyObject *ol, PyObject *o2, PyObject *03)
Return value: New reference. See the built-in function pow () . Returns NULL on failure. This is the equivalent
of the Python expression pow (01, 02, 03), where 03 is optional. If 03 is to be ignored, pass Py_None in
its place (passing NULL for 03 would cause an illegal memory access).

PyObject* PyNumber_Negative (PyObject *0)
Return value: New reference. Returns the negation of o on success, or NULL on failure. This is the equivalent
of the Python expression —o.

PyObject* PyNumber_Positive (PyObject *0)
Return value: New reference. Returns o on success, or NULL on failure. This is the equivalent of the Python
expression +o.

PyObject* PyNumber_Absolute (PyObject *0)
Return value: New reference. Returns the absolute value of o, or NULL on failure. This is the equivalent of the
Python expression abs (o) .

PyObject* PyNumber_Invert (PyObject *0)
Return value: New reference. Returns the bitwise negation of o on success, or NULL on failure. This is the
equivalent of the Python expression ~o.

PyObject* PyNumber_Lshift (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of left shifting o/ by 02 on success, or NULL on failure. This
is the equivalent of the Python expression o1 << 02.

PyObject* PyNumber_Rshift (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of right shifting 0/ by 02 on success, or NULL on failure. This
is the equivalent of the Python expression o1 >> o02.

PyObject* PyNumber_And (PyObject *ol, PyObject *02)
Return value: New reference. Returns the “bitwise and” of o/ and 02 on success and NULL on failure. This is
the equivalent of the Python expression o1 & o2.

PyObject* PyNumber_Xor (PyObject *ol, PyObject *02)
Return value: New reference. Returns the “bitwise exclusive or” of ol by 02 on success, or NULL on failure.
This is the equivalent of the Python expression o1 ~ o02.

PyObject* PyNumber_Or (PyObject *ol, PyObject *02)
Return value: New reference. Returns the “bitwise or” of o/ and 02 on success, or NULL on failure. This is the
equivalent of the Python expression o1 | o02.

PyObject* PyNumber_InPlaceAdd (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of adding o/ and 02, or NULL on failure. The operation is done
in-place when ol supports it. This is the equivalent of the Python statement 01 += 02.

PyObject* PyNumber_InPlaceSubtract (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of subtracting 02 from o/, or NULL on failure. The operation
is done in-place when ol supports it. This is the equivalent of the Python statement 01 —= o2.

PyObject* PyNumber_InPlaceMultiply (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of multiplying o/ and 02, or NULL on failure. The operation is
done in-place when ol supports it. This is the equivalent of the Python statement 01 *= o2.

54 Chapter 7. Abstract Objects Layer

The Python/C API, Release 3.4.9rc1

PyObject* PyNumber_InPlaceFloorDivide (PyObject *ol, PyObject *02)
Return value: New reference. Returns the mathematical floor of dividing o/ by 02, or NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement 01 //= o02.

PyObject* PyNumber_InPlaceTrueDivide (PyObject *ol, PyObject *02)
Return value: New reference. Return a reasonable approximation for the mathematical value of o/ divided by 02,
or NULL on failure. The return value is “approximate” because binary floating point numbers are approximate;
it is not possible to represent all real numbers in base two. This function can return a floating point value when
passed two integers. The operation is done in-place when ol supports it.

PyObject* PyNumber_InPlaceRemainder (PyObject *ol, PyObject *02)
Return value: New reference. Returns the remainder of dividing ol by 02, or NULL on failure. The operation is
done in-place when ol supports it. This is the equivalent of the Python statement 01 %= o2.

PyObject* PyNumber_InPlacePower (PyObject *ol, PyObject *02, PyObject *03)
Return value: New reference. See the built-in function pow () . Returns NULL on failure. The operation is done
in-place when ol supports it. This is the equivalent of the Python statement o1 **= 02 wheno3is Py_None,
or an in-place variant of pow (01, 02, 03) otherwise. If 03 is to be ignored, pass Py_None in its place
(passing NULL for 03 would cause an illegal memory access).

PyObject* PyNumber_InPlaceLshift (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of left shifting o by 02 on success, or NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement 01 <<= o2.

PyObject* PyNumber_InPlaceRshift (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of right shifting o/ by 02 on success, or NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement 01 >>= o02.

PyObject* PyNumber_InPlaceAnd (PyObject *ol, PyObject *02)
Return value: New reference. Returns the “bitwise and” of o/ and 02 on success and NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement 01 &= o02.

PyObject* PyNumber_InPlaceXor (PyObject *ol, PyObject *02)
Return value: New reference. Returns the “bitwise exclusive or” of ol by 02 on success, or NULL on failure.
The operation is done in-place when ol supports it. This is the equivalent of the Python statement 01 "= 02.

PyObject* PyNumber_InPlaceOr (PyObject *ol, PyObject *02)
Return value: New reference. Returns the “bitwise or” of o/ and 02 on success, or NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement 01 |= 02.

PyObject* PyNumber_Long (PyObject *o)
Return value: New reference. Returns the o converted to an integer object on success, or NULL on failure. This
is the equivalent of the Python expression int (o).

PyObject* PyNumber_Float (PyObject *0)
Return value: New reference. Returns the o converted to a float object on success, or NULL on failure. This is
the equivalent of the Python expression f1oat (o).

PyObject* PyNumber_Index (PyObject *0)
Returns the o converted to a Python int on success or NULL with a TypeError exception raised on failure.

PyObject* PyNumber_ToBase (PyObject *n, int base)
Returns the integer n converted to base base as a string. The base argument must be one of 2, 8, 10, or 16. For
base 2, 8, or 16, the returned string is prefixed with a base marker of '0b"', '0o"', or '0x"', respectively. If n
is not a Python int, it is converted with PyNumber_ Index () first.

Py_ssize_t PyNumber_AsSsize_t (PyObject *o, PyObject *exc)
Returns o converted to a Py_ssize_t value if o can be interpreted as an integer. If the call fails, an exception is
raised and -1 is returned.

7.2. Number Protocol 55

The Python/C API, Release 3.4.9rc1

If 0 can be converted to a Python int but the attempt to convert to a Py_ssize_t value would raise an
OverflowError, then the exc argument is the type of exception that will be raised (usually IndexError or
OverflowError). If excis NULL, then the exception is cleared and the value is clipped to PY_SSIZE_T_MIN
for a negative integer or PY_SSIZE T MAX for a positive integer.

int PyIndex_Check (PyObject *0)
Returns True if o is an index integer (has the nb_index slot of the tp_as_number structure filled in).

7.3 Sequence Protocol

int PySequence_Check (PyObject *0)
Return 1 if the object provides sequence protocol, and 0 otherwise. This function always succeeds.

Py_ssize_t PySequence_Size (PyObject *0)

Py_ssize_t PySequence_Length (PyObject *o)
Returns the number of objects in sequence o on success, and —1 on failure. For objects that do not provide
sequence protocol, this is equivalent to the Python expression len (o).

PyObject* PySequence_Concat (PyObject *ol, PyObject *02)
Return value: New reference. Return the concatenation of o/ and 02 on success, and NULL on failure. This is
the equivalent of the Python expression o1 + o02.

PyObject* PySequence_Repeat (PyObject *o, Py_ssize_t count)
Return value: New reference. Return the result of repeating sequence object o count times, or NULL on failure.
This is the equivalent of the Python expression o % count.

PyObject* PySequence_InPlaceConcat (PyObject *ol, PyObject *02)
Return value: New reference. Return the concatenation of o/ and 02 on success, and NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python expression o1 += 02.

PyObject* PySequence_InPlaceRepeat (PyObject *o, Py_ssize_t count)
Return value: New reference. Return the result of repeating sequence object o count times, or NULL on failure.
The operation is done in-place when o supports it. This is the equivalent of the Python expression o *=
count.

PyObject* PySequence_GetItem (PyObject *o, Py_ssize_t i)
Return value: New reference. Return the ith element of o, or NULL on failure. This is the equivalent of the
Python expression o [1].

PyObject* PySequence_GetSlice (PyObject *o, Py_ssize_t il, Py_ssize_t i2)
Return value: New reference. Return the slice of sequence object o between i/ and i2, or NULL on failure. This
is the equivalent of the Python expression o [11:12].

int PySequence_SetItem (PyObject *o, Py_ssize_t i, PyObject *v)
Assign object v to the ith element of 0. Returns —1 on failure. This is the equivalent of the Python statement
o[i] = w. This function does not steal a reference to v.

int PySequence_DelItem (PyObject *o, Py_ssize_t i)
Delete the ith element of object 0. Returns —1 on failure. This is the equivalent of the Python statement de 1
of[i].

int PySequence_SetSlice (PyObject *o, Py_ssize_t il, Py_ssize_t i2, PyObject *v)
Assign the sequence object v to the slice in sequence object o from i/ to i2. This is the equivalent of the Python
statemento[11:12] = w.

int PySequence_DelSlice (PyObject *o, Py_ssize_til, Py_ssize_t i2)
Delete the slice in sequence object o from i/ to i2. Returns —1 on failure. This is the equivalent of the Python
statement del o[il:12].

56 Chapter 7. Abstract Objects Layer

The Python/C API, Release 3.4.9rc1

Py_ssize_t PySequence_Count (PyObject *o, PyObject *value)
Return the number of occurrences of value in o, that is, return the number of keys for which o [key] ==
value. On failure, return —1. This is equivalent to the Python expression o.count (value).

int PySequence_Contains (PyObject *o, PyObject *value)
Determine if o contains value. If an item in o is equal to value, return 1, otherwise return 0. On error, return
—1. This is equivalent to the Python expression value in o.

Py_ssize_t PySequence_Index (PyObject *o, PyObject *value)
Return the first index i for which o [1] == value. On error, return —1. This is equivalent to the Python
expression o . index (value).

PyObject* PySequence_List (PyObject *0)
Return value: New reference. Return a list object with the same contents as the sequence or iterable o, or NULL
on failure. The returned list is guaranteed to be new. This is equivalent to the Python expression 1ist (o).

PyObject* PySequence_Tuple (PyObject *0)
Return value: New reference. Return a tuple object with the same contents as the arbitrary sequence o or NULL
on failure. If o is a tuple, a new reference will be returned, otherwise a tuple will be constructed with the
appropriate contents. This is equivalent to the Python expression tuple (o).

PyObject* PySequence_Fast (PyObject *o, const char *m)
Return value: New reference. Return the sequence o as a list, unless it is already a tuple or list, in which case o
is returned. Use PySequence_Fast_GET_ITEM() to access the members of the result. Returns NULL on
failure. If the object is not a sequence, raises TypeError with m as the message text.

PyObject* PySequence_Fast_GET_ITEM (PyObject *o, Py_ssize_t i)
Return value: Borrowed reference. Return the ith element of o, assuming that o was returned by
PySequence_Fast (), o01is not NULL, and that i is within bounds.

PyObject** PySequence_Fast_ITEMS (PyObject *0)
Return the underlying array of PyObject pointers. Assumes that o was returned by PySequence_Fast ()
and o is not NULL.

Note, if a list gets resized, the reallocation may relocate the items array. So, only use the underlying array
pointer in contexts where the sequence cannot change.

PyObject* PySequence_ITEM (PyObject *o, Py_ssize_t i)
Return value: New reference. Return the ith element of o or NULL on failure. Macro form of
PySequence_GetItem () but without checking that PySequence Check () on o is true and without
adjustment for negative indices.

Py_ssize_t PySequence_Fast_GET_SIZE (PyObject *o0)
Returns the length of o, assuming that o was returned by PySequence_Fast () and that o is not NULL. The
size can also be gotten by calling PySequence_Size () ono, but PySequence Fast_GET_SIZE () is
faster because it can assume o is a list or tuple.

7.4 Mapping Protocol

int PyMapping_Check (PyObject *0)
Return 1 if the object provides mapping protocol, and 0 otherwise. This function always succeeds.

Py_ssize_t PyMapping_Size (PyObject *o)

Py_ssize_t PyMapping_Length (PyObject *o)
Returns the number of keys in object o on success, and —1 on failure. For objects that do not provide mapping
protocol, this is equivalent to the Python expression len (o).

7.4. Mapping Protocol 57

The Python/C API, Release 3.4.9rc1

int PyMapping_DelItemString (PyObject *o, const char *key)
Remove the mapping for object key from the object 0. Return —1 on failure. This is equivalent to the Python
statement del o[key].

int PyMapping DelItem (PyObject *o, PyObject *key)
Remove the mapping for object key from the object 0. Return —1 on failure. This is equivalent to the Python
statement del o[key].

int PyMapping HasKeyString (PyObject *o, const char *key)
On success, return 1 if the mapping object has the key key and 0 otherwise. This is equivalent to the Python
expression key in o. This function always succeeds.

int PyMapping_HasKey (PyObject *o, PyObject *key)
Return 1 if the mapping object has the key key and 0 otherwise. This is equivalent to the Python expression
key in o. This function always succeeds.

PyObject* PyMapping_Keys (PyObject *0)
Return value: New reference. On success, return a list of the keys in object 0. On failure, return NULL. This is
equivalent to the Python expression 1ist (o.keys ()).

PyObject* PyMapping_Values (PyObject *o)
Return value: New reference. On success, return a list of the values in object 0. On failure, return NULL. This
is equivalent to the Python expression 1ist (o.values ()).

PyObject* PyMapping_ Items (PyObject *0)
Return value: New reference. On success, return a list of the items in object o, where each item is a tuple
containing a key-value pair. On failure, return NULL. This is equivalent to the Python expression 1ist (o.
items ()).

PyObject* PyMapping GetItemString (PyObject *o, const char *key)
Return value: New reference. Return element of o corresponding to the object key or NULL on failure. This is
the equivalent of the Python expression o [key].

int PyMapping_SetItemString (PyObject *o, const char *key, PyObject *v)
Map the object key to the value v in object 0. Returns —1 on failure. This is the equivalent of the Python
statement o [key] = wv.

7.5 lterator Protocol

There are two functions specifically for working with iterators.

int PyIter_Check (PyObject *0)
Return true if the object o supports the iterator protocol.

PyObject* PyIter_ Next (PyObject *0)
Return value: New reference. Return the next value from the iteration o. The object must be an iterator (it is
up to the caller to check this). If there are no remaining values, returns NULL with no exception set. If an error
occurs while retrieving the item, returns NULL and passes along the exception.

To write a loop which iterates over an iterator, the C code should look something like this:

PyObject xiterator = PyObject_GetIter (obj);
PyObject xitem;

if (iterator == NULL) {
/* propagate error */

(continues on next page)

58 Chapter 7. Abstract Objects Layer

The Python/C API, Release 3.4.9rc1

(continued from previous page)

while (item = PyIter_Next (iterator)) {
/* do something with item x/

/+* release reference when done x/
Py_DECREF (item) ;
}

Py_DECREF (iterator);

if (PyErr_Occurred()) {
/* propagate error */
}
else {
/% continue doing useful work #*/

}

7.6 Buffer Protocol

Certain objects available in Python wrap access to an underlying memory array or buffer. Such objects include the
built-in bytes and bytearray, and some extension types like array.array. Third-party libraries may define
their own types for special purposes, such as image processing or numeric analysis.

While each of these types have their own semantics, they share the common characteristic of being backed by a
possibly large memory buffer. It is then desirable, in some situations, to access that buffer directly and without
intermediate copying.

Python provides such a facility at the C level in the form of the buffer protocol. This protocol has two sides:

* on the producer side, a type can export a “buffer interface” which allows objects of that type to expose informa-
tion about their underlying buffer. This interface is described in the section Buffer Object Structures;

* on the consumer side, several means are available to obtain a pointer to the raw underlying data of an object (for
example a method parameter).

Simple objects such as bytes and bytearray expose their underlying buffer in byte-oriented form. Other forms
are possible; for example, the elements exposed by an array .array can be multi-byte values.

An example consumer of the buffer interface is the write () method of file objects: any object that can export a
series of bytes through the buffer interface can be written to a file. While write () only needs read-only access to the
internal contents of the object passed to it, other methods such as readinto () need write access to the contents of
their argument. The buffer interface allows objects to selectively allow or reject exporting of read-write and read-only
buffers.

There are two ways for a consumer of the buffer interface to acquire a buffer over a target object:
e call PyObject_GetBuffer () with the right parameters;
e call PyArg ParseTuple () (or one of its siblings) with one of the y*, wx or s« format codes.

In both cases, PyBuffer. Release () must be called when the buffer isn’t needed anymore. Failure to do so could
lead to various issues such as resource leaks.

7.6.1 Buffer structure

Buffer structures (or simply “buffers”) are useful as a way to expose the binary data from another object to the Python
programmer. They can also be used as a zero-copy slicing mechanism. Using their ability to reference a block of

7.6. Buffer Protocol 59

The Python/C API, Release 3.4.9rc1

memory, it is possible to expose any data to the Python programmer quite easily. The memory could be a large,
constant array in a C extension, it could be a raw block of memory for manipulation before passing to an operating
system library, or it could be used to pass around structured data in its native, in-memory format.

Contrary to most data types exposed by the Python interpreter, buffers are not PyOb ject pointers but rather simple C
structures. This allows them to be created and copied very simply. When a generic wrapper around a buffer is needed,
a memoryview object can be created.

For short instructions how to write an exporting object, see Buffer Object Structures. For obtaining a buffer, see
PyObject_GetBuffer ().

Py buffer

void *buf

A pointer to the start of the logical structure described by the buffer fields. This can be any location within
the underlying physical memory block of the exporter. For example, with negative st rides the value
may point to the end of the memory block.

For contiguous arrays, the value points to the beginning of the memory block.

void *obj

A new reference to the exporting object. The reference is owned by the consumer and automatically
decremented and set to NULL by PyBuffer. Release (). The field is the equivalent of the return
value of any standard C-API function.

As a special case, for temporary buffers that are wrapped by PyMemoryView FromBuffer () or
PyBuffer FillInfo () thisfieldis NULL. In general, exporting objects MUST NOT use this scheme.

Py_ssize_t 1len

product (shape) * itemsize. For contiguous arrays, this is the length of the underlying memory
block. For non-contiguous arrays, it is the length that the logical structure would have if it were copied to
a contiguous representation.

Accessing ((char x)buf) [0] up to ((char x)buf) [len-1] is only valid if the buffer
has been obtained by a request that guarantees contiguity. In most cases such a request will be
PyBUF _SIMPLE or PyBUF_WRITABLE.

int readonly

An indicator of whether the buffer is read-only. This field is controlled by the PyBUF_WRITABLE flag.

Py_ssize_t itemsize

Item size in bytes of a single element. Same as the value of struct .calcsize () called on non-NULL
format values.

Important exception: If a consumer requests a buffer without the PyBUF_FORMAT flag, format will be
setto NULL, but i temsize still has the value for the original format.

If shape is present, the equality product (shape) * itemsize == len still holds and the con-
sumer can use 1temsize to navigate the buffer.

If shapeis NULL as aresultof a PyBUF_STMPLE or a PyBUF_IWRITABLE request, the consumer must
disregard i temsize and assume itemsize ==

const char *format

A NUL terminated string in st ruct module style syntax describing the contents of a single item. If this
is NULL, "B" (unsigned bytes) is assumed.

This field is controlled by the PyBUF_FORMAT flag.

60

Chapter 7. Abstract Objects Layer

The Python/C API, Release 3.4.9rc1

int ndim
The number of dimensions the memory represents as an n-dimensional array. If it is 0, buf points to a
single item representing a scalar. In this case, shape, strides and suboffsets MUST be NULL.

The macro PyBUF_MAX_NDIM limits the maximum number of dimensions to 64. Exporters
MUST respect this limit, consumers of multi-dimensional buffers SHOULD be able to handle up to
PyBUF_MAX_NDIM dimensions.

Py_ssize_t *shape
An array of Py_ssize_t of length ndim indicating the shape of the memory as an n-dimensional array.
Note that shape [0] * ... % shape[ndim-1] * itemsize MUST beequal to len.

Shape values are restricted to shape [n] >= 0. The case shape [n] == 0 requires special attention.
See complex arrays for further information.

The shape array is read-only for the consumer.

Py_ssize_t *strides
An array of Py_ssize_t of length ndim giving the number of bytes to skip to get to a new element in
each dimension.

Stride values can be any integer. For regular arrays, strides are usually positive, but a consumer MUST be
able to handle the case strides[n] <= 0. See complex arrays for further information.

The strides array is read-only for the consumer.

Py_ssize_t *suboffsets
An array of Py_ssize_t of length ndim. If suboffsets[n] >= 0, the values stored along the
nth dimension are pointers and the suboffset value dictates how many bytes to add to each pointer after
de-referencing. A suboffset value that is negative indicates that no de-referencing should occur (striding
in a contiguous memory block).

If all suboffsets are negative (i.e. no de-referencing is needed, then this field must be NULL (the default
value).

This type of array representation is used by the Python Imaging Library (PIL). See complex arrays for
further information how to access elements of such an array.

The suboffsets array is read-only for the consumer.

void *internal
This is for use internally by the exporting object. For example, this might be re-cast as an integer by the
exporter and used to store flags about whether or not the shape, strides, and suboffsets arrays must be freed
when the buffer is released. The consumer MUST NOT alter this value.

7.6.2 Buffer request types

Buffers are usually obtained by sending a buffer request to an exporting object via PyOb ject_GetBuffer ().
Since the complexity of the logical structure of the memory can vary drastically, the consumer uses the flags argument
to specify the exact buffer type it can handle.

All Py_buffer fields are unambiguously defined by the request type.
request-independent fields

The following fields are not influenced by flags and must always be filled in with the correct values: ob j, buf, len,
itemsize, ndim.

7.6. Buffer Protocol 61

The Python/C API, Release 3.4.9rc1

readonly, format

PyBUF_WRITABLE
Controls the readonly field. If set, the exporter MUST provide a writable buffer or else report
failure. Otherwise, the exporter MAY provide either a read-only or writable buffer, but the choice
MUST be consistent for all consumers.

PyBUF_FORMAT
Controls the format field. If set, this field MUST be filled in correctly. Otherwise, this field MUST
be NULL.

PyBUF_WRITABLE can be I'd to any of the flags in the next section. Since PyBUF_SIMPLE is defined as O,
PyBUF_WRITABLE can be used as a stand-alone flag to request a simple writable buffer.

PyBUF_FORMAT can be I’d to any of the flags except PyBUF_STMPLE. The latter already implies format B (unsigned
bytes).

shape, strides, suboffsets

The flags that control the logical structure of the memory are listed in decreasing order of complexity. Note that each
flag contains all bits of the flags below it.

Request shape | strides | suboffsets
yes yes if needed

PyBUF_INDIRECT

PyBUF_STRIDES yes yes NULL

PyBUF_ND yes NULL | NULL

PyBUF_SIMPLE NULL | NULL | NULL

contiguity requests

C or Fortran contiguity can be explicitly requested, with and without stride information. Without stride information,
the buffer must be C-contiguous.

Request shape | strides | suboffsets | contig

PyBUF_C_CONTIGUOUS yes yes NULL C

PyBUF_F_CONTIGUOUS yes yes NULL F

PyBUF_ANY_ CONTIGUOUS yes yes NULL CorF
yes NULL | NULL C

PyBUF_ND

62 Chapter 7. Abstract Objects Layer

The Python/C API, Release 3.4.9rc1

compound requests
All possible requests are fully defined by some combination of the flags in the previous section. For convenience, the
buffer protocol provides frequently used combinations as single flags.

In the following table U stands for undefined contiguity. The consumer would have to call
PyBuffer_IsContiguous () to determine contiguity.

Request shape | strides | suboffsets | contig | readonly | format
PyBUF_FULL yes yes if needed U 0 yes
PyBUF_FULL_RO yes yes if needed U lor0 yes
PyBUF_RECORDS yes yes NULL U 0 yes
PyBUF_RECORDS_RO yes yes NULL U Lor0 yes
PyBUF_STRIDED yes yes NULL U 0 NULL
PyBUF_STRIDED_RO yes yes NULL U lor0 NULL
PyBUF_CONTIG yes NULL | NULL C 0 NULL
PyBUF_CONTIG_RO yes NULL | NULL C Tor0 NULL

7.6.3 Complex arrays
NumPy-style: shape and strides

The logical structure of NumPy-style arrays is defined by i temsize, ndim, shape and strides.

If ndim == 0, the memory location pointed to by buf is interpreted as a scalar of size i temsize. In that case,
both shape and strides are NULL.

If strides is NULL, the array is interpreted as a standard n-dimensional C-array. Otherwise, the consumer must
access an n-dimensional array as follows:

ptr = (char x)buf + indices[0] * strides[0] + ... + indices[n-1] =
strides[n-1] item = x ((typeof (item) *)ptr);

As noted above, buf can point to any location within the actual memory block. An exporter can check the validity of
a buffer with this function:

def verify_structure (memlen, itemsize, ndim, shape, strides, offset):
"""Verify that the parameters represent a valid array within
the bounds of the allocated memory:
char #mem: start of the physical memory block
memlen: length of the physical memory block
offset: (char =)buf - mem

mmn

(continues on next page)

7.6. Buffer Protocol 63

The Python/C API, Release 3.4.9rc1

(continued from previous page)

if offset % itemsize:
return False

if offset < 0 or offset+itemsize > memlen:
return False

if any(v % itemsize for v in strides):
return False

if ndim <= O:

return ndim == 0 and not shape and not strides
if 0 in shape:

return True

imin = sum(strides[]j]* (shape[j]-1) for j in range (ndim)
if strides[j] <= 0)
imax = sum(strides[j]~* (shape[j]-1) for j in range (ndim)

if strides[j] > 0)

return 0 <= offset+imin and offset+imaxt+itemsize <= memlen

PIL-style: shape, strides and suboffsets

In addition to the regular items, PIL-style arrays can contain pointers that must be followed in order to get to the
next element in a dimension. For example, the regular three-dimensional C-array char v [2] [2] [3] can also be
viewed as an array of 2 pointers to 2 two-dimensional arrays: char (*«v[2]) [2] [3]. In suboffsets representation,
those two pointers can be embedded at the start of buf, pointing to two char x[2] [3] arrays that can be located
anywhere in memory.

Here is a function that returns a pointer to the element in an N-D array pointed to by an N-dimensional index when
there are both non-NULL strides and suboffsets:

void xget_item_pointer (int ndim, wvoid xbuf, Py_ssize_t =strides,
Py_ssize_t xsuboffsets, Py_ssize_t xindices) {

char spointer = (charx)buf;
int i;
for (i = 0; i < ndim; 1i++) {

pointer += strides[i] * indices[i];
if (suboffsets[i] >=0) {
pointer = « ((char+*)pointer) + suboffsets[i];

}

return (void~*)pointer;

7.6.4 Buffer-related functions

int PyObject_CheckBuffer (PyObject *obj)
Return 1 if obj supports the buffer interface otherwise 0. When 1 is returned, it doesn’t guarantee that
PyObject_GetBuffer () will succeed.

int PyObject_GetBuffer (PyObject *exporter, Py_buffer *view, int flags)
Send a request to exporter to fill in view as specified by flags. If the exporter cannot provide a buffer of the exact
type, it MUST raise PyExc_BufferError, set view—>0bj to NULL and return -1.

64 Chapter 7. Abstract Objects Layer

The Python/C API, Release 3.4.9rc1

On success, fill in view, set view—>ob 7 to a new reference to exporter and return 0. In the case of chained
buffer providers that redirect requests to a single object, view—>obj MAY refer to this object instead of
exporter (See Buffer Object Structures).

Successful calls to PyOb ject_GetBuffer () must be paired with calls to PyBuffer. Release (), sim-
ilar to malloc () and free (). Thus, after the consumer is done with the buffer, PyBurfer Release ()
must be called exactly once.

void PyBuffer_Release (Py_buffer *view)
Release the buffer view and decrement the reference count for view—>obj. This function MUST be called
when the buffer is no longer being used, otherwise reference leaks may occur.

It is an error to call this function on a buffer that was not obtained via PyOb ject_GetBuffer ().

Py_ssize_t PyBuffer_SizeFromFormat (const char *)
Return the implied i temsize from format. This function is not yet implemented.

int PyBuffer_ IsContiguous (Py_buffer *view, char order)
Return 1 if the memory defined by the view is C-style (order is ' C ") or Fortran-style (order is 'F ') contiguous
or either one (order is 'A"). Return O otherwise.

void PyBuffer_FillContiguousStrides (int ndim, Py_ssize_t *shape, Py_ssize_t *strides,
Py_ssize_t itemsize, char order)
Fill the strides array with byte-strides of a contiguous (C-style if order is ' C' or Fortran-style if order is 'F ')

array of the given shape with the given number of bytes per element.

int PyBuffer_ FillInfo (Py_buffer *view, PyObject *exporter, void *buf, Py_ssize_t len, int readonly,
int flags)
Handle buffer requests for an exporter that wants to expose buf of size len with writability set according to
readonly. buf is interpreted as a sequence of unsigned bytes.

The flags argument indicates the request type. This function always fills in view as specified by flags, unless buf
has been designated as read-only and PyBUF_WRITABLE is set in flags.

On success, set view—>ob3j to a new reference to exporter and return O. Otherwise, raise
PyExc_BufferError, set view—>obj to NULL and return -1;

If this function is used as part of a getbufferproc, exporter MUST be set to the exporting object and flags must
be passed unmodified. Otherwise, exporter MUST be NULL.

7.7 Old Buffer Protocol

Deprecated since version 3.0.

These functions were part of the “old buffer protocol” API in Python 2. In Python 3, this protocol doesn’t exist
anymore but the functions are still exposed to ease porting 2.x code. They act as a compatibility wrapper around
the new buffer protocol, but they don’t give you control over the lifetime of the resources acquired when a buffer is
exported.

Therefore, it is recommended that you call PyOb ject_GetBuffer () (or the y* or wx format codes with the
PyArg_ParseTuple () family of functions) to get a buffer view over an object, and PyBuffer. Release ()
when the buffer view can be released.

int PyObject_AsCharBuffer (PyObject *obj, const char **buffer, Py_ssize_t *buffer_len)
Returns a pointer to a read-only memory location usable as character-based input. The obj argument must
support the single-segment character buffer interface. On success, returns 0, sets buffer to the memory location
and buffer_len to the buffer length. Returns —1 and sets a TypeError on error.

int PyObject_AsReadBuffer (PyObject *obj, const void **buffer, Py_ssize_t *buffer_len)
Returns a pointer to a read-only memory location containing arbitrary data. The obj argument must support

7.7. Old Buffer Protocol 65

The Python/C API, Release 3.4.9rc1

the single-segment readable buffer interface. On success, returns O, sets buffer to the memory location and
buffer_len to the buffer length. Returns —1 and sets a TypeError on error.

int PyObject_CheckReadBuffer (PyObject *0)
Returns 1 if o supports the single-segment readable buffer interface. Otherwise returns 0.

int PyObject_AsWriteBuffer (PyObject *obj, void **buffer, Py_ssize_t *buffer_len)
Returns a pointer to a writable memory location. The obj argument must support the single-segment, character
buffer interface. On success, returns 0, sets buffer to the memory location and buffer_len to the buffer length.
Returns —1 and sets a TypeError on error.

66 Chapter 7. Abstract Objects Layer

CHAPTER
EIGHT

CONCRETE OBJECTS LAYER

The functions in this chapter are specific to certain Python object types. Passing them an object of the wrong type is
not a good idea; if you receive an object from a Python program and you are not sure that it has the right type, you
must perform a type check first; for example, to check that an object is a dictionary, use PyDict_Check (). The
chapter is structured like the “family tree” of Python object types.

Warning: While the functions described in this chapter carefully check the type of the objects which are passed
in, many of them do not check for NULL being passed instead of a valid object. Allowing NULL to be passed in
can cause memory access violations and immediate termination of the interpreter.

8.1 Fundamental Objects

This section describes Python type objects and the singleton object None.

8.1.1 Type Objects

PyTypeObject
The C structure of the objects used to describe built-in types.

PyObject* PyType_Type
This is the type object for type objects; it is the same object as t ype in the Python layer.

int PyType_Check (PyObject *0)
Return true if the object o is a type object, including instances of types derived from the standard type object.
Return false in all other cases.

int PyType_CheckExact (PyObject *0)
Return true if the object o is a type object, but not a subtype of the standard type object. Return false in all other
cases.

unsigned int PyType_ClearCache ()
Clear the internal lookup cache. Return the current version tag.

long PyType_GetFlags (PyTypeObject* type)
Return the tp_ f1ags member of fype. This function is primarily meant for use with Py_LIMITED_API; the
individual flag bits are guaranteed to be stable across Python releases, but access to tp_ £ 1ags itself is not part
of the limited APIL.

New in version 3.2.

67

The Python/C API, Release 3.4.9rc1

void PyType_Modified (PyTypeObject *type)
Invalidate the internal lookup cache for the type and all of its subtypes. This function must be called after any
manual modification of the attributes or base classes of the type.

int PyType_HasFeature (PyTypeObject *o, int feature)
Return true if the type object o sets the feature feature. Type features are denoted by single bit flags.

int PyType_IS_GC (PyTypeObject *0)
Return true if the type object includes support for the cycle detector; this tests the type flag
Py TPFLAGS_HAVE_GC.

int PyType_IsSubtype (PyTypeObject *a, PyTypeObject *b)
Return true if a is a subtype of b.

This function only checks for actual subtypes, which means that __subclasscheck__ () is not called on b.
Call PyOb ject_IsSubclass () todo the same check that issubclass () would do.

PyObject* PyType_GenericAlloc (PyTypeObject *type, Py_ssize_t nitems)
Return value: New reference. Generic handler for the tp_alloc slot of a type object. Use Python’s default
memory allocation mechanism to allocate a new instance and initialize all its contents to NULL.

PyObject* PyType_GenericNew (PyTypeObject *type, PyObject *args, PyObject *kwds)
Return value: New reference. Generic handler for the tp_new slot of a type object. Create a new instance
using the type’s tp_alloc slot.

int PyType_Ready (PyTypeObject *type)
Finalize a type object. This should be called on all type objects to finish their initialization. This function is
responsible for adding inherited slots from a type’s base class. Return O on success, or return —1 and sets an
exception on error.

PyObject* PyType_FromSpec (PyType_Spec *spec)
Creates and returns a heap type object from the spec passed to the function.

PyObject* PyType_FromSpecWithBases (PyType_Spec *spec, PyObject *bases)
Creates and returns a heap type object from the spec. In addition to that, the created heap type contains all types
contained by the bases tuple as base types. This allows the caller to reference other heap types as base types.

New in version 3.3.

void* PyType_GetSlot (PyTypeObject *type, int slot)
Return the function pointer stored in the given slot. If the result is NULL, this indicates that either the slot is
NULL, or that the function was called with invalid parameters. Callers will typically cast the result pointer into
the appropriate function type.

New in version 3.4.

8.1.2 The None Object

Note that the Py TypeOb ject for None is not directly exposed in the Python/C API. Since None is a singleton,
testing for object identity (using == in C) is sufficient. There is no PyNone_Check () function for the same reason.

PyObject* Py_None
The Python None object, denoting lack of value. This object has no methods. It needs to be treated just like any
other object with respect to reference counts.

Py RETURN_NONE
Properly handle returning Py None from within a C function (that is, increment the reference count of None
and return it.)

68 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.4.9rc1

8.2 Numeric Objects

8.2.1 Integer Objects

All integers are implemented as “long” integer objects of arbitrary size.

PyLongObject
This subtype of PyOb ject represents a Python integer object.

PyTypeObject PyLong_Type
This instance of Py TypeOb ject represents the Python integer type. This is the same object as int in the
Python layer.

int PyLong_Check (PyObject *p)
Return true if its argument is a PyLongOb ject or a subtype of PyLongOb ject.

int PyLong_CheckExact (PyObject *p)
Return true if its argument is a PyLongOb ject, but not a subtype of PyLongOb ject.

PyObject* PyLong_FromLong (long v)
Return value: New reference. Return a new PyLongOb ject object from v, or NULL on failure.

The current implementation keeps an array of integer objects for all integers between -5 and 256, when you
create an int in that range you actually just get back a reference to the existing object. So it should be possible
to change the value of 1. I suspect the behaviour of Python in this case is undefined. :-)

PyObject* PyLong_FromUnsignedLong (unsigned long v)
Return value: New reference. Return anew PyLongOb ject object froma C unsigned long, or NULL on
failure.

PyObject* PyLong_FromSsize_t (Py_ssize_tv)
Return a new PyLongOb ject object froma C Py_ssize_t, or NULL on failure.

PyObject* PyLong_FromSize_t (size_tv)
Return a new PyLongOb ject object from a C size_t, or NULL on failure.

PyObject* PyLong_FromLongLong (PY_LONG_LONG v)
Return value: New reference. Return a new PyLongOb ject object from a C long long, or NULL on
failure.

PyObject* PyLong_FromUnsignedLongLong (unsigned PY_LONG_LONG v)
Return value: New reference. Return a new PyLongOb ject object from a C unsigned long long, or
NULL on failure.

PyObject* PyLong_FromDouble (double v)
Return value: New reference. Return a new PyLongOb ject object from the integer part of v, or NULL on
failure.

PyObject* PyLong_FromString (const char *str, char **pend, int base)

Return value: New reference. Return a new PyLongOb ject based on the string value in str, which is inter-
preted according to the radix in base. If pend is non-NULL, *pend will point to the first character in s¢t7 which
follows the representation of the number. If base is 0, the radix will be determined based on the leading charac-
ters of str: if str starts with 'Ox "' or '0X"', radix 16 will be used; if str starts with ' 0o "' or '00"', radix 8 will
be used; if str starts with ' 0b "' or ' OB ', radix 2 will be used; otherwise radix 10 will be used. If base is not 0,
it must be between 2 and 36, inclusive. Leading spaces are ignored. If there are no digits, ValueError will
be raised.

PyObject* PyLong_FromUnicode (Py_UNICODE *u, Py_ssize_t length, int base)
Return value: New reference. Convert a sequence of Unicode digits to a Python integer value. The Unicode

8.2. Numeric Objects 69

The Python/C API, Release 3.4.9rc1

string is first encoded to a byte string using PyUnicode_EncodeDecimal () and then converted using
PyLong_FromString().

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py, UNICODE API; please
migrate to using PyLong_FromUnicodeOb ject ().

PyObject* PyLong_FromUnicodeObject (PyObject *u, int base)
Convert a sequence of Unicode digits in the string u to a Python integer value. The Unicode string
is first encoded to a byte string using PyUnicode_EncodeDecimal () and then converted using
PyLong _FromString ().

New in version 3.3.

PyObject* PyLong_FromVoidPtr (void *p)
Return value: New reference. Create a Python integer from the pointer p. The pointer value can be retrieved
from the resulting value using PyLong AsVoidPtr ().

long PyLong_AsLong (PyObject *obj)
Return a C 1ong representation of obj. If obj is not an instance of PyLongObject, firstcallits __int__ ()
method (if present) to convert it to a PyLongOb ject.

Raise OverflowError if the value of 0bj is out of range for a 1ong.

long PyLong_AsLongAndOverflow (PyObject *obj, int *overflow)
Return a C 1ong representation of obj. If obj is not an instance of PyLongOb ject, firstcallits __int__ ()
method (if present) to convertitto a PyLongOb ject.

If the value of obj is greater than LONG_MAX or less than LONG_MIN, set *overflow to 1 or —1, respectively,
and return —1; otherwise, set *overflow to 0. If any other exception occurs set *overflow to 0 and return —1 as
usual.

PY_LONG_LONG PyLong_AsLongLong (PyObject *obj)
Return a C long long representation of obj. If obj is not an instance of PyLongOb ject, first call its
__int__ () method (if present) to convert it to a PyLongOb ject.

Raise OverflowError if the value of 0bj is out of range for a 1ong.

PY_LONG_LONG PyLong_AsLongLongAndOverflow (PyObject *obj, int *overflow)
Return a C long long representation of obj. If obj is not an instance of PyLongObject, first call its
__int__ () method (if present) to convert it to a PyLongOb ject.

If the value of 0bj is greater than PY_TLLONG_MAX or less than PY_LLONG_MIN, set *overflow to 1 or -1,
respectively, and return —1; otherwise, set *overflow to 0. If any other exception occurs set *overflow to 0 and
return —1 as usual.

New in version 3.2.

Py_ssize_t PyLong_AsSsize_t (PyObject *pylong)
Return a C Py_ssize_t representation of pylong. pylong must be an instance of PyLongOb ject.

Raise OverflowError if the value of pylong is out of range for aPy_ssize_t.

unsigned long PyLong_AsUnsignedLong (PyObject *pylong)
Return a C unsigned long representation of pylong. pylong must be an instance of PyLongOb ject.

Raise OverflowError if the value of pylong is out of range for a unsigned long.

size_t PyLong_AsSize_t (PyObject *pylong)
Return a C size_t representation of pylong. pylong must be an instance of PyLongOb ject.

Raise OverflowError if the value of pylong is out of range for a size_t.

70 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.4.9rc1

unsigned PY_LONG_LONG PyLong_AsUnsignedLonglLong (PyObject *pylong)
Return a C unsigned PY_LONG_LONG representation of pylong. pylong must be an instance of
PyLongObject.

Raise OverflowError if the value of pylong is out of range for an unsigned PY_LONG_LONG.
Changed in version 3.1: A negative pylong now raises OverflowError, not TypeError.

unsigned long PyLong_AsUnsignedLongMask (PyObject *obj)
Return a C unsigned long representation of obj. If obj is not an instance of PyLongOb ject, first call its
__int__ () method (if present) to convert it to a PyLongOb ject.

If the value of obj is out of range for an unsigned long, return the reduction of that value modulo
ULONG_MAX + 1.

unsigned PY_LONG_LONG PyLong_AsUnsignedLongLongMask (PyObject *obj)
Return a Cunsigned long long representation of obj. If obj is not an instance of PyLongOb ject, first
callits __int__ () method (if present) to convert it to a PyLongOb ject.

If the value of 0bj is out of range for an unsigned long long, return the reduction of that value modulo
PY_ULLONG_MAX + 1.

double PyLong_AsDouble (PyObject *pylong)
Return a C double representation of pylong. pylong must be an instance of PyLongOb ject.

Raise OverflowError if the value of pylong is out of range for a double.

void* PyLong_AsVoidPtr (PyObject *pylong)
Convert a Python integer pylong to a C void pointer. If pylong cannot be converted, an OverflowError
will be raised. This is only assured to produce a usable void pointer for values created with
PyLong FromVoidPtr ().

8.2.2 Boolean Objects

Booleans in Python are implemented as a subclass of integers. There are only two booleans, Py_False and
Py_True. As such, the normal creation and deletion functions don’t apply to booleans. The following macros
are available, however.

int PyBool_Check (PyObject *o)
Return true if o is of type PyBool_Type.

PyObject* Py_False
The Python False object. This object has no methods. It needs to be treated just like any other object with
respect to reference counts.

PyObject* Py_True
The Python True object. This object has no methods. It needs to be treated just like any other object with
respect to reference counts.

Py RETURN_FALSE
Return Py_False from a function, properly incrementing its reference count.

Py RETURN_TRUE
Return Py_ True from a function, properly incrementing its reference count.

PyObject* PyBool_FromLong (long v)
Return value: New reference. Return a new reference to Py_True or Py_False depending on the truth value
of v.

8.2. Numeric Objects 4

The Python/C API, Release 3.4.9rc1

8.2.3 Floating Point Objects

PyFloatObject
This subtype of PyOb ject represents a Python floating point object.

PyTypeObject PyFloat_Type
This instance of Py TypeOb ject represents the Python floating point type. This is the same object as f1loat
in the Python layer.

int PyFloat_Check (PyObject *p)
Return true if its argument is a PyFloatOb ject or a subtype of PyFloatObject.

int PyFloat_CheckExact (PyObject *p)
Return true if its argument is a PyFloatOb ject, but not a subtype of PyFloatOb ject.

PyObject* PyFloat_FromString (PyObject *str)
Return value: New reference. Create a PyFloatObject object based on the string value in str, or NULL on
failure.

PyObject* PyFloat_FromDouble (double v)
Return value: New reference. Create a PyFloatOb ject object from v, or NULL on failure.

double PyFloat_AsDouble (PyObject *pyfloat)
Return a C double representation of the contents of pyfloat. If pyfloat is not a Python floating point object
buthasa ___float__ () method, this method will first be called to convert pyfloat into a float. This method
returns —1 . 0 upon failure, so one should call PyErr_Occurred () to check for errors.

double PyFloat_AS_DOUBLE (PyObject *pyfloat)
Return a C double representation of the contents of pyfloat, but without error checking.

PyObject* PyFloat_GetInfo (void)
Return a structseq instance which contains information about the precision, minimum and maximum values of
a float. It’s a thin wrapper around the header file f1oat . h.

double PyFloat_GetMax ()
Return the maximum representable finite float DBL_MAX as C double.

double PyFloat_GetMin ()
Return the minimum normalized positive float DBL_MIN as C double.

int PyFloat_ClearFreelist ()
Clear the float free list. Return the number of items that could not be freed.

8.2.4 Complex Number Objects

Python’s complex number objects are implemented as two distinct types when viewed from the C API: one is the
Python object exposed to Python programs, and the other is a C structure which represents the actual complex number
value. The API provides functions for working with both.

Complex Numbers as C Structures

Note that the functions which accept these structures as parameters and return them as results do so by value rather
than dereferencing them through pointers. This is consistent throughout the API.

Py complex
The C structure which corresponds to the value portion of a Python complex number object. Most of the
functions for dealing with complex number objects use structures of this type as input or output values, as
appropriate. It is defined as:

72 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.4.9rc1

typedef struct {
double real;
double imag;
} Py_complex;

Py_complex _Py_c_sum (Py_complex left, Py_complex right)
Return the sum of two complex numbers, using the C Py complex representation.

Py_complex _Py_c_dif€ (Py_complex left, Py_complex right)
Return the difference between two complex numbers, using the C Py complex representation.

Py_complex _Py_c_neg (Py_complex complex)

Return the negation of the complex number complex, using the C Py comp1ex representation.

Py_complex _Py_c_prod (Py_complex left, Py_complex right)
Return the product of two complex numbers, using the C Py complex representation.

Py_complex _Py_c_quot (Py_complex dividend, Py_complex divisor)
Return the quotient of two complex numbers, using the C Py complex representation.

If divisor is null, this method returns zero and sets errno to EDOM.

Py_complex _Py_c_pow (Py_complex num, Py_complex exp)
Return the exponentiation of num by exp, using the C Py_comp 1 ex representation.

If num is null and exp is not a positive real number, this method returns zero and sets errno to EDOM.

Complex Numbers as Python Objects

PyComplexObject
This subtype of PyOb ject represents a Python complex number object.

PyTypeObject PyComplex_Type
This instance of PyTypeOb ject represents the Python complex number type. It is the same object as
complex in the Python layer.

int PyComplex_Check (PyObject *p)
Return true if its argument is a PyComplexOb ject or a subtype of PyComplexObject.

int PyComplex_CheckExact (PyObject *p)

Return true if its argument is a PyComplexOb ject, but not a subtype of PyComplexOb ject.
PyObject* PyComplex_FromCComplex (Py_complex v)

Return value: New reference. Create a new Python complex number object from a C Py__complex value.

PyObject* PyComplex_FromDoubles (double real, double imag)
Return value: New reference. Return a new PyComplexOb ject object from real and imag.

double PyComplex_RealAsDouble (PyObject *op)
Return the real part of op as a C double.

double PyComplex_ ImagAsDouble (PyObject *op)
Return the imaginary part of op as a C double.

Py_complex PyComplex_AsCComplex (PyObject *op)
Return the Py__complex value of the complex number op.

If op is not a Python complex number object but has a __complex__ () method, this method will first be
called to convert op to a Python complex number object. Upon failure, this method returns —1 . O as a real value.

8.2. Numeric Objects 73

The Python/C API, Release 3.4.9rc1

8.3 Sequence Objects

Generic operations on sequence objects were discussed in the previous chapter; this section deals with the specific
kinds of sequence objects that are intrinsic to the Python language.

8.3.1 Bytes Objects

These functions raise TypeError when expecting a bytes parameter and are called with a non-bytes parameter.

PyBytesObject
This subtype of PyOb ject represents a Python bytes object.

PyTypeObject PyBytes_Type
This instance of PyTypeOb ject represents the Python bytes type; it is the same object as bytes in the
Python layer.

int PyBytes_Check (PyObject *0)
Return true if the object o is a bytes object or an instance of a subtype of the bytes type.

int PyBytes_CheckExact (PyObject *o)
Return true if the object o is a bytes object, but not an instance of a subtype of the bytes type.

PyObject* PyBytes_FromString (const char *v)
Return a new bytes object with a copy of the string v as value on success, and NULL on failure. The parameter
v must not be NULL; it will not be checked.

PyObject* PyBytes_FromStringAndSize (const char *v, Py_ssize_t len)
Return a new bytes object with a copy of the string v as value and length len on success, and NULL on failure.
If v is NULL, the contents of the bytes object are uninitialized.

PyObject* PyBytes_FromFormat (const char *format, ...)
Take a C print £ () -style format string and a variable number of arguments, calculate the size of the resulting
Python bytes object and return a bytes object with the values formatted into it. The variable arguments must
be C types and must correspond exactly to the format characters in the format string. The following format
characters are allowed:

Format Characters | Type Comment

%% n/a The literal % character.

%c int A single byte, represented as a C int.

sd int Exactly equivalent to printf (" 9d ").

%u unsigned int Exactly equivalent to printf ("%u").

$1ld long Exactly equivalent to printf ("$1d").

%$1lu unsigned long | Exactly equivalent to printf ("$1u").

$zd Py_ssize_t Exactly equivalent to printf ("%zd").

%zu size_t Exactly equivalent to printf ("$zu").

%i int Exactly equivalent to printf ("%i").

$X int Exactly equivalent to printf ("%$x").

%s char* A null-terminated C character array.

$p void* The hex representation of a C pointer. Mostly equivalent to
printf ("$p") except that it is guaranteed to start with the
literal Ox regardless of what the platform’s print £ yields.

An unrecognized format character causes all the rest of the format string to be copied as-is to the result object,
and any extra arguments discarded.

74 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.4.9rc1

PyObject* PyBytes_FromFormatV (const char *format, va_list vargs)
Identical to PyBytes FromFormat () except that it takes exactly two arguments.

PyObject* PyBytes_FromObject (PyObject *0)
Return the bytes representation of object o that implements the buffer protocol.

Py_ssize_t PyBytes_Size (PyObject *0)
Return the length of the bytes in bytes object o.

Py_ssize_t PyBytes_GET_SIZE (PyObject *o)
Macro form of PyBytes_Size () but without error checking.

char* PyBytes_AsString (PyObject *0)
Return a pointer to the contents of o. The pointer refers to the internal buffer of o, which consists of
len (o) + 1 bytes. The last byte in the buffer is always null, regardless of whether there are any
other null bytes. The data must not be modified in any way, unless the object was just created using
PyBytes_FromStringAndSize (NULL, size). It must not be deallocated. If o is not a bytes object
atall, PyBytes_AsString () returns NULL and raises TypeError.

char* PyBytes_AS_STRING (PyObject *string)
Macro form of PyBytes AsString () but without error checking.

int PyBytes_AsStringAndSize (PyObject *obj, char **buffer, Py_ssize t *length)
Return the null-terminated contents of the object 0bj through the output variables buffer and length.

If length is NULL, the bytes object may not contain embedded null bytes; if it does, the function returns —1 and
a TypeError is raised.

The buffer refers to an internal buffer of obj, which includes an additional null byte at the end (not
counted in length). The data must not be modified in any way, unless the object was just created using
PyBytes_FromStringAndSize (NULL, size). It must not be deallocated. If obj is not a bytes ob-
jectatall, PyBytes AsStringAndSize () returns —1 and raises TypeError.

void PyBytes_Concat (PyObject **bytes, PyObject *newpart)
Create a new bytes object in *bytes containing the contents of newpart appended to bytes; the caller will own
the new reference. The reference to the old value of byfes will be stolen. If the new object cannot be created,
the old reference to bytes will still be discarded and the value of *byftes will be set to NULL; the appropriate
exception will be set.

void PyBytes_ConcatAndDel (PyObject **bytes, PyObject *newpart)
Create a new bytes object in *bytes containing the contents of newpart appended to bytes. This version decre-
ments the reference count of newpart.

int _PyBytes_Resize (PyObject **bytes, Py_ssize_t newsize)
A way to resize a bytes object even though it is “immutable”. Only use this to build up a brand new bytes object;
don’t use this if the bytes may already be known in other parts of the code. It is an error to call this function if
the refcount on the input bytes object is not one. Pass the address of an existing bytes object as an lvalue (it may
be written into), and the new size desired. On success, *bytes holds the resized bytes object and 0 is returned;
the address in *bytes may differ from its input value. If the reallocation fails, the original bytes object at *bytes
is deallocated, *bytes is set to NULL, a memory exception is set, and —1 is returned.

8.3.2 Byte Array Objects

PyByteArrayObject
This subtype of PyOb ject represents a Python bytearray object.

PyTypeObject PyByteArray_ Type
This instance of Py TypeOb ject represents the Python bytearray type; it is the same object as bytearray
in the Python layer.

8.3. Sequence Objects 75

The Python/C API, Release 3.4.9rc1

Type check macros

int PyByteArray_Check (PyObject *0)
Return true if the object o is a bytearray object or an instance of a subtype of the bytearray type.

int PyByteArray_ CheckExact (PyObject *0)
Return true if the object o is a bytearray object, but not an instance of a subtype of the bytearray type.

Direct API functions
PyObject* PyByteArray_ FromObject (PyObject *o)
Return a new bytearray object from any object, o, that implements the buffer protocol.

PyObject* PyByteArray FromStringAndSize (const char *string, Py_ssize_t len)
Create a new bytearray object from string and its length, len. On failure, NULL is returned.
PyObject* PyByteArray Concat (PyObject *a, PyObject *b)
Concat bytearrays a and b and return a new bytearray with the result.

Py_ssize_t PyByteArray_Size (PyObject *bytearray)
Return the size of bytearray after checking for a NULL pointer.

char* PyByteArray_AsString (PyObject *bytearray)
Return the contents of bytearray as a char array after checking for a NULL pointer. The returned array always
has an extra null byte appended.

int PyByteArray_ Resize (PyObject *bytearray, Py_ssize_t len)
Resize the internal buffer of bytearray to len.

Macros

These macros trade safety for speed and they don’t check pointers.

char* PyByteArray AS_STRING (PyObject *bytearray)
Macro version of PyByteArray AsString().

Py_ssize_t PyByteArray_ GET_SIZE (PyObject *bytearray)
Macro version of PyByteArray Size ().

8.3.3 Unicode Objects and Codecs

Unicode Objects

Since the implementation of PEP 393 in Python 3.3, Unicode objects internally use a variety of representations, in
order to allow handling the complete range of Unicode characters while staying memory efficient. There are special
cases for strings where all code points are below 128, 256, or 65536; otherwise, code points must be below 1114112
(which is the full Unicode range).

Py_UNICODE = and UTF-8 representations are created on demand and cached in the Unicode object. The
Py_UNICODE representation is deprecated and inefficient; it should be avoided in performance- or memory-sensitive
situations.

Due to the transition between the old APIs and the new APIs, unicode objects can internally be in two states depending
on how they were created:

 “canonical” unicode objects are all objects created by a non-deprecated unicode API. They use the most efficient
representation allowed by the implementation.

76 Chapter 8. Concrete Objects Layer

https://www.python.org/dev/peps/pep-0393

The Python/C API, Release 3.4.9rc1

e “legacy” unicode objects have been created through one of the deprecated APIs (typically
PyUnicode FromUnicode ()) and only bear the Py UNICODE + representation; you will have to
call PyUnicode READY () on them before calling any other API.

Unicode Type

These are the basic Unicode object types used for the Unicode implementation in Python:

Py _UCs4

Py_UCS2

Py_UCS1
These types are typedefs for unsigned integer types wide enough to contain characters of 32 bits, 16 bits and 8
bits, respectively. When dealing with single Unicode characters, use Py UCS4.

New in version 3.3.

Py UNICODE
This is a typedef of wchar_t, which is a 16-bit type or 32-bit type depending on the platform.

Changed in version 3.3: In previous versions, this was a 16-bit type or a 32-bit type depending on whether you
selected a “narrow” or “wide” Unicode version of Python at build time.

PyASCIIObject

PyCompactUnicodeObject

PyUnicodeObject
These subtypes of PyOb ject represent a Python Unicode object. In almost all cases, they shouldn’t be used
directly, since all API functions that deal with Unicode objects take and return Py Ob ject pointers.

New in version 3.3.
PyTypeObject PyUnicode_Type
This instance of Py TypeOb ject represents the Python Unicode type. It is exposed to Python code as str.

The following APIs are really C macros and can be used to do fast checks and to access internal read-only data of
Unicode objects:

int PyUnicode_Check (PyObject *0)
Return true if the object o is a Unicode object or an instance of a Unicode subtype.

int PyUnicode_CheckExact (PyObject *o)
Return true if the object o is a Unicode object, but not an instance of a subtype.

int PyUnicode_READY (PyObject *0)
Ensure the string object o is in the “canonical” representation. This is required before using any of the access
macros described below.

Returns 0 on success and -1 with an exception set on failure, which in particular happens if memory allocation
fails.

New in version 3.3.

Py_ssize_t PyUnicode_GET_LENGTH (PyObject *0)
Return the length of the Unicode string, in code points. o has to be a Unicode object in the “canonical” repre-
sentation (not checked).

New in version 3.3.

Py _UCSI* PyUnicode_1BYTE_DATA (PyObject *0)
Py_UCS2* PyUnicode_2BYTE_DATA (PyObject *o)

8.3. Sequence Objects 77

The Python/C API, Release 3.4.9rc1

Py_UCS4* PyUnicode_4BYTE_DATA (PyObject *0)
Return a pointer to the canonical representation cast to UCS1, UCS2 or UCS4 integer types for direct char-
acter access. No checks are performed if the canonical representation has the correct character size; use
PyUnicode KIND () to select the right macro. Make sure PyUnicode READY () has been called before
accessing this.

New in version 3.3.

PyUnicode_WCHAR_KIND
PyUnicode_1BYTE_KIND
PyUnicode_2BYTE_KIND
PyUnicode_4BYTE_KIND

Return values of the PyUnicode KIND () macro.

New in version 3.3.

int PyUnicode_KIND (PyObject *0)
Return one of the PyUnicode kind constants (see above) that indicate how many bytes per character this Unicode
object uses to store its data. o has to be a Unicode object in the “canonical” representation (not checked).

New in version 3.3.

void* PyUnicode_DATA (PyObject *0)
Return a void pointer to the raw unicode buffer. o has to be a Unicode object in the “canonical” representation
(not checked).

New in version 3.3.

void PyUnicode_ WRITE (int kind, void *data, Py_ssize_t index, Py_UCS4 value)
Write into a canonical representation data (as obtained with PyUnicode_DATA ()). This macro does not do
any sanity checks and is intended for usage in loops. The caller should cache the kind value and data pointer
as obtained from other macro calls. index is the index in the string (starts at 0) and value is the new code point
value which should be written to that location.

New in version 3.3.

Py_UCS4 PyUnicode_READ (int kind, void *data, Py_ssize_t index)
Read a code point from a canonical representation data (as obtained with PyUnicode_ DATA ()). No checks
or ready calls are performed.

New in version 3.3.

Py_UCS4 PyUnicode_READ_CHAR (PyObject *o, Py_ssize_t index)
Read a character from a Unicode object o, which must be in the “‘canonical” representation. This is less efficient
than PyUnicode_READ () if you do multiple consecutive reads.

New in version 3.3.

PyUnicode_MAX_CHAR_VALUE (PyObject *o)
Return the maximum code point that is suitable for creating another string based on o, which must be in the
“canonical” representation. This is always an approximation but more efficient than iterating over the string.

New in version 3.3.

int PyUnicode_ClearFreelist ()
Clear the free list. Return the total number of freed items.

Py_ssize_t PyUnicode_GET_SIZE (PyObject *0)
Return the size of the deprecated Py UNICODE representation, in code units (this includes surrogate pairs as 2
units). o has to be a Unicode object (not checked).

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Unicode API, please migrate
tousing PyUnicode GET LENGTH().

78 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.4.9rc1

Py_ssize_t PyUnicode_GET_DATA_ SIZE (PyObject *o)
Return the size of the deprecated Py UNICODE representation in bytes. o has to be a Unicode object (not
checked).

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Unicode API, please migrate
to using PyUnicode GET_LENGTH().

Py_UNICODE* PyUnicode_AS_UNICODE (PyObject *0)

const char* PyUnicode_AS_DATA (PyObject *o0)
Return a pointer to a Py_ UNICODE representation of the object. The returned buffer is always terminated with
an extra null code point. It may also contain embedded null code points, which would cause the string to be
truncated when used in most C functions. The AS_DATA form casts the pointer to const char x. The o
argument has to be a Unicode object (not checked).

Changed in version 3.3: This macro is now inefficient — because in many cases the Py_UNICODE repre-
sentation does not exist and needs to be created — and can fail (return NULL with an exception set). Try
to port the code to use the new PyUnicode_nBYTE_DATA () macros or use PyUnicode WRITE () or
PyUnicode READ ().

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Unicode API, please migrate
to using the PyUnicode_nBYTE_DATA () family of macros.

Unicode Character Properties

Unicode provides many different character properties. The most often needed ones are available through these macros
which are mapped to C functions depending on the Python configuration.

int Py UNICODE_ISSPACE (Py_UNICODE ch)
Return 1 or 0 depending on whether ch is a whitespace character.

int Py UNICODE_ISLOWER (Py_UNICODE ch)
Return 1 or 0 depending on whether ch is a lowercase character.

int Py UNICODE_ISUPPER (Py_UNICODE ch)
Return 1 or 0 depending on whether ch is an uppercase character.

int Py UNICODE_ISTITLE (Py_UNICODE ch)
Return 1 or 0 depending on whether c# is a titlecase character.

int Py UNICODE_ISLINEBRERAK (Py_UNICODE ch)
Return 1 or 0 depending on whether ch is a linebreak character.

int Py UNICODE_ISDECIMAL (Py _UNICODE ch)
Return 1 or 0 depending on whether c# is a decimal character.

int Py UNICODE_ISDIGIT (Py_UNICODE ch)
Return 1 or 0 depending on whether ch is a digit character.

int Py UNICODE_ISNUMERIC (Py_UNICODE ch)
Return 1 or 0 depending on whether c# is a numeric character.

int Py UNICODE_ISALPHA (Py_UNICODE ch)
Return 1 or 0 depending on whether ch is an alphabetic character.

int Py UNICODE_ISALNUM (Py_UNICODE ch)
Return 1 or 0 depending on whether c# is an alphanumeric character.

int Py_ UNICODE_ISPRINTABLE (Py_UNICODE ch)
Return 1 or 0 depending on whether ch is a printable character. Nonprintable characters are those characters
defined in the Unicode character database as “Other” or “Separator”, excepting the ASCII space (0x20) which

8.3. Sequence Objects 79

The Python/C API, Release 3.4.9rc1

is considered printable. (Note that printable characters in this context are those which should not be escaped
when repr () is invoked on a string. It has no bearing on the handling of strings written to sys . stdout or
sys.stderr.)

These APIs can be used for fast direct character conversions:

Py_UNICODE Py_UNICODE_TOLOWER (Py_UNICODE ch)
Return the character ch converted to lower case.

Deprecated since version 3.3: This function uses simple case mappings.

Py_UNICODE Py _UNICODE_TOUPPER (Py UNICODE ch)
Return the character ch converted to upper case.

Deprecated since version 3.3: This function uses simple case mappings.

Py_UNICODE Py_UNICODE_TOTITLE (Py_UNICODE ch)
Return the character ch converted to title case.

Deprecated since version 3.3: This function uses simple case mappings.

int Py UNICODE_TODECIMAL (Py_UNICODE ch)
Return the character ch converted to a decimal positive integer. Return —1 if this is not possible. This macro
does not raise exceptions.

int Py UNICODE_TODIGIT (Py_UNICODE ch)
Return the character ch converted to a single digit integer. Return —1 if this is not possible. This macro does not
raise exceptions.

double Py_UNICODE_TONUMERIC (Py_UNICODE ch)
Return the character ch converted to a double. Return —1 . O if this is not possible. This macro does not raise
exceptions.

These APIs can be used to work with surrogates:

Py_UNICODE_IS_SURROGATE (ch)
Check if ch is a surrogate (0xD800 <= ch <= O0xDFFF).

Py_UNICODE_IS_HIGH_SURROGATE (ch)
Check if ch is an high surrogate (0xD800 <= ch <= 0xDBFF).

Py_UNICODE_IS_LOW_SURROGATE (ch)
Check if ch is a low surrogate (0xDC00 <= ch <= OxDFFF).

Py_UNICODE_JOIN_SURROGATES (high, low)
Join two surrogate characters and return a single Py_UCS4 value. high and low are respectively the leading and
trailing surrogates in a surrogate pair.

Creating and accessing Unicode strings

To create Unicode objects and access their basic sequence properties, use these APIs:

PyObject* PyUnicode_New (Py_ssize_t size, Py_UCS4 maxchar)
Create a new Unicode object. maxchar should be the true maximum code point to be placed in the string. As an
approximation, it can be rounded up to the nearest value in the sequence 127, 255, 65535, 1114111.

This is the recommended way to allocate a new Unicode object. Objects created using this function are not
resizable.

New in version 3.3.

80 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.4.9rc1

PyObject* PyUnicode_FromKindAndData (int kind, const void *buffer, Py_ssize_t size)
Create a new Unicode object with the given kind (possible values are PyUnicode_1BYTE_KIND etc., as
returned by PyUnicode KIND ()). The buffer must point to an array of size units of 1, 2 or 4 bytes per
character, as given by the kind.

New in version 3.3.

PyObject* PyUnicode_FromStringAndSize (const char *u, Py_ssize_t size)
Create a Unicode object from the char buffer u. The bytes will be interpreted as being UTF-8 encoded. The
buffer is copied into the new object. If the buffer is not NULL, the return value might be a shared object, i.e.
modification of the data is not allowed.

If u is NULL, this function behaves like PyUnicode FromUnicode () with the buffer set to NULL. This
usage is deprecated in favor of PyUnicode New ().

PyObject *PyUnicode_FromString (const char *u)
Create a Unicode object from an UTF-8 encoded null-terminated char buffer u.

PyObject* PyUnicode_FromFormat (const char *format, ...)
Take a C printf () -style format string and a variable number of arguments, calculate the size of the resulting
Python unicode string and return a string with the values formatted into it. The variable arguments must be C
types and must correspond exactly to the format characters in the format ASCII-encoded string. The following
format characters are allowed:

Format Characters | Type Comment

5% n/a The literal % character.

%c int A single character, represented as an C int.

$d int Exactly equivalent to printf ("%d").

$u unsigned int Exactly equivalent to printf ("%u").

$1ld long Exactly equivalent to printf (" % 1d").

$11i long Exactly equivalent to printf ("$1i").

%$1lu unsigned long Exactly equivalent to printf ("$1lu").

$11d long long Exactly equivalent to printf ("$11d").

$111 long long Exactly equivalent to printf ("$11i").

$1lu unsigned long long | Exactly equivalentto printf ("%11u")

%zd Py_ssize_t Exactly equivalent to printf ("$zd").

$zi Py_ssize_t Exactly equivalent to printf ("%$zi").

%zu size_t Exactly equivalent to printf ("$zu").

$i int Exactly equivalent to printf ("%i").

$x int Exactly equivalent to printf ("$x").

%s char* A null-terminated C character array.

$p void* The hex representation of a C pointer. Mostly equivalent to
printf ("$p") except that it is guaranteed to start with the
literal O0x regardless of what the platform’s print £ yields.

$A PyObject* The result of calling ascii ().

$U PyObject* A unicode object.

SV PyObject*, char * | A unicode object (which may be NULL) and a
null-terminated C character array as a second parameter
(which will be used, if the first parameter is NULL).

%S PyObject* The result of calling PyObject_Str ().

%R PyObject* The result of calling PyOb ject_Repr ().

An unrecognized format character causes all the rest of the format string to be copied as-is to the result string,
and any extra arguments discarded.

8.3. Sequence Objects

81

The Python/C API, Release 3.4.9rc1

Note: The “%lld” and “%llu” format specifiers are only available when HAVE_TLONG_LONG is defined.

Note: The width formatter unit is number of characters rather than bytes. The precision formatter unit is
number of bytes for "$s" and "$V" (if the PyOb ject » argument is NULL), and a number of characters for
"SAM, "SU", "$S", "SR" and "%V" (if the PyObject x argument is not NULL).

Changed in version 3.2: Support for "$11d" and "$11u" added.
Changed in version 3.3: Support for "$1i", "%$11i" and "%$z1i" added.

Changed in version 3.4: Support width and precision formatter for "$s", "$A", "$U", "$V", "$3S", "SR"
added.

PyObject* PyUnicode_FromFormatV (const char *format, va_list vargs)
Identical to PyUnicode FromFormat () except that it takes exactly two arguments.

PyObject* PyUnicode_FromEncodedObject (PyObject *obj, const char *encoding, const char *errors)
Return value: New reference. Coerce an encoded object obj to an Unicode object and return a reference with
incremented refcount.

bytes, bytearray and other bytes-like objects are decoded according to the given encoding and using the
error handling defined by errors. Both can be NULL to have the interface use the default values (see the next
section for details).

All other objects, including Unicode objects, cause a TypeError to be set.
The API returns NULL if there was an error. The caller is responsible for decref’ing the returned objects.

Py_ssize_t PyUnicode_GetLength (PyObject *unicode)
Return the length of the Unicode object, in code points.

New in version 3.3.

int PyUnicode_CopyCharacters (PyObject *to, Py_ssize_t to_start, PyObject *from,
Py_ssize_t from_start, Py_ssize_t how_many)
Copy characters from one Unicode object into another. This function performs character conversion when
necessary and falls back to memcpy () if possible. Returns —1 and sets an exception on error, otherwise returns
0.

New in version 3.3.

Py_ssize_t PyUnicode_Fill (PyObject *unicode, Py_ssize_t start, Py_ssize_t length, Py_UCS4 fill_char)
Fill a string with a character: write fill_char into unicode [start:start+length].

Fail if fill_char is bigger than the string maximum character, or if the string has more than 1 reference.
Return the number of written character, or return —1 and raise an exception on error.
New in version 3.3.

int PyUnicode_WriteChar (PyObject *unicode, Py_ssize_t index, Py_UCS4 character)
Write a character to a string. The string must have been created through PyUnicode_New (). Since Unicode
strings are supposed to be immutable, the string must not be shared, or have been hashed yet.

This function checks that unicode is a Unicode object, that the index is not out of bounds, and that the
object can be modified safely (i.e. that it its reference count is one), in contrast to the macro version
PyUnicode_WRITE_CHAR().

New in version 3.3.

82 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.4.9rc1

Py_UCS4 PyUnicode_ReadChar (PyObject *unicode, Py_ssize_t index)
Read a character from a string. This function checks that unicode is a Unicode object and the index is not out of
bounds, in contrast to the macro version PyUnicode READ CHAR ().

New in version 3.3.

PyObject* PyUnicode_Substring (PyObject *str, Py_ssize_t start, Py_ssize_t end)
Return a substring of str, from character index start (included) to character index end (excluded). Negative
indices are not supported.

New in version 3.3.

Py_UCS4* PyUnicode_AsUCS4 (PyObject *u, Py_UCS4 *buffer, Py_ssize_t buflen, int copy_null)
Copy the string u into a UCS4 buffer, including a null character, if copy_null is set. Returns NULL and sets an
exception on error (in particular, a ValueError if buflen is smaller than the length of u). buffer is returned on
success.

New in version 3.3.

Py_UCS4* PyUnicode_AsUCS4Copy (PyObject *u)
Copy the string u into a new UCS4 buffer that is allocated using PyMem Malloc (). If this fails, NULL is
returned with a MemoryError set. The returned buffer always has an extra null code point appended.

New in version 3.3.

Deprecated Py_UNICODE APIs

Deprecated since version 3.3, will be removed in version 4.0.

These API functions are deprecated with the implementation of PEP 393. Extension modules can continue using
them, as they will not be removed in Python 3.x, but need to be aware that their use can now cause performance and
memory hits.

PyObject* PyUnicode_FromUnicode (const Py_UNICODE *u, Py_ssize_t size)
Return value: New reference. Create a Unicode object from the Py_UNICODE buffer u of the given size. u may
be NULL which causes the contents to be undefined. It is the user’s responsibility to fill in the needed data. The
buffer is copied into the new object.

If the buffer is not NULL, the return value might be a shared object. Therefore, modification of the resulting
Unicode object is only allowed when u is NULL.

If the buffer is NULL, PyUnicode_READY () must be called once the string content has been filled before
using any of the access macros such as PyUnicode KIND ().

Please migrate to using PyUnicode FromKindAndData () or PyUnicode_New ().

Py_UNICODE* PyUnicode_AsUnicode (PyObject *unicode)
Return a read-only pointer to the Unicode object’s internal Py UNICODE buffer, or NULL on error. This will
create the Py UNICODE » representation of the object if it is not yet available. The buffer is always terminated
with an extra null code point. Note that the resulting Py UNICODE string may also contain embedded null
code points, which would cause the string to be truncated when used in most C functions.

Please migrate to using PyUnicode AsUCS4 (), PyUnicode_Substring(),
PyUnicode_ReadChar () or similar new APIs.

PyObject* PyUnicode_TransformDecimalToASCII (Py_UNICODE *s, Py_ssize_t size)
Create a Unicode object by replacing all decimal digits in Py UNICODE buffer of the given size by ASCII
digits 0-9 according to their decimal value. Return NULL if an exception occurs.

Py_UNICODE* PyUnicode_AsUnicodeAndSize (PyObject *unicode, Py_ssize_t *size)
Like PyUnicode_AsUnicode (), butalso saves the Py UNICODE () array length (excluding the extra null

8.3. Sequence Objects 83

https://www.python.org/dev/peps/pep-0393

The Python/C API, Release 3.4.9rc1

terminator) in size. Note that the resulting Py_ UNTICODE * string may contain embedded null code points,
which would cause the string to be truncated when used in most C functions.

New in version 3.3.

Py_UNICODE* PyUnicode_AsUnicodeCopy (PyObject *unicode)
Create a copy of a Unicode string ending with a null code point. Return NULL and raise a MemoryError
exception on memory allocation failure, otherwise return a new allocated buffer (use PyMem Free () to free
the buffer). Note that the resulting Py UNICODE = string may contain embedded null code points, which would
cause the string to be truncated when used in most C functions.

New in version 3.2.
Please migrate to using PyUnicode AsUCS4Copy () or similar new APIs.

Py_ssize_t PyUnicode_GetSize (PyObject *unicode)
Return the size of the deprecated Py UNICODE representation, in code units (this includes surrogate pairs as 2
units).

Please migrate to using PyUnicode_GetLength ().

PyObject* PyUnicode_FromObject (PyObject *obj)
Return value: New reference. Shortcut for PyUnicode_FromEncodedObject (obj, NULL,
"strict") which is used throughout the interpreter whenever coercion to Unicode is needed.

Locale Encoding

The current locale encoding can be used to decode text from the operating system.

PyObject* PyUnicode_DecodeLocaleAndSize (const char *str, Py_ssize_t len, const char *errors)
Decode a string from the current locale encoding. The supported error handlers are "strict" and
"surrogateescape" (PEP 383). The decoder uses "strict" error handler if errors is NULL. str must
end with a null character but cannot contain embedded null characters.

See also:

Use PyUnicode_DecodeFSDefaultAndSize () to decode a string from
Py_FileSystemDefaultEncoding (the locale encoding read at Python startup).

New in version 3.3.

PyObject* PyUnicode_DecodeLocale (const char *str, const char *errors)
Similar to PyUnicode_DecodeLocaleAndSize (), but compute the string length using strlen ().

New in version 3.3.

PyObject* PyUnicode_EncodeLocale (PyObject *unicode, const char *errors)
Encode a Unicode object to the current locale encoding. The supported error handlers are "strict" and
"surrogateescape" (PEP 383). The encoder uses "strict" error handler if errors is NULL. Return a
bytes object. str cannot contain embedded null characters.

See also:

Use PyUnicode_ EncodeFSDefault () to encode a string to Py_FileSystemDefaultEncoding
(the locale encoding read at Python startup).

New in version 3.3.

84 Chapter 8. Concrete Objects Layer

https://www.python.org/dev/peps/pep-0383
https://www.python.org/dev/peps/pep-0383

The Python/C API, Release 3.4.9rc1

File System Encoding

To encode and decode file names and other environment strings, Py_FileSystemEncoding should be used as the
encoding, and "surrogateescape" should be used as the error handler (PEP 383). To encode file names during
argument parsing, the "O&" converter should be used, passing PyUnicode FSConverter () as the conversion
function:

int PyUnicode_FSConverter (PyObject* obj, void* result)
ParseTuple converter: encode str objects to bytes using PyUnicode_EncodeFSDefault (); bytes
objects are output as-is. result must be a PyBytesOb ject » which must be released when it is no longer used.

New in version 3.1.

To decode file names during argument parsing, the "O&" converter should be wused, passing
PyUnicode_FSDecoder () asthe conversion function:

int PyUnicode_FSDecoder (PyObject* obj, void* result)
ParseTuple converter: decode bytes objects to str using PyUnicode_DecodeFSDefaultAndSize ();
str objects are output as-is. result must be a PyUnicodeOb ject » which must be released when it is no
longer used.

New in version 3.2.

PyObject* PyUnicode_DecodeFSDefaultAndSize (const char *s, Py_ssize_t size)
Decode a string using Py_FileSystemDefaultEncodingandthe "surrogateescape" error handler,
or "strict" on Windows.

IfPy_FileSystemDefaultEncoding is not set, fall back to the locale encoding.
See also:

Py_FileSystemDefaultEncoding is initialized at startup from the locale encoding and can-
not be modified later. If you need to decode a string from the current locale encoding, use
PyUnicode_DecodeLocaleAndSize ().

Changed in version 3.2: Use "strict" error handler on Windows.

PyObject* PyUnicode_DecodeFSDefault (const char *s)
Decode a null-terminated string using Py_FileSystemDefaultEncoding and the
"surrogateescape" error handler, or "strict" on Windows.

IfPy_FileSystemDefaultEncoding is not set, fall back to the locale encoding.
Use PyUnicode DecodeFSDefaultAndSize () if you know the string length.
Changed in version 3.2: Use "strict" error handler on Windows.

PyObject* PyUnicode_EncodeFSDefault (PyObject *unicode)
Encode a Unicode object to Py_FileSystemDefaultEncoding with the "surrogateescape™" error
handler, or "strict" on Windows, and return bytes. Note that the resulting bytes object may contain null
bytes.

IfPy_FileSystemDefaultEncoding is not set, fall back to the locale encoding.
See also:

Py_FileSystemDefaultEncoding is initialized at startup from the locale encoding and cannot be modi-
fied later. If you need to encode a string to the current locale encoding, use PyUnicode_EncodeLocale ().

New in version 3.2.

8.3. Sequence Objects 85

https://www.python.org/dev/peps/pep-0383

The Python/C API, Release 3.4.9rc1

wchar_t Support

wchar_t support for platforms which support it:

PyObject* PyUnicode_FromWideChar (const wchar_t *w, Py_ssize_t size)
Return value: New reference. Create a Unicode object from the wchar_t buffer w of the given size. Passing
-1 as the size indicates that the function must itself compute the length, using weslen. Return NULL on failure.

Py_ssize_t PyUnicode_AsWideChar (PyUnicodeObject *unicode, wchar_t *w, Py_ssize_t size)
Copy the Unicode object contents into the wchar_t buffer w. At most size wchar_t characters are copied
(excluding a possibly trailing null termination character). Return the number of wchar_t characters copied or
-1 in case of an error. Note that the resulting wchar_t * string may or may not be null-terminated. It is the
responsibility of the caller to make sure that the wchar_t « string is null-terminated in case this is required
by the application. Also, note that the wchar_t x string might contain null characters, which would cause the
string to be truncated when used with most C functions.

wchar_t* PyUnicode_AsWideCharString (PyObject *unicode, Py_ssize_t *size)
Convert the Unicode object to a wide character string. The output string always ends with a null character. If
size is not NULL, write the number of wide characters (excluding the trailing null termination character) into
*size.

Returns a buffer allocated by PyMem_Alloc () (use PyMem Free () to free it) on success. On error, returns
NULL, *size is undefined and raises a MemoryError. Note that the resulting wchar_t string might contain
null characters, which would cause the string to be truncated when used with most C functions.

New in version 3.2.

UCS4 Support

New in version 3.3.

size_t Py_UCS4_strlen (const Py_UCS4 *u)

Py_UCS4* Py_UCS4_strcpy (Py_UCS4 *sl, const Py_UCS4 *s2)

Py_UCS4* py_UCS4_strncpy (Py_UCS4 *sl, const Py_UCS4 *s2, size_t n)

Py_UCS4* Py_UCS4_strcat (Py_UCS4 *sl, const Py_UCS4 *s2)

int Py_UCS4_strcmp (const Py_UCS4 *sl, const Py_UCS4 *s2)

int Py _UCS4_strncmp (const Py_UCS4 *s1, const Py_UCS4 *s2, size_t n)

Py_UCS4* Py_UCS4_strchr (const Py_UCS4 *s, Py_UCS4 c)

Py_UCS4* Py_UCS4_strrchr (const Py_UCS4 *s, Py_UCS4 c)
These utility functions work on strings of Py UCS4 characters and otherwise behave like the C standard library
functions with the same name.

Built-in Codecs

Python provides a set of built-in codecs which are written in C for speed. All of these codecs are directly usable via
the following functions.

Many of the following APIs take two arguments encoding and errors, and they have the same semantics as the ones of
the built-in str () string object constructor.

Setting encoding to NULL causes the default encoding to be used which is ASCII. The file sys-
tem calls should use PyUnicode FSConverter () for encoding file names. This uses the variable
Py_FileSystemDefaultEncoding internally. This variable should be treated as read-only: on some systems, it
will be a pointer to a static string, on others, it will change at run-time (such as when the application invokes setlocale).

86 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.4.9rc1

Error handling is set by errors which may also be set to NULL meaning to use the default handling defined for the
codec. Default error handling for all built-in codecs is “strict” (ValueError is raised).

The codecs all use a similar interface. Only deviation from the following generic ones are documented for simplicity.

Generic Codecs

These are the generic codec APIs:

PyObject* PyUnicode_Decode (const char *s, Py_ssize_t size, const char *encoding, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the encoded string s. encoding
and errors have the same meaning as the parameters of the same name in the str () built-in function. The
codec to be used is looked up using the Python codec registry. Return NULL if an exception was raised by the
codec.

PyObject* PyUnicode_AsEncodedString (PyObject *unicode, const char *encoding, const char *er-

rors)
Return value: New reference. Encode a Unicode object and return the result as Python bytes object. encoding

and errors have the same meaning as the parameters of the same name in the Unicode encode () method. The
codec to be used is looked up using the Python codec registry. Return NULL if an exception was raised by the
codec.

PyObject* PyUnicode_Encode (const Py_UNICODE *s, Py_ssize_t size, const char *encoding, const

char *errors)
Return value: New reference. Encode the Py_ UNICODE buffer s of the given size and return a Python bytes ob-

ject. encoding and errors have the same meaning as the parameters of the same name in the Unicode encode ()
method. The codec to be used is looked up using the Python codec registry. Return NULL if an exception was
raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNTCODE API; please
migrate to using PyUnicode AsEncodedString().

UTF-8 Codecs

These are the UTF-8 codec APIs:

PyObject* PyUnicode_DecodeUTF8 (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the UTF-8 encoded string s.
Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_DecodeUTF8Stateful (const char *s, Py_ssize t size, const char *errors,

Py_ssize_t *consumed)
Return value: New reference. If consumed is NULL, behave like PyUnicode_DecodeUTFS8 (). If consumed

is not NULL, trailing incomplete UTF-8 byte sequences will not be treated as an error. Those bytes will not be
decoded and the number of bytes that have been decoded will be stored in consumed.

PyObject* PyUnicode_AsUTF8String (PyObject *unicode)
Return value: New reference. Encode a Unicode object using UTF-8 and return the result as Python bytes object.
Error handling is “strict”. Return NULL if an exception was raised by the codec.

char* PyUnicode_AsUTF8AndSize (PyObject *unicode, Py_ssize_t *size)
Return a pointer to the UTF-8 encoding of the Unicode object, and store the size of the encoded representation
(in bytes) in size. The size argument can be NULL; in this case no size will be stored. The returned buffer always
has an extra null byte appended (not included in size), regardless of whether there are any other null code points.

In the case of an error, NULL is returned with an exception set and no size is stored.

8.3. Sequence Objects 87

The Python/C API, Release 3.4.9rc1

This caches the UTF-8 representation of the string in the Unicode object, and subsequent calls will return a
pointer to the same buffer. The caller is not responsible for deallocating the buffer.

New in version 3.3.

char* PyUnicode_AsUTFS8 (PyObject *unicode)

As PyUnicode AsUTF8AndSize (), butdoes not store the size.

New in version 3.3.

PyObject* PyUnicode_EncodeUTF8 (const Py_UNICODE *s, Py_ssize_t size, const char *errors)

Return value: New reference. Encode the Py_UNICODE buffer s of the given size using UTF-8 and return a
Python bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNITCODE API; please
migrate to using PyUnicode AsUTF8String () or PyUnicode AsUTF8AndSize ().

UTF-32 Codecs

These are the UTF-32 codec APIs:

PyObject* PyUnicode_DecodeUTF32 (const char *s, Py_ssize_t size, const char *errors, int *byteorder)

Decode size bytes from a UTF-32 encoded buffer string and return the corresponding Unicode object. errors (if
non-NULL) defines the error handling. It defaults to “strict”.

If byteorder is non-NULL, the decoder starts decoding using the given byte order:

xbyteorder == -1: little endian
+*byteorder == 0: native order
+*byteorder == 1: Dbig endian

If xbyteorder is zero, and the first four bytes of the input data are a byte order mark (BOM), the decoder
switches to this byte order and the BOM is not copied into the resulting Unicode string. If xbyteorderis -1
or 1, any byte order mark is copied to the output.

After completion, *byteorder is set to the current byte order at the end of input data.
If byteorder is NULL, the codec starts in native order mode.

Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_DecodeUTF32Stateful (const char *s, Py_ssize_t size, const char *errors,

int *byteorder, Py_ssize_t *consumed)
If consumed is NULL, behave like PyUnicode DecodeUTF32 (). If consumed is not NULL,
PyUnicode DecodeUTF32Stateful () will not treat trailing incomplete UTF-32 byte sequences (such
as a number of bytes not divisible by four) as an error. Those bytes will not be decoded and the number of bytes
that have been decoded will be stored in consumed.

PyObject* PyUnicode_AsUTF32String (PyObject *unicode)

Return a Python byte string using the UTF-32 encoding in native byte order. The string always starts with a
BOM mark. Error handling is “strict”. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_EncodeUTF32 (const Py_UNICODE *s, Py_ssize_t size, const char *errors, int by-

teorder)
Return a Python bytes object holding the UTF-32 encoded value of the Unicode data in s. Output is written

according to the following byte order:

byteorder == -1: little endian
byteorder == 0: native byte order (writes a BOM mark)
1:

byteorder == big endian

88

Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.4.9rc1

If byteorder is 0, the output string will always start with the Unicode BOM mark (U+FEFF). In the other two
modes, no BOM mark is prepended.

If Py_UNICODE_WIDE is not defined, surrogate pairs will be output as a single code point.
Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNICODE API; please
migrate to using PyUnicode AsUTF32String ().

UTF-16 Codecs

These are the UTF-16 codec APIs:

PyObject* PyUnicode_DecodeUTF16 (const char *s, Py_ssize_t size, const char *errors, int *byteorder)
Return value: New reference. Decode size bytes from a UTF-16 encoded buffer string and return the corre-
sponding Unicode object. errors (if non-NULL) defines the error handling. It defaults to “strict”.

If byteorder is non-NULL, the decoder starts decoding using the given byte order:

*byteorder == -1: little endian
+*byteorder == 0: native order
*byteorder == 1: Dbig endian

If xbyteorder is zero, and the first two bytes of the input data are a byte order mark (BOM), the decoder
switches to this byte order and the BOM is not copied into the resulting Unicode string. If xbyteorder is
-1 or 1, any byte order mark is copied to the output (where it will result in either a \ufeff or a \ufffe
character).

After completion, *byteorder is set to the current byte order at the end of input data.
If byteorder is NULL, the codec starts in native order mode.
Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_DecodeUTF1l6Stateful (const char *s, Py_ssize_t size, const char *errors,
int *byteorder, Py_ssize_t *consumed)
Return value: New reference. If consumed is NULL, behave like PyUnicode _DecodeUTF16 (). If con-
sumed is not NULL, PyUnicode DecodeUTF16Stateful () will not treat trailing incomplete UTF-16
byte sequences (such as an odd number of bytes or a split surrogate pair) as an error. Those bytes will not be
decoded and the number of bytes that have been decoded will be stored in consumed.

PyObject* PyUnicode_ AsUTF16String (PyObject *unicode)
Return value: New reference. Return a Python byte string using the UTF-16 encoding in native byte order. The
string always starts with a BOM mark. Error handling is “strict”. Return NULL if an exception was raised by
the codec.

PyObject* PyUnicode_EncodeUTF16 (const Py_UNICODE *s, Py_ssize_t size, const char *errors, int by-

teorder)
Return value: New reference. Return a Python bytes object holding the UTF-16 encoded value of the Unicode

data in s. Output is written according to the following byte order:

byteorder == -1: little endian
byteorder == 0: native byte order (writes a BOM mark)
byteorder == 1: Dbig endian

If byteorder is 0, the output string will always start with the Unicode BOM mark (U+FEFF). In the other two
modes, no BOM mark is prepended.

8.3. Sequence Objects 89

The Python/C API, Release 3.4.9rc1

If Py_UNICODE_WIDE is defined, a single Py_ UNICODE value may get represented as a surrogate pair. If it
is not defined, each Py UNTCODE values is interpreted as an UCS-2 character.

Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNICODE API; please
migrate to using PyUnicode AsUTF16String().

UTF-7 Codecs

These are the UTF-7 codec APIs:

PyObject* PyUnicode_DecodeUTF7 (const char *s, Py_ssize_t size, const char *errors)
Create a Unicode object by decoding size bytes of the UTF-7 encoded string s. Return NULL if an exception
was raised by the codec.

PyObject* PyUnicode_DecodeUTF7Stateful (const char *s, Py_ssize t size, const char *errors,

Py_ssize_t *consumed)
If consumed is NULL, behave like PyUnicode_DecodeUTF7 (). If consumed is not NULL, trailing incom-

plete UTF-7 base-64 sections will not be treated as an error. Those bytes will not be decoded and the number of
bytes that have been decoded will be stored in consumed.

PyObject* PyUnicode_EncodeUTF7 (const Py UNICODE *s, Py_ssize_t size, int base64SetO,

int base64WhiteSpace, const char *errors)
Encode the Py_ UNTICODE buffer of the given size using UTF-7 and return a Python bytes object. Return NULL

if an exception was raised by the codec.

If base64SetO is nonzero, “Set O” (punctuation that has no otherwise special meaning) will be encoded in base-
64. If base64WhiteSpace is nonzero, whitespace will be encoded in base-64. Both are set to zero for the Python
“utf-7” codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNTCODE APIL.

Unicode-Escape Codecs

These are the “Unicode Escape” codec APIs:

PyObject* PyUnicode_DecodeUnicodeEscape (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the Unicode-Escape encoded
string 5. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsUnicodeEscapeString (PyObject *unicode)
Return value: New reference. Encode a Unicode object using Unicode-Escape and return the result as Python
string object. Error handling is “strict”. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_EncodeUnicodeEscape (const Py_UNICODE *s, Py_ssize_t size)
Return value: New reference. Encode the Py_UNICODE buffer of the given size using Unicode-Escape and
return a Python string object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNITCODE API; please
migrate to using PyUnicode AsUnicodeEscapeString ().

Raw-Unicode-Escape Codecs

These are the “Raw Unicode Escape” codec APIs:

920 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.4.9rc1

PyObject* PyUnicode_DecodeRawUnicodeEscape (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the Raw-Unicode-Escape
encoded string s. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsRawUnicodeEscapeString (PyObject *unicode)
Return value: New reference. Encode a Unicode object using Raw-Unicode-Escape and return the result as
Python string object. Error handling is “strict”. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_EncodeRawUnicodeEscape (const Py UNICODE *s, Py_ssize_t size, const

char *errors)
Return value: New reference. Encode the Py UNICODE buffer of the given size using Raw-Unicode-Escape

and return a Python string object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNTCODE API; please
migrate to using PyUnicode AsRawUnicodeEscapeString ().

Latin-1 Codecs

These are the Latin-1 codec APIs: Latin-1 corresponds to the first 256 Unicode ordinals and only these are accepted
by the codecs during encoding.

PyObject* PyUnicode_DecodeLatinl (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the Latin-1 encoded string s.
Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsLatinlString (PyObject *unicode)
Return value: New reference. Encode a Unicode object using Latin-1 and return the result as Python bytes
object. Error handling is “strict”. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_EncodeLatinl (const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference. Encode the Py UNICODE buffer of the given size using Latin-1 and return a
Python bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNICODE API; please
migrate to using PyUnicode AsLatinlString().

ASCII Codecs

These are the ASCII codec APIs. Only 7-bit ASCII data is accepted. All other codes generate errors.

PyObject* PyUnicode_DecodeASCII (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the ASCII encoded string s.
Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsASCIIString (PyObject *unicode)
Return value: New reference. Encode a Unicode object using ASCII and return the result as Python bytes object.
Error handling is “strict”. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_EncodeASCII (const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference. Encode the Py UNICODE buffer of the given size using ASCII and return a
Python bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNTCODE API; please
migrate to using PyUnicode AsASCIIString().

8.3. Sequence Objects 91

The Python/C API, Release 3.4.9rc1

Character Map Codecs

This codec is special in that it can be used to implement many different codecs (and this is in fact what was done to
obtain most of the standard codecs included in the encodings package). The codec uses mapping to encode and
decode characters.

Decoding mappings must map single string characters to single Unicode characters, integers (which are then inter-
preted as Unicode ordinals) or None (meaning “undefined mapping” and causing an error).

Encoding mappings must map single Unicode characters to single string characters, integers (which are then inter-
preted as Latin-1 ordinals) or None (meaning “undefined mapping” and causing an error).

The mapping objects provided must only support the __getitem__ mapping interface.

If a character lookup fails with a LookupError, the character is copied as-is meaning that its ordinal value will be
interpreted as Unicode or Latin-1 ordinal resp. Because of this, mappings only need to contain those mappings which
map characters to different code points.

These are the mapping codec APIs:

PyObject* PyUnicode_DecodeCharmap (const char *s, Py_ssize_t size, PyObject *mapping, const

char *errors))))
Return value: New reference. Create a Unicode object by decoding size bytes of the encoded string s using

the given mapping object. Return NULL if an exception was raised by the codec. If mapping is NULL latin-1
decoding will be done. Else it can be a dictionary mapping byte or a unicode string, which is treated as a lookup
table. Byte values greater that the length of the string and U+FFFE “characters” are treated as “undefined
mapping”.

PyObject* PyUnicode_AsCharmapString (PyObject *unicode, PyObject *mapping)
Return value: New reference. Encode a Unicode object using the given mapping object and return the result as
Python string object. Error handling is “strict”. Return NULL if an exception was raised by the codec.

The following codec API is special in that maps Unicode to Unicode.

PyObject* PyUnicode_TranslateCharmap (const Py_UNICODE *s, Py_ssize_t size, PyObject *table,

const char *errors)))
Return value: New reference. Translate a Py UNTCODE buffer of the given size by applying a character map-

ping fable to it and return the resulting Unicode object. Return NULL when an exception was raised by the
codec.

The mapping table must map Unicode ordinal integers to Unicode ordinal integers or None (causing deletion of
the character).

Mapping tables need only provide the _ _getitem__ () interface; dictionaries and sequences work well.
Unmapped character ordinals (ones which cause a LookupError) are left untouched and are copied as-is.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNTCODE APL

PyObject* PyUnicode_EncodeCharmap (const Py UNICODE *s, Py_ssize_t size, PyObject *mapping,

const char *errors)))))
Return value: New reference. Encode the Py UNTCODE buffer of the given size using the given mapping object

and return a Python string object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNICODE API; please
migrate to using PyUnicode AsCharmapString ().

MBCS codecs for Windows

These are the MBCS codec APIs. They are currently only available on Windows and use the Win32 MBCS converters
to implement the conversions. Note that MBCS (or DBCS) is a class of encodings, not just one. The target encoding

92 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.4.9rc1

is defined by the user settings on the machine running the codec.

PyObject* PyUnicode_DecodeMBCS (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the MBCS encoded string s.
Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_DecodeMBCSStateful (const char *s, int size, const char *errors, int *con-

sumed)
If consumed is NULL, behave like PyUnicode DecodeMBCS (). If consumed is not NULL,

PyUnicode_DecodeMBCSStateful () will not decode trailing lead byte and the number of bytes that
have been decoded will be stored in consumed.

PyObject* PyUnicode_AsMBCSString (PyObject *unicode)
Return value: New reference. Encode a Unicode object using MBCS and return the result as Python bytes
object. Error handling is “strict”. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_EncodeCodePage (int code_page, PyObject *unicode, const char *errors)
Encode the Unicode object using the specified code page and return a Python bytes object. Return NULL if an
exception was raised by the codec. Use CP_ACP code page to get the MBCS encoder.

New in version 3.3.

PyObject* PyUnicode_EncodeMBCS (const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference. Encode the Py UNICODE buffer of the given size using MBCS and return a
Python bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNICODE API; please
migrate to using PyUnicode AsMBCSString () or PyUnicode EncodeCodePage ().

Methods & Slots

Methods and Slot Functions

The following APIs are capable of handling Unicode objects and strings on input (we refer to them as strings in the
descriptions) and return Unicode objects or integers as appropriate.

They all return NULL or -1 if an exception occurs.

PyObject* PyUnicode_Concat (PyObject *left, PyObject *right)
Return value: New reference. Concat two strings giving a new Unicode string.

PyObject* PyUnicode_Split (PyObject *s, PyObject *sep, Py_ssize_t maxsplit)
Return value: New reference. Split a string giving a list of Unicode strings. If sep is NULL, splitting will be
done at all whitespace substrings. Otherwise, splits occur at the given separator. At most maxsplit splits will be
done. If negative, no limit is set. Separators are not included in the resulting list.

PyObject* PyUnicode_Splitlines (PyObject *s, int keepend)
Return value: New reference. Split a Unicode string at line breaks, returning a list of Unicode strings. CRLF
is considered to be one line break. If keepend is 0, the Line break characters are not included in the resulting
strings.

PyObject* PyUnicode_Translate (PyObject *str, PyObject *table, const char *errors)
Return value: New reference. Translate a string by applying a character mapping table to it and return the
resulting Unicode object.

The mapping table must map Unicode ordinal integers to Unicode ordinal integers or None (causing deletion of
the character).

Mapping tables need only provide the __getitem__ () interface; dictionaries and sequences work well.
Unmapped character ordinals (ones which cause a LookupError) are left untouched and are copied as-is.

8.3. Sequence Objects 93

The Python/C API, Release 3.4.9rc1

errors has the usual meaning for codecs. It may be NULL which indicates to use the default error handling.

PyObject* PyUnicode_Join (PyObject *separator, PyObject *seq)
Return value: New reference. Join a sequence of strings using the given separator and return the resulting
Unicode string.

Py_ssize_t PyUnicode_Tailmatch (PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end,

. int direction)))
Return 1 if substr matches str [start :end] at the given tail end (direction == -1 means to do a prefix match,

direction == 1 a suffix match), 0 otherwise. Return —1 if an error occurred.

Py_ssize_t PyUnicode_Find (PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end, int direc-

tion)
Return the first position of substr in str [start :end] using the given direction (direction == 1 means to do
a forward search, direction == -1 a backward search). The return value is the index of the first match; a value of

-1 indicates that no match was found, and -2 indicates that an error occurred and an exception has been set.

Py_ssize_t PyUnicode_FindChar (PyObject *str, Py_UCS4 ch, Py_ssize_t start, Py_ssize_t end, int direc-

tion)
Return the first position of the character ch in str[start:end] using the given direction (direction ==
1 means to do a forward search, direction == -1 a backward search). The return value is the index of the first

match; a value of -1 indicates that no match was found, and -2 indicates that an error occurred and an exception
has been set.

New in version 3.3.

Py_ssize_t PyUnicode_Count (PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end)
Return the number of non-overlapping occurrences of substr in str [start:end]. Return -1 if an error
occurred.

PyObject* PyUnicode_Replace (PyObject *str, PyObject *substr, PyObject *replstr, Py_ssize_t max-

count)
Return value: New reference. Replace at most maxcount occurrences of substr in str with replstr and return the
resulting Unicode object. maxcount == -1 means replace all occurrences.

int PyUnicode_Compare (PyObject *left, PyObject *right)
Compare two strings and return -1, 0, 1 for less than, equal, and greater than, respectively.

int PyUnicode_CompareWithASCIIString (PyObject *uni, const char *string)
Compare a unicode object, uni, with string and return -1, 0, 1 for less than, equal, and greater than, respectively.
It is best to pass only ASCII-encoded strings, but the function interprets the input string as ISO-8859-1 if it
contains non-ASCII characters.

PyObject* PyUnicode_RichCompare (PyObject *left, PyObject *right, int op)
Rich compare two unicode strings and return one of the following:

* NULL in case an exception was raised
* Py_True or Py_False for successful comparisons
* Py_NotImplemented in case the type combination is unknown

Note that Py_EQ and Py_NE comparisons can cause a UnicodeWarning in case the conversion of the
arguments to Unicode fails with a UnicodeDecodeError.

Possible values for op are Py_GT, Py_GE, Py_EQ, Py_NE, Py_LT,and Py_LE.

PyObject* PyUnicode_Format (PyObject *format, PyObject *args)
Return value: New reference. Return a new string object from format and args; this is analogous to format %
args.

int PyUnicode_Contains (PyObject *container, PyObject *element)
Check whether element is contained in container and return true or false accordingly.

94 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.4.9rc1

element has to coerce to a one element Unicode string. —1 is returned if there was an error.

void PyUnicode_InternInPlace (PyObject **string)
Intern the argument *string in place. The argument must be the address of a pointer variable pointing to a
Python unicode string object. If there is an existing interned string that is the same as *string, it sets *string to it
(decrementing the reference count of the old string object and incrementing the reference count of the interned
string object), otherwise it leaves *string alone and interns it (incrementing its reference count). (Clarification:
even though there is a lot of talk about reference counts, think of this function as reference-count-neutral; you
own the object after the call if and only if you owned it before the call.)

PyObject* PyUnicode_InternFromString (const char *v)
A combination of PyUnicode_FromString () and PyUnicode_InternInPlace (), returning either
a new unicode string object that has been interned, or a new (“owned”) reference to an earlier interned string
object with the same value.

8.3.4 Tuple Objects

PyTupleObject
This subtype of PyOb ject represents a Python tuple object.

PyTypeObject PyTuple_Type
This instance of Py TypeOb ject represents the Python tuple type; it is the same object as t uple in the Python
layer.

int PyTuple_Check (PyObject *p)
Return true if p is a tuple object or an instance of a subtype of the tuple type.

int PyTuple_CheckExact (PyObject *p)
Return true if p is a tuple object, but not an instance of a subtype of the tuple type.

PyObject* PyTuple_New (Py_ssize_t len)
Return value: New reference. Return a new tuple object of size len, or NULL on failure.

PyObject* PyTuple_Pack (Py_ssize_tn, ...)
Return value: New reference. Return a new tuple object of size n, or NULL on failure. The tuple values
are initialized to the subsequent n C arguments pointing to Python objects. PyTuple_Pack (2, a, b) is
equivalent to Py_Buildvalue (" (00)", a, b).

Py_ssize_t PyTuple_Size (PyObject *p)
Take a pointer to a tuple object, and return the size of that tuple.

Py_ssize_t PyTuple_GET_SIZE (PyObject *p)
Return the size of the tuple p, which must be non-NULL and point to a tuple; no error checking is performed.

PyObject* PyTuple_GetItem (PyObject *p, Py_ssize_t pos)
Return value: Borrowed reference. Return the object at position pos in the tuple pointed to by p. If pos is out of
bounds, return NULL and sets an IndexError exception.

PyObject* PyTuple_GET_ITEM (PyObject *p, Py_ssize_t pos)
Return value: Borrowed reference. Like PyTuple GetItem (), but does no checking of its arguments.

PyObject* PyTuple_GetSlice (PyObject *p, Py_ssize_t low, Py_ssize_t high)
Return value: New reference. Take a slice of the tuple pointed to by p from low to high and return it as a new
tuple.

int PyTuple_SetItem (PyObject *p, Py_ssize_t pos, PyObject *o)
Insert a reference to object o at position pos of the tuple pointed to by p. Return O on success.

8.3. Sequence Objects 95

The Python/C API, Release 3.4.9rc1

Note: This function “steals” a reference to o.

void PyTuple_SET_ITEM (PyObject *p, Py_ssize_t pos, PyObject *o)
Like PyTuple_SetItem(),butdoes no error checking, and should only be used to fill in brand new tuples.

Note: This function “steals” a reference to o.

int _PyTuple_Resize (PyObject **p, Py_ssize_t newsize)

Can be used to resize a tuple. newsize will be the new length of the tuple. Because tuples are supposed to be
immutable, this should only be used if there is only one reference to the object. Do not use this if the tuple may
already be known to some other part of the code. The tuple will always grow or shrink at the end. Think of this
as destroying the old tuple and creating a new one, only more efficiently. Returns 0 on success. Client code
should never assume that the resulting value of *p will be the same as before calling this function. If the object
referenced by *p is replaced, the original *p is destroyed. On failure, returns —1 and sets p to NULL, and
raises MemoryError or SystemError.

int PyTuple_ClearFreelist ()
Clear the free list. Return the total number of freed items.

8.3.5 Struct Sequence Objects
Struct sequence objects are the C equivalent of namedtuple () objects, i.e. a sequence whose items can also be
accessed through attributes. To create a struct sequence, you first have to create a specific struct sequence type.

PyTypeObject* PyStruct Sequence_NewType (PyStructSequence_Desc *desc)
Create a new struct sequence type from the data in desc, described below. Instances of the resulting type can be
created with PySt ruct Sequence_New ().

void PyStructSequence_InitType (PyTypeObject *type, PyStructSequence_Desc *desc)
Initializes a struct sequence type fype from desc in place.

int PyStructSequence_InitType2 (PyTypeObject *type, PyStructSequence_Desc *desc)
The same as PyStructSequence_InitType, but returns 0 on success and —1 on failure.

New in version 3.4.

PyStructSequence_Desc
Contains the meta information of a struct sequence type to create.

Field C Type Meaning
name char * name of the struct sequence type
doc char * pointer to docstring for the type or NULL to omit
fields PyStructSequence_Fielldpointer to NULL-terminated array with field names of
* the new type
n_in_sequendeint number of fields visible to the Python side (if used as
tuple)

PyStructSequence_Field
Describes a field of a struct sequence. As a struct sequence is modeled as a tuple, all fields are typed as
PyObject . The index in the fields array of the Py St ruct Sequence_Desc determines which field of
the struct sequence is described.

96 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.4.9rc1

Field| C Meaning
Type

name| char name for the field or NULL to end the list of named fields, set to PyStructSe-
* quence_UnnamedField to leave unnamed

doc | char | field docstring or NULL to omit
*

char* PyStructSequence_UnnamedField
Special value for a field name to leave it unnamed.

PyObject* PyStructSequence_New (PyTypeObject *type)
Creates an instance of type, which must have been created with Py St ruct Sequence_NewType ().

PyObject* PyStructSequence_GetItem (PyObject *p, Py_ssize_t pos)
Return the object at position pos in the struct sequence pointed to by p. No bounds checking is performed.

PyObject* PyStructSequence_GET_ITEM (PyObject *p, Py_ssize_t pos)
Macro equivalent of Py St ruct Sequence_GetItem().

void PyStructSequence_SetItem (PyObject *p, Py_ssize_t pos, PyObject *0)
Sets the field at index pos of the struct sequence p to value o. Like PyTuple SET ITEM (), this should only
be used to fill in brand new instances.

Note: This function “steals” a reference to o.

PyObject* PyStructSequence_SET_ITEM (PyObject *p, Py_ssize_t *pos, PyObject *0)
Macro equivalent of Py St ruct Sequence_SetItem().

Note: This function “steals” a reference to o.

8.3.6 List Objects

PyListObject
This subtype of PyOb ject represents a Python list object.

PyTypeObject PyList_Type
This instance of Py TypeOb ject represents the Python list type. This is the same object as 1ist in the Python
layer.

int PyList_Check (PyObject *p)
Return true if p is a list object or an instance of a subtype of the list type.

int PyList_CheckExact (PyObject *p)
Return true if p is a list object, but not an instance of a subtype of the list type.

PyObject* PyList_New (Py_ssize_t len)
Return value: New reference. Return a new list of length len on success, or NULL on failure.

Note: If [en is greater than zero, the returned list object’s items are set to NULL. Thus you cannot use abstract
API functions such as PySequence_SetItem () or expose the object to Python code before setting all items
to areal object with PyList_SetItem().

8.3. Sequence Objects 97

The Python/C API, Release 3.4.9rc1

Py_ssize_t PyList_Size (PyObject *list)
Return the length of the list object in /ist; this is equivalent to 1en (1ist) on a list object.

Py_ssize_t PyList_GET_SIZE (PyObject *list)
Macro form of PyList_Size () without error checking.

PyObject* PyList_GetItem (PyObject *list, Py_ssize_t index)
Return value: Borrowed reference. Return the object at position index in the list pointed to by lisz. The position
must be positive, indexing from the end of the list is not supported. If index is out of bounds, return NULL and
set an IndexError exception.

PyObject* PyList_GET_ITEM (PyObject *list, Py_ssize_t i)
Return value: Borrowed reference. Macro form of PyList_Get Item () without error checking.

int PyList_SetItem (PyObject *list, Py_ssize_t index, PyObject *item)
Set the item at index index in list to item. Return 0 on success or —1 on failure.

Note: This function “steals” a reference to item and discards a reference to an item already in the list at the
affected position.

void PyList_SET_ITEM (PyObject *list, Py_ssize_t i, PyObject *0)
Macro form of PyList_SetItem () without error checking. This is normally only used to fill in new lists
where there is no previous content.

Note: This macro “steals” a reference to item, and, unlike PyList_SetItem (), does not discard a reference
to any item that is being replaced; any reference in list at position i will be leaked.

int PyList_Insert (PyObject *list, Py_ssize_t index, PyObject *item)
Insert the item item into list list in front of index index. Return 0 if successful; return —1 and set an exception if
unsuccessful. Analogous to 1ist.insert (index, item).

int PyList_Append (PyObject *list, PyObject *item)
Append the object ifem at the end of list list. Return 0 if successful; return —1 and set an exception if unsuc-
cessful. Analogousto 1ist.append (item).

PyObject* PyList_GetSlice (PyObject *list, Py_ssize_t low, Py_ssize_t high)
Return value: New reference. Return a list of the objects in /ist containing the objects between low and high.
Return NULL and set an exception if unsuccessful. Analogous to 1ist [low:high]. Negative indices, as
when slicing from Python, are not supported.

int PyList_SetSlice (PyObject *list, Py_ssize_t low, Py_ssize_t high, PyObject *itemlist)
Set the slice of list between low and high to the contents of itemlist. Analogous to 1ist [low:high] =
itemlist. The itemlist may be NULL, indicating the assignment of an empty list (slice deletion). Return 0
on success, —1 on failure. Negative indices, as when slicing from Python, are not supported.

int PyList_Sort (PyObject *list)
Sort the items of list in place. Return 0 on success, —1 on failure. This is equivalentto 1ist.sort ().

int PyList_Reverse (PyObject *list)
Reverse the items of list in place. Return O on success, —1 on failure. This is the equivalent of 1ist.
reverse ().

PyObject* PyList_AsTuple (PyObject *list)
Return value: New reference. Return a new tuple object containing the contents of list; equivalent to
tuple (list).

98 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.4.9rc1

int PyList_ClearFreelist ()
Clear the free list. Return the total number of freed items.

New in version 3.3.

8.4 Container Objects

8.4.1 Dictionary Objects

PyDictObject
This subtype of PyOb ject represents a Python dictionary object.

PyTypeObject PyDict_Type
This instance of Py TypeOb ject represents the Python dictionary type. This is the same object as dict in
the Python layer.

int PyDict_Check (PyObject *p)
Return true if p is a dict object or an instance of a subtype of the dict type.

int PyDict_CheckExact (PyObject *p)
Return true if p is a dict object, but not an instance of a subtype of the dict type.

PyObject* PyDict_New ()
Return value: New reference. Return a new empty dictionary, or NULL on failure.

PyObject* PyDictProxy_ New (PyObject *mapping)
Return value: New reference. Return a types.MappingProxyType object for a mapping which enforces
read-only behavior. This is normally used to create a view to prevent modification of the dictionary for non-
dynamic class types.

void PyDict_Clear (PyObject *p)
Empty an existing dictionary of all key-value pairs.

int PyDict_Contains (PyObject *p, PyObject *key)
Determine if dictionary p contains key. If an item in p is matches key, return 1, otherwise return 0. On error,
return —1. This is equivalent to the Python expression key in p.

PyObject* PyDict_Copy (PyObject *p)
Return value: New reference. Return a new dictionary that contains the same key-value pairs as p.

int PyDict_SetItem (PyObject *p, PyObject *key, PyObject *val)
Insert value into the dictionary p with a key of key. key must be hashable; if it isn’t, TypeError will be raised.
Return 0 on success or —1 on failure.

int PyDict_SetItemString (PyObject *p, const char *key, PyObject *val)
Insert value into the dictionary p using key as a key. key should be a char«. The key object is created using
PyUnicode_FromString (key). Return O on success or —1 on failure.

int PyDict_DelItem (PyObject *p, PyObject *key)
Remove the entry in dictionary p with key key. key must be hashable; if it isn’t, TypeError is raised. Return
0 on success or —1 on failure.

int PyDict_DelItemString (PyObject *p, const char *key)
Remove the entry in dictionary p which has a key specified by the string key. Return O on success or —1 on
failure.

PyObject* PyDict_GetItem (PyObject *p, PyObject *key)
Return value: Borrowed reference. Return the object from dictionary p which has a key key. Return NULL if
the key key is not present, but without setting an exception.

8.4. Container Objects 99

The Python/C API, Release 3.4.9rc1

PyObject* PyDict_GetItemWithError (PyObject *p, PyObject *key)
Variant of PyDict_GetItem () that does not suppress exceptions. Return NULL with an exception set if an
exception occurred. Return NULL without an exception set if the key wasn’t present.

PyObject* PyDict_GetItemString (PyObject *p, const char *key)
Return value: Borrowed reference. This is the same as PyDict_GetItem(),butkey is specified asa charx,
rather than a PyOb ject *.

PyObject* PyDict_SetDefault (PyObject *p, PyObject *key, PyObject *default)
Return value: Borrowed reference. This is the same as the Python-level dict .setdefault (). If present,
it returns the value corresponding to key from the dictionary p. If the key is not in the dict, it is inserted with
value defaultobj and defaultobj is returned. This function evaluates the hash function of key only once, instead
of evaluating it independently for the lookup and the insertion.

PyObject* PyDict_TItems (PyObject *p)
Return value: New reference. Return a PyListObject containing all the items from the dictionary.

PyObject* PyDict_Keys (PyObject *p)
Return value: New reference. Return a PyListOb ject containing all the keys from the dictionary.

PyObject* PyDict_Values (PyObject *p)
Return value: New reference. Return a Py ListOb ject containing all the values from the dictionary p.

Py_ssize_t PyDict_Size (PyObject *p)
Return the number of items in the dictionary. This is equivalent to Len (p) on a dictionary.

int PyDict_Next (PyObject *p, Py_ssize_t *ppos, PyObject **pkey, PyObject **pvalue)
Iterate over all key-value pairs in the dictionary p. The Py_ssize_t referred to by ppos must be initialized
to 0 prior to the first call to this function to start the iteration; the function returns true for each pair in the
dictionary, and false once all pairs have been reported. The parameters pkey and pvalue should either point
to PyOb ject variables that will be filled in with each key and value, respectively, or may be NULL. Any
references returned through them are borrowed. ppos should not be altered during iteration. Its value represents
offsets within the internal dictionary structure, and since the structure is sparse, the offsets are not consecutive.

For example:

PyObject xkey, =*value;
Py_ssize_t pos = 0;

while (PyDict_Next (self->dict, &pos, &key, &value)) |
/* do something interesting with the values... */

The dictionary p should not be mutated during iteration. It is safe to modify the values of the keys as you iterate
over the dictionary, but only so long as the set of keys does not change. For example:

PyObject xkey, =*value;
Py_ssize_t pos = 0;

while (PyDict_Next (self->dict, &pos, &key, &value)) {
long i = PyLong_AsLong(value);
if (i == -1 && PyErr_Occurred()) {
return -1;
}
PyObject %o = PyLong_FromLong (i + 1);
if (o == NULL)
return -1;
if (PyDict_SetItem(self->dict, key, o) < 0) {

(continues on next page)

100 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.4.9rc1

(continued from previous page)

Py_DECREF (o) ;
return -1;

}

Py_DECREF (0) ;

int PyDict_Merge (PyObject *a, PyObject *b, int override)
Iterate over mapping object b adding key-value pairs to dictionary a. b may be a dictionary, or any object
supporting PyMapping Keys () and PyObject_GetItem/(). If override is true, existing pairs in a will
be replaced if a matching key is found in b, otherwise pairs will only be added if there is not a matching key in
a. Return 0 on success or -1 if an exception was raised.

int PyDict_Update (PyObject *a, PyObject *b)
This is the same as PyDict_Merge (a, b, 1) in C, and is similar to a.update (b) in Python except
that PyDict_Update () doesn’t fall back to the iterating over a sequence of key value pairs if the second
argument has no “keys” attribute. Return 0 on success or —1 if an exception was raised.

int PyDict_MergeFromSeq2 (PyObject *a, PyObject *seq2, int override)
Update or merge into dictionary a, from the key-value pairs in seq2. seqg2 must be an iterable object producing
iterable objects of length 2, viewed as key-value pairs. In case of duplicate keys, the last wins if override is true,
else the first wins. Return 0 on success or -1 if an exception was raised. Equivalent Python (except for the
return value):

def PyDict_MergeFromSeqg2 (a, seqg2, override):
for key, value in seq2:
if override or key not in a:
alkey] = value

int PyDict_ClearFreeList ()
Clear the free list. Return the total number of freed items.

New in version 3.3.

8.4.2 Set Objects

This section details the public API for set and frozenset objects. Any functionality not listed be-
low is best accessed using the either the abstract object protocol (including PyObject_CallMethod (),
PyObject_RichCompareBool (), PyObject_Hash (), PyObject_Repr (), PyObject_IsTrue(),
PyObject_Print (), and PyObject_GetIter()) or the abstract number protocol (includ-
ing PyNumber_And(), PyNumber.__Subtract (), PyNumber._ Or (), PyNumber_Xor (),
PyNumber_InPlaceAnd(), PyNumber_InPlaceSubtract (), PyNumber_InPlaceOr (), and
PyNumber_InPlaceXor ()).

PySetObject
This subtype of PyOb ject is used to hold the internal data for both set and frozenset objects. It is like
a PyDictObject in thatitis a fixed size for small sets (much like tuple storage) and will point to a separate,
variable sized block of memory for medium and large sized sets (much like list storage). None of the fields
of this structure should be considered public and are subject to change. All access should be done through the
documented API rather than by manipulating the values in the structure.

PyTypeObject PySet_Type
This is an instance of Py TypeOb ject representing the Python set type.

PyTypeObject PyFrozenSet_Type
This is an instance of Py TypeOb ject representing the Python frozenset type.

8.4. Container Objects 101

The Python/C API, Release 3.4.9rc1

The following type check macros work on pointers to any Python object. Likewise, the constructor functions work
with any iterable Python object.

int PySet_Check (PyObject *p)
Return true if p is a set object or an instance of a subtype.

int PyFrozenSet_Check (PyObject *p)
Return true if p is a frozenset object or an instance of a subtype.

int PyAnySet_Check (PyObject *p)
Return true if p is a set object, a frozenset object, or an instance of a subtype.

int PyAnySet_CheckExact (PyObject *p)
Return true if p is a set object or a frozenset object but not an instance of a subtype.

int PyFrozenSet_CheckExact (PyObject *p)
Return true if p is a frozenset object but not an instance of a subtype.

PyObject* PySet_New (PyObject *iterable)
Return value: New reference. Return a new set containing objects returned by the iterable. The iterable may
be NULL to create a new empty set. Return the new set on success or NULL on failure. Raise TypeError if
iterable is not actually iterable. The constructor is also useful for copying a set (c=set (s)).

PyObject* PyFrozenSet_New (PyObject *iterable)
Return value: New reference. Return a new frozenset containing objects returned by the iterable. The
iterable may be NULL to create a new empty frozenset. Return the new set on success or NULL on failure.
Raise TypeError if iterable is not actually iterable.

The following functions and macros are available for instances of set or frozenset or instances of their subtypes.

Py_ssize_t PySet_Size (PyObject *anyset)
Return the length of a set or frozenset object. Equivalent to len (anyset). Raises a
PyExc_SystemError if anyset is not a set, frozenset, or an instance of a subtype.

Py_ssize_t PySet_GET_SIZE (PyObject *anyset)
Macro form of PySet_ Size () without error checking.

int PySet_Contains (PyObject *anyset, PyObject *key)
Return 1 if found, O if not found, and -1 if an error is encountered. Unlike the Python __contains__ ()
method, this function does not automatically convert unhashable sets into temporary frozensets. Raise a
TypeError if the key is unhashable. Raise PyExc_SystemError if anyset is not a set, frozenset,
or an instance of a subtype.

int PySet_Add (PyObject *set, PyObject *key)
Add key to a set instance. Also works with frozenset instances (like PyTuple SetItem () it can be
used to fill-in the values of brand new frozensets before they are exposed to other code). Return O on success
or -1 on failure. Raise a TypeError if the key is unhashable. Raise a MemoryError if there is no room to
grow. Raise a SystemError if sef is an not an instance of set or its subtype.

The following functions are available for instances of set or its subtypes but not for instances of frozenset or its
subtypes.

int PySet_Discard (PyObject *set, PyObject *key)
Return 1 if found and removed, O if not found (no action taken), and -1 if an error is encountered. Does
not raise KeyError for missing keys. Raise a TypeError if the key is unhashable. Unlike the Python
discard () method, this function does not automatically convert unhashable sets into temporary frozensets.
Raise PyExc_SystemError if set is an not an instance of set or its subtype.

PyObject* PySet_Pop (PyObject *set)
Return value: New reference. Return a new reference to an arbitrary object in the set, and removes the object

102 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.4.9rc1

from the set. Return NULL on failure. Raise KeyError if the set is empty. Raise a SystemError if sef is an
not an instance of set or its subtype.

int PySet_Clear (PyObject *set)
Empty an existing set of all elements.

int PySet_ClearFreeList ()
Clear the free list. Return the total number of freed items.

New in version 3.3.

8.5 Function Objects

8.5.1 Function Objects

There are a few functions specific to Python functions.

PyFunctionObject
The C structure used for functions.

PyTypeObject PyFunction_Type
This is an instance of PyTypeObject and represents the Python function type. It is exposed to Python
programmers as types.FunctionType.

int PyFunction_Check (PyObject *0)
Return true if o is a function object (has type PyFunction_ Type). The parameter must not be NULL.

PyObject* PyFunction_New (PyObject *code, PyObject *globals)
Return value: New reference. Return a new function object associated with the code object code. globals must
be a dictionary with the global variables accessible to the function.

The function’s docstring, name and __module__ are retrieved from the code object, the argument defaults and
closure are set to NULL.

PyObject* PyFunction_NewWithQualName (PyObject *code, PyObject *globals, PyObject *qualname)
Return value: New reference. As PyFunction_New (), but also allows to set the function object’s
__qualname___ attribute. gualname should be a unicode object or NULL; if NULL, the __qualname___
attribute is set to the same value as its ___name___ attribute.

New in version 3.3.

PyObject* PyFunction_GetCode (PyObject *op)
Return value: Borrowed reference. Return the code object associated with the function object op.

PyObject* PyFunction_GetGlobals (PyObject *op)
Return value: Borrowed reference. Return the globals dictionary associated with the function object op.

PyObject* PyFunction_GetModule (PyObject *op)
Return value: Borrowed reference. Return the __module__ attribute of the function object op. This is normally
a string containing the module name, but can be set to any other object by Python code.

PyObject* PyFunction_GetDefaults (PyObject *op)
Return value: Borrowed reference. Return the argument default values of the function object op. This can be a
tuple of arguments or NULL.

int PyFunction_SetDefaults (PyObject *op, PyObject *defaults)
Set the argument default values for the function object op. defaults must be Py_None or a tuple.

Raises SystemError and returns —1 on failure.

8.5. Function Objects 103

The Python/C API, Release 3.4.9rc1

PyObject* PyFunction_GetClosure (PyObject *op)
Return value: Borrowed reference. Return the closure associated with the function object op. This can be NULL
or a tuple of cell objects.

int PyFunction_SetClosure (PyObject *op, PyObject *closure)
Set the closure associated with the function object op. closure must be Py_None or a tuple of cell objects.

Raises SystemError and returns —1 on failure.

PyObject *PyFunction_GetAnnotations (PyObject *op)
Return the annotations of the function object op. This can be a mutable dictionary or NULL.

int PyFunction_SetAnnotations (PyObject *op, PyObject *annotations)
Set the annotations for the function object op. annotations must be a dictionary or Py_None.

Raises SystemError and returns —1 on failure.

8.5.2 Instance Method Objects

An instance method is a wrapper for a PyCFunction and the new way to bind a PyCFunct ion to a class object.
It replaces the former call PyMethod_New (func, NULL, class).

PyTypeObject PyInstanceMethod_Type
This instance of PyTypeOb ject represents the Python instance method type. It is not exposed to Python
programs.

int PyInstanceMethod_Check (PyObject *0)
Return true if o is an instance method object (has type PyInstanceMethod_Type). The parameter must not
be NULL.

PyObject* PyInstanceMethod_New (PyObject *func)
Return a new instance method object, with func being any callable object func is the function that will be called
when the instance method is called.

PyObject* PyInstanceMethod_Function (PyObject *im)
Return the function object associated with the instance method im.

PyObject* PyInstanceMethod_GET_FUNCTION (PyObject *im)
Macro version of PyTInstanceMethod Function () which avoids error checking.

8.5.3 Method Objects

Methods are bound function objects. Methods are always bound to an instance of an user-defined class. Unbound
methods (methods bound to a class object) are no longer available.

PyTypeObject PyMethod_Type
This instance of Py TypeOb ject represents the Python method type. This is exposed to Python programs as
types.MethodType.

int PyMethod_Check (PyObject *o)
Return true if o is a method object (has type PyMethod _Type). The parameter must not be NULL.

PyObject* PyMethod_New (PyObject *func, PyObject *self)
Return value: New reference. Return a new method object, with func being any callable object and self the
instance the method should be bound. func is the function that will be called when the method is called. self
must not be NULL.

PyObject* PyMethod_Function (PyObject *meth)
Return value: Borrowed reference. Return the function object associated with the method meth.

104 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.4.9rc1

PyObject* PyMethod_GET_FUNCTION (PyObject *meth)
Return value: Borrowed reference. Macro version of PyMethod Function () which avoids error checking.

PyObject* PyMethod_Self (PyObject *meth)
Return value: Borrowed reference. Return the instance associated with the method meth.

PyObject* PyMethod_GET_SELF (PyObject *meth)
Return value: Borrowed reference. Macro version of PyMethod _Self () which avoids error checking.

int PyMethod ClearFreelist ()
Clear the free list. Return the total number of freed items.

8.5.4 Cell Objects

“Cell” objects are used to implement variables referenced by multiple scopes. For each such variable, a cell object is
created to store the value; the local variables of each stack frame that references the value contains a reference to the
cells from outer scopes which also use that variable. When the value is accessed, the value contained in the cell is used
instead of the cell object itself. This de-referencing of the cell object requires support from the generated byte-code;
these are not automatically de-referenced when accessed. Cell objects are not likely to be useful elsewhere.

PyCellObject
The C structure used for cell objects.

PyTypeObject PyCell_Type
The type object corresponding to cell objects.

int PyCell_Check (ob)
Return true if ob is a cell object; ob must not be NULL.

PyObject* PyCell_New (PyObject *ob)
Return value: New reference. Create and return a new cell object containing the value ob. The parameter may
be NULL.

PyObject* PyCell_Get (PyObject *cell)
Return value: New reference. Return the contents of the cell cell.

PyObject* PyCell_GET (PyObject *cell)
Return value: Borrowed reference. Return the contents of the cell cell, but without checking that cell is non-
NULL and a cell object.

int PyCell_Set (PyObject *cell, PyObject *value)
Set the contents of the cell object cell to value. This releases the reference to any current content of the cell.
value may be NULL. cell must be non-NULL; if it is not a cell object, —1 will be returned. On success, 0 will
be returned.

void PyCell_SET (PyObject *cell, PyObject *value)
Sets the value of the cell object cell to value. No reference counts are adjusted, and no checks are made for
safety; cell must be non-NULL and must be a cell object.

8.5.5 Code Objects

Code objects are a low-level detail of the CPython implementation. Each one represents a chunk of executable code
that hasn’t yet been bound into a function.

PyCodeObject
The C structure of the objects used to describe code objects. The fields of this type are subject to change at any
time.

8.5. Function Objects 105

The Python/C API, Release 3.4.9rc1

PyTypeObject PyCode_Type
This is an instance of Py TypeOb ject representing the Python code type.

int PyCode_Check (PyObject *co)
Return true if co is a code object.

int PyCode_GetNumFree (PyCodeObject *co)
Return the number of free variables in co.

PyCodeObject* PyCode_New (int argcount, int kwonlyargcount, int nlocals, int stacksize, int flags, PyOb-
Ject *code, PyObject *consts, PyObject *names, PyObject *varnames, Py-
Object *freevars, PyObject *cellvars, PyObject *filename, PyObject *name,
int firstlineno, PyObject *Inotab)
Return a new code object. If you need a dummy code object to create a frame, use PyCode_NewEmpty ()
instead. Calling PyCode_New () directly can bind you to a precise Python version since the definition of the
bytecode changes often.

PyCodeObject* PyCode_NewEmpty (const char *filename, const char *funcname, int firstlineno)
Return a new empty code object with the specified filename, function name, and first line number. It is illegal to
exec () oreval () the resulting code object.

8.6 Other Objects

8.6.1 File Objects

These APIs are a minimal emulation of the Python 2 C API for built-in file objects, which used to rely on the buffered
I/0O (FILE«) support from the C standard library. In Python 3, files and streams use the new io module, which
defines several layers over the low-level unbuffered I/O of the operating system. The functions described below are
convenience C wrappers over these new APIs, and meant mostly for internal error reporting in the interpreter; third-
party code is advised to access the 1o APIs instead.

PyFile_FromFd (int fd, const char *name, const char *mode, int buffering, const char *encoding, const

char *errors, const char *newline, int closefd)
Create a Python file object from the file descriptor of an already opened file fd. The arguments name, encoding,

errors and newline can be NULL to use the defaults; buffering can be -1 to use the default. name is ignored
and kept for backward compatibility. Return NULL on failure. For a more comprehensive description of the
arguments, please refer to the io.open () function documentation.

Warning: Since Python streams have their own buffering layer, mixing them with OS-level file descriptors
can produce various issues (such as unexpected ordering of data).

Changed in version 3.2: Ignore name attribute.

int PyObject_AsFileDescriptor (PyObject *p)
Return the file descriptor associated with p as an int. If the object is an integer, its value is returned. If not, the
object’s fileno () method is called if it exists; the method must return an integer, which is returned as the file
descriptor value. Sets an exception and returns -1 on failure.

PyObject* PyFile_GetLine (PyObject *p, int n)
Return value: New reference. Equivalent to p. readline ([n]), this function reads one line from the object
p. p may be a file object or any object with a readl ine () method. If nis 0, exactly one line is read, regardless
of the length of the line. If n is greater than 0, no more than n bytes will be read from the file; a partial line can
be returned. In both cases, an empty string is returned if the end of the file is reached immediately. If n is less

106 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.4.9rc1

than 0, however, one line is read regardless of length, but EOFError is raised if the end of the file is reached
immediately.

int PyFile_WriteObject (PyObject *obj, PyObject *p, int flags)
Write object obj to file object p. The only supported flag for flags is Py_ PRINT_RAW; if given, the str () of
the object is written instead of the repr (). Return 0 on success or —1 on failure; the appropriate exception
will be set.

int PyFile WriteString (const char *s, PyObject *p)
Write string s to file object p. Return 0 on success or —1 on failure; the appropriate exception will be set.

8.6.2 Module Objects

There are only a few functions special to module objects.

PyTypeObject PyModule_Type
This instance of PyTypeOb ject represents the Python module type. This is exposed to Python programs as
types.ModuleType.

int PyModule_Check (PyObject *p)
Return true if p is a module object, or a subtype of a module object.

int PyModule_CheckExact (PyObject *p)
Return true if p is a module object, but not a subtype of PyModule Type.

PyObject* PyModule_NewObject (PyObject *name)
Return a new module object with the __name___ attribute set to name. The module’s __name_ , ___doc__,
__package__ ,and __ loader__ attributes are filled in (all but __name___ are set to None); the caller is
responsible for providinga ___file_ attribute.

New in version 3.3.
Changed in version 3.4: __package___and __loader___ are setto None.

PyObject* PyModule_New (const char *name)
Return value: New reference. Similar to PyImport_NewObject (), but the name is an UTF-8 encoded
string instead of a Unicode object.

PyObject* PyModule_GetDict (PyObject *module)
Return value: Borrowed reference. Return the dictionary object that implements module’s namespace; this
object is the same as the ___dict___ attribute of the module object. This function never fails. It is recom-
mended extensions use other PyModule_« () and PyObject_« () functions rather than directly manipulate
amodule’s __ dict_ .

PyObject* PyModule_GetNameObiject (PyObject *module)
Return module’s __name___ value. If the module does not provide one, or if it is not a string, SystemError
is raised and NULL is returned.

New in version 3.3.

char* PyModule_GetName (PyObject *module)
Similar to PyModule_GetNameOb ject () but return the name encoded to 'utf-8"'.

PyObject* PyModule_GetFilenameObject (PyObject *module)
Return the name of the file from which module was loaded using module’s __file___ attribute. If this is not
defined, or if it is not a unicode string, raise SystemError and return NULL; otherwise return a reference to
a Unicode object.

New in version 3.2.

8.6. Other Objects 107

The Python/C API, Release 3.4.9rc1

char* PyModule_GetFilename (PyObject *module)
Similar to PyModule GetFilenameObject () butreturn the filename encoded to ‘utf-8’.

Deprecated since version 3.2: PyModule GetFilename () raises UnicodeEncodeError on unencod-
able filenames, use PyModule GetFilenameOb ject () instead.

void* PyModule_GetState (PyObject *module)
Return the “state” of the module, that is, a pointer to the block of memory allocated at module creation time, or
NULL. See PyModuleDef.m size.

PyModuleDef* PyModule_GetDef£ (PyObject *module)
Return a pointer to the PyModuleDef struct from which the module was created, or NULL if the module
wasn’t created with PyModule Create ().

PyObject* PyState_FindModule (PyModuleDef *def)
Returns the module object that was created from def for the current interpreter. This method requires that the
module object has been attached to the interpreter state with PyState AddModule () beforehand. In case
the corresponding module object is not found or has not been attached to the interpreter state yet, it returns
NULL.

int PyState_AddModule (PyObject *module, PyModuleDef *def)
Attaches the module object passed to the function to the interpreter state. This allows the module object to be
accessible via PyState FindModule ().

New in version 3.3.

int PyState_RemoveModule (PyModuleDef *def)
Removes the module object created from def from the interpreter state.

New in version 3.3.

Initializing C modules

These functions are usually used in the module initialization function.

PyObject* PyModule_Create (PyModuleDef *module)
Create a new module object, given the definition in module. This behaves like PyModule CreateZ () with
module_api_version set to PYTHON_API_VERSION.

PyObject* PyModule_Create2 (PyModuleDef *module, int module_api_version)
Create a new module object, given the definition in module, assuming the API version module_api_version. 1f
that version does not match the version of the running interpreter, a Runt imeWarning is emitted.

Note: Most uses of this function should be using PyModule Create () instead; only use this if you are
sure you need it.

PyModuleDef
This struct holds all information that is needed to create a module object. There is usually only one static
variable of that type for each module, which is statically initialized and then passed to PyModule Create ()
in the module initialization function.

PyModuleDef Base m_base
Always initialize this member to PyModuleDef_ HEAD_INIT.

char* m_name
Name for the new module.

char* m_doc
Docstring for the module; usually a docstring variable created with PyDoc_STRVAR () is used.

108 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.4.9rc1

Py_ssize_tm_size
Some modules allow re-initialization (calling their PyInit_* function more than once). These
modules should keep their state in a per-module memory area that can be retrieved with
PyModule GetState().

This memory should be used, rather than static globals, to hold per-module state, since it is then safe
for use in multiple sub-interpreters. It is freed when the module object is deallocated, after the m_free
function has been called, if present.

Setting m_s1ize to —1 means that the module can not be re-initialized because it has global state. Setting
it to a non-negative value means that the module can be re-initialized and specifies the additional amount
of memory it requires for its state.

See PEP 3121 for more details.

PyMethodDef* m_methods
A pointer to a table of module-level functions, described by PyMet hodDef values. Can be NULL if no
functions are present.

inquiry m_reload
Currently unused, should be NULL.

traverseproc m_traverse
A traversal function to call during GC traversal of the module object, or NULL if not needed.

inquiry m_clear
A clear function to call during GC clearing of the module object, or NULL if not needed.

freefunc m_free
A function to call during deallocation of the module object, or NULL if not needed.

int PyModule_AddObject (PyObject *module, const char *name, PyObject *value)
Add an object to module as name. This is a convenience function which can be used from the module’s initial-
ization function. This steals a reference to value. Return —1 on error, O on success.

int PyModule_AddIntConstant (PyObject *module, const char *name, long value)
Add an integer constant to module as name. This convenience function can be used from the module’s initial-
ization function. Return —1 on error, 0 on success.

int PyModule_AddStringConstant (PyObject *module, const char *name, const char *value)
Add a string constant to module as name. This convenience function can be used from the module’s initialization
function. The string value must be null-terminated. Return —1 on error, O on success.

int PyModule_AddIntMacro (PyObject *module, macro)
Add an int constant to module. The name and the value are taken from macro. For example
PyModule_AddIntMacro (module, AF_INET) adds the int constant AF_INET with the value of
AF_INET to module. Return —1 on error, 0 on success.

int PyModule_AddStringMacro (PyObject *module, macro)
Add a string constant to module.

8.6.3 Iterator Objects

Python provides two general-purpose iterator objects. The first, a sequence iterator, works with an arbitrary sequence
supporting the __getitem__ () method. The second works with a callable object and a sentinel value, calling the
callable for each item in the sequence, and ending the iteration when the sentinel value is returned.

PyTypeObject PySeqIter_Type
Type object for iterator objects returned by PySegIter. New () and the one-argument form of the iter ()
built-in function for built-in sequence types.

8.6. Other Objects 109

https://www.python.org/dev/peps/pep-3121

The Python/C API, Release 3.4.9rc1

int PySeqIter_Check (op)
Return true if the type of op is PySegIter Type.

PyObject* PySeqIter_New (PyObject *seq)
Return value: New reference. Return an iterator that works with a general sequence object, seq. The iteration
ends when the sequence raises IndexError for the subscripting operation.

PyTypeObject PyCalllter_Type
Type object for iterator objects returned by PyCallIter. New () and the two-argument form of the iter ()
built-in function.

int PyCallIter_Check (op)
Return true if the type of op is PyCallIlter. Type.

PyObject* PyCallIter_New (PyObject *callable, PyObject *sentinel)
Return value: New reference. Return a new iterator. The first parameter, callable, can be any Python callable
object that can be called with no parameters; each call to it should return the next item in the iteration. When
callable returns a value equal to sentinel, the iteration will be terminated.

8.6.4 Descriptor Objects

“Descriptors” are objects that describe some attribute of an object. They are found in the dictionary of type objects.

PyTypeObject PyProperty_ Type
The type object for the built-in descriptor types.

PyObject* PyDescr_NewGetSet (PyTypeObject *type, struct PyGetSetDef *getset)
Return value: New reference.

PyObject* PyDescr_NewMember (PyTypeObject *type, struct PyMemberDef *meth)
Return value: New reference.

PyObject* PyDescr_NewMethod (PyTypeObject *type, struct PyMethodDef *meth)
Return value: New reference.

PyObject* PyDescr_NewWrapper (PyTypeObject *type, struct wrapperbase *wrapper, void *wrapped)
Return value: New reference.

PyObject* PyDescr_NewClassMethod (PyTypeObject *type, PyMethodDef *method)
Return value: New reference.

int PyDescr_IsData (PyObject *descr)
Return true if the descriptor objects descr describes a data attribute, or false if it describes a method. descr must
be a descriptor object; there is no error checking.

PyObject* PyWrapper_New (PyObject *, PyObject *)
Return value: New reference.

8.6.5 Slice Objects

PyTypeObject PySlice_Type
The type object for slice objects. This is the same as s1ice in the Python layer.

int PySlice_Check (PyObject *ob)
Return true if ob is a slice object; ob must not be NULL.

PyObject* PySlice_New (PyObject *start, PyObject *stop, PyObject *step)
Return value: New reference. Return a new slice object with the given values. The start, stop, and step parame-
ters are used as the values of the slice object attributes of the same names. Any of the values may be NULL, in

110 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.4.9rc1

which case the None will be used for the corresponding attribute. Return NULL if the new object could not be
allocated.

int PySlice_GetIndices (PyObject *slice, Py_ssize_t length, Py_ssize_t *start, Py_ssize_t *stop,
Py_ssize_t *step)
Retrieve the start, stop and step indices from the slice object slice, assuming a sequence of length length. Treats
indices greater than length as errors.

Returns 0 on success and -1 on error with no exception set (unless one of the indices was not None and failed
to be converted to an integer, in which case -1 is returned with an exception set).

You probably do not want to use this function.
Changed in version 3.2: The parameter type for the slice parameter was PyS1iceObject » before.

int PySlice_GetIndicesEx (PyObject *slice, Py_ssize_t length, Py_ssize_t *start, Py_ssize_t *stop,
Py_ssize_t *step, Py_ssize_t *slicelength)
Usable replacement for PyS1ice GetIndices (). Retrieve the start, stop, and step indices from the slice
object slice assuming a sequence of length length, and store the length of the slice in slicelength. Out of bounds
indices are clipped in a manner consistent with the handling of normal slices.

Returns 0 on success and -1 on error with exception set.

Changed in version 3.2: The parameter type for the slice parameter was PyS1iceObject before.

8.6.6 MemoryView objects

A memoryview object exposes the C level buffer interface as a Python object which can then be passed around like
any other object.

PyObject *PyMemoryView_FromObiject (PyObject *obj)
Create a memoryview object from an object that provides the buffer interface. If 0obj supports writable buffer
exports, the memoryview object will be read/write, otherwise it may be either read-only or read/write at the
discretion of the exporter.

PyObject *PyMemoryView_FromMemory (char *mem, Py_ssize_t size, int flags)
Create a memoryview object using mem as the underlying buffer. flags can be one of PyBUF_READ or
PyBUF_WRITE.

New in version 3.3.

PyObject *PyMemoryView_FromBuffer (Py_buffer *view)
Create a memoryview object wrapping the given buffer structure view. For simple byte buffers,
PyMemoryView_FromMemory () is the preferred function.

PyObject *PyMemoryView_GetContiguous (PyObject *obj, int buffertype, char order)
Create a memoryview object to a contiguous chunk of memory (in either ‘C’ or ‘F’ortran order) from an object
that defines the buffer interface. If memory is contiguous, the memoryview object points to the original memory.
Otherwise, a copy is made and the memoryview points to a new bytes object.

int PyMemoryView_Check (PyObject *obj)
Return true if the object 0bj is a memoryview object. It is not currently allowed to create subclasses of
memoryview.

Py_buffer *PyMemoryView_GET_BUFFER (PyObject *mview)
Return a pointer to the memoryview’s private copy of the exporter’s buffer. mview must be a memoryview
instance; this macro doesn’t check its type, you must do it yourself or you will risk crashes.

Py_buffer *PyMemoryView_GET_BASE (PyObject *mview)
Return either a pointer to the exporting object that the memoryview is based on or NULL if

8.6. Other Objects 111

The Python/C API, Release 3.4.9rc1

the memoryview has been created by one of the functions PyMemoryView FromMemory () or
PyMemoryView FromBuffer (). mview must be a memoryview instance.

8.6.7 Weak Reference Objects

Python supports weak references as first-class objects. There are two specific object types which directly implement
weak references. The first is a simple reference object, and the second acts as a proxy for the original object as much
as it can.

int PyWeakref_Check (ob)
Return true if ob is either a reference or proxy object.

int PyWeakref_ CheckRef (ob)
Return true if 0b is a reference object.

int PyWeakref_ CheckProxy (ob)
Return true if ob is a proxy object.

PyObject* PyWeakref_ NewRef (PyObject *ob, PyObject *callback)
Return value: New reference. Return a weak reference object for the object ob. This will always return a new
reference, but is not guaranteed to create a new object; an existing reference object may be returned. The second
parameter, callback, can be a callable object that receives notification when ob is garbage collected; it should
accept a single parameter, which will be the weak reference object itself. callback may also be None or NULL.
If ob is not a weakly-referencable object, or if callback is not callable, None, or NULL, this will return NULL
and raise TypeError.

PyObject* PyWeakref_ NewProxy (PyObject *ob, PyObject *callback)
Return value: New reference. Return a weak reference proxy object for the object ob. This will always return
a new reference, but is not guaranteed to create a new object; an existing proxy object may be returned. The
second parameter, callback, can be a callable object that receives notification when ob is garbage collected; it
should accept a single parameter, which will be the weak reference object itself. callback may also be None or
NULL. If ob is not a weakly-referencable object, or if callback is not callable, None, or NULL, this will return
NULL and raise TypeError.

PyObject* PyWeakref_ GetObject (PyObject *ref)
Return value: Borrowed reference. Return the referenced object from a weak reference, ref. If the referent is no
longer live, returns Py_None.

Note: This function returns a borrowed reference to the referenced object. This means that you should always
call Py_ INCREF () on the object except if you know that it cannot be destroyed while you are still using it.

PyObject* PyWeakref_ GET_OBJECT (PyObject *ref)
Return value: Borrowed reference. Similar to PylWWeakref_GetObject (), but implemented as a macro that
does no error checking.

8.6.8 Capsules

Refer to using-capsules for more information on using these objects.

PyCapsule
This subtype of PyOb ject represents an opaque value, useful for C extension modules who need to pass an
opaque value (as a voidx* pointer) through Python code to other C code. It is often used to make a C function
pointer defined in one module available to other modules, so the regular import mechanism can be used to access
C APIs defined in dynamically loaded modules.

112 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.4.9rc1

PyCapsule_Destructor
The type of a destructor callback for a capsule. Defined as:

typedef void (xPyCapsule_Destructor) (PyObject =*);

See PyCapsule_New () for the semantics of PyCapsule_Destructor callbacks.

int PyCapsule_CheckExact (PyObject *p)
Return true if its argument is a PyCapsule.

PyObject* PyCapsule_New (void *pointer, const char *name, PyCapsule_Destructor destructor)
Return value: New reference. Create a PyCapsule encapsulating the pointer. The pointer argument may not
be NULL.

On failure, set an exception and return NULL.

The name string may either be NULL or a pointer to a valid C string. If non-NULL, this string must outlive the
capsule. (Though it is permitted to free it inside the destructor.)

If the destructor argument is not NULL, it will be called with the capsule as its argument when it is destroyed.

If this capsule will be stored as an attribute of a module, the name should be specified as modulename.
attributename. This will enable other modules to import the capsule using PyCapsule_Import ().

void* PyCapsule_GetPointer (PyObject *capsule, const char *name)
Retrieve the pointer stored in the capsule. On failure, set an exception and return NULL.

The name parameter must compare exactly to the name stored in the capsule. If the name stored in the capsule
is NULL, the name passed in must also be NULL. Python uses the C function st rcmp () to compare capsule
names.

PyCapsule_Destructor PyCapsule_GetDestructor (PyObject *capsule)
Return the current destructor stored in the capsule. On failure, set an exception and return NULL.

It is legal for a capsule to have a NULL destructor. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid() or PyErr._Occurred () to disambiguate.

void* PyCapsule_GetContext (PyObject *capsule)
Return the current context stored in the capsule. On failure, set an exception and return NULL.

It is legal for a capsule to have a NULL context. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid() or PyErr._Occurred () to disambiguate.

const char* PyCapsule_GetName (PyObject *capsule)
Return the current name stored in the capsule. On failure, set an exception and return NULL.

It is legal for a capsule to have a NULL name. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid() or PyErr._Occurred () to disambiguate.

void* PyCapsule_Import (const char *name, int no_block)
Import a pointer to a C object from a capsule attribute in a module. The name parameter should
specify the full name to the attribute, as in module.attribute. The name stored in the cap-
sule must match this string exactly. If no_block is true, import the module without blocking (using
PyImport_ImportModuleNoBlock ()). If no_block is false, import the module conventionally (using
PyImport_ImportModule ()).

Return the capsule’s internal pointer on success. On failure, set an exception and return NULL. However, if
PyCapsule_ Import () failed to import the module, and no_block was true, no exception is set.

int PyCapsule_IsValid (PyObject *capsule, const char *name)
Determines whether or not capsule is a valid capsule. A wvalid capsule is non-NULL, passes
PyCapsule_CheckExact (), has a non-NULL pointer stored in it, and its internal name matches the name
parameter. (See PyCapsule GetPointer () for information on how capsule names are compared.)

8.6. Other Objects 113

The Python/C API, Release 3.4.9rc1

In other words, if PyCapsule IsValid () returns a true value, calls to any of the accessors (any function
starting with PyCapsule_Get ()) are guaranteed to succeed.

Return a nonzero value if the object is valid and matches the name passed in. Return 0 otherwise. This function
will not fail.

int PyCapsule_SetContext (PyObject *capsule, void *context)
Set the context pointer inside capsule to context.

Return 0 on success. Return nonzero and set an exception on failure.

int PyCapsule_SetDestructor (PyObject *capsule, PyCapsule_Destructor destructor)
Set the destructor inside capsule to destructor.

Return O on success. Return nonzero and set an exception on failure.

int PyCapsule_SetName (PyObject *capsule, const char *name)
Set the name inside capsule to name. If non-NULL, the name must outlive the capsule. If the previous name
stored in the capsule was not NULL, no attempt is made to free it.

Return O on success. Return nonzero and set an exception on failure.

int PyCapsule_SetPointer (PyObject *capsule, void *pointer)
Set the void pointer inside capsule to pointer. The pointer may not be NULL.

Return 0 on success. Return nonzero and set an exception on failure.

8.6.9 Generator Objects

Generator objects are what Python uses to implement generator iterators. They are normally created by iterating over
a function that yields values, rather than explicitly calling PyGen_New ().

PyGenObject
The C structure used for generator objects.

PyTypeObject PyGen_Type
The type object corresponding to generator objects.

int PyGen_Check (ob)
Return true if 0b is a generator object; ob must not be NULL.

int PyGen_CheckExact (ob)
Return true if ob’s type is PyGen_Type is a generator object; ob must not be NULL.

PyObject* PyGen_New (PyFrameObject *frame)
Return value: New reference. Create and return a new generator object based on the frame object. A reference
to frame is stolen by this function. The parameter must not be NULL.

8.6.10 DateTime Objects

Various date and time objects are supplied by the datet ime module. Before using any of these functions, the header
file datetime.h must be included in your source (note that this is not included by Python.h), and the macro
PyDateTime_IMPORT must be invoked, usually as part of the module initialisation function. The macro puts a
pointer to a C structure into a static variable, PyDateTimeAPT, that is used by the following macros.

Type-check macros:

int PyDate_Check (PyObject *ob)
Return true if ob is of type PyDateTime_DateType or a subtype of PyDateTime_DateType. ob must
not be NULL.

114 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.4.9rc1

int PyDate_CheckExact (PyObject *ob)
Return true if ob is of type PyDateTime_DateType. ob must not be NULL.

int PyDateTime_Check (PyObject *ob)
Return true if ob is of type PyDateTime_DateTimeType orasubtype of PyDateTime_DateTimeType.
ob must not be NULL.

int PyDateTime_CheckExact (PyObject *ob)
Return true if 0b is of type PyDateTime_DateTimeType. ob must not be NULL.

int PyTime_Check (PyObject *ob)
Return true if 0b is of type PyDateTime_TimeType or a subtype of PyDateTime_TimeType. ob must
not be NULL.

int PyTime_CheckExact (PyObject *ob)
Return true if ob is of type PyDateTime_TimeType. ob must not be NULL.

int PyDelta_Check (PyObject *ob)
Return true if ob is of type PyDateTime_DeltaType or a subtype of PyDateTime_DeltaType. ob
must not be NULL.

int PyDelta_CheckExact (PyObject *ob)
Return true if 0b is of type PyDateTime_DeltaType. ob must not be NULL.

int PyTZInfo_Check (PyObject *ob)
Return true if 0b is of type PyDateTime_TZInfoType or a subtype of PyDateTime_TZInfoType. ob
must not be NULL.

int PyTZInfo_CheckExact (PyObject *ob)
Return true if ob is of type PyDateTime_TZInfoType. ob must not be NULL.

Macros to create objects:

PyObject* PyDate_FromDate (int year, int month, int day)
Return value: New reference. Return a datetime . date object with the specified year, month and day.

PyObject* PyDateTime_FromDateAndTime (int year, int month, int day, int hour, int minute, int second,

int usecond)
Return value: New reference. Return a datetime.datetime object with the specified year, month, day,

hour, minute, second and microsecond.

PyObject* PyTime_FromTime (int hour, int minute, int second, int usecond)
Return value: New reference. Return a datetime .t ime object with the specified hour, minute, second and
microsecond.

PyObject* PyDelta_FromDSU (int days, int seconds, int useconds)
Return value: New reference. Return a datetime.timedelta object representing the given number of
days, seconds and microseconds. Normalization is performed so that the resulting number of microseconds and
seconds lie in the ranges documented for datetime.timedelta objects.

Macros to extract fields from date objects. The argument must be an instance of PyDateTime_Date, including
subclasses (such as PyDateTime_DateTime). The argument must not be NULL, and the type is not checked:

int PyDateTime_ GET_YEAR (PyDateTime_Date *0)
Return the year, as a positive int.

int PyDateTime_GET_MONTH (PyDateTime_Date *0)
Return the month, as an int from 1 through 12.

int PyDateTime_GET_DAY (PyDateTime_Date *o0)
Return the day, as an int from 1 through 31.

8.6. Other Objects 115

The Python/C API, Release 3.4.9rc1

Macros to extract fields from datetime objects. The argument must be an instance of PyDateTime_DateTime,
including subclasses. The argument must not be NULL, and the type is not checked:

int PyDateTime_ DATE_GET_HOUR (PyDateTime_DateTime *o)
Return the hour, as an int from O through 23.

int PyDateTime_DATE_GET_MINUTE (PyDateTime_DateTime *o)
Return the minute, as an int from O through 59.

int PyDateTime DATE_GET_SECOND (PyDateTime_ DateTime *o)
Return the second, as an int from O through 59.

int PyDateTime_DATE_GET_MICROSECOND (PyDateTime_DateTime *0)
Return the microsecond, as an int from O through 999999.

Macros to extract fields from time objects. The argument must be an instance of PyDateTime_Time, including
subclasses. The argument must not be NULL, and the type is not checked:

int PyDateTime_TIME_GET_HOUR (PyDateTime_Time *0)
Return the hour, as an int from 0 through 23.

int PyDateTime_ TIME_GET_MINUTE (PyDateTime_Time *o0)
Return the minute, as an int from 0 through 59.

int PyDateTime_TIME_GET_SECOND (PyDateTime_Time *0)
Return the second, as an int from 0 through 59.

int PyDateTime_TIME_GET_MICROSECOND (PyDateTime_Time *0)
Return the microsecond, as an int from O through 999999.

Macros to extract fields from time delta objects. The argument must be an instance of PyDateTime_Delta, includ-
ing subclasses. The argument must not be NULL, and the type is not checked:

int PyDateTime_DELTA_GET_DAYS (PyDateTime_Delta *0)
Return the number of days, as an int from -999999999 to 999999999.

New in version 3.3.

int PyDateTime_ DELTA GET_SECONDS (PyDateTime_Delta *o)
Return the number of seconds, as an int from 0 through 86399.

New in version 3.3.

int PyDateTime_DELTA_ GET_MICROSECOND (PyDateTime_Delta *0)
Return the number of microseconds, as an int from 0 through 999999.

New in version 3.3.
Macros for the convenience of modules implementing the DB API:

PyObject* PyDateTime_ FromTimestamp (PyObject *args)
Return value: New reference. Create and return a new datet ime.datet ime object given an argument tuple
suitable for passing to datetime.datetime.fromtimestamp ().

PyObject* PyDate_FromTimestamp (PyObject *args)
Return value: New reference. Create and return a new datetime.date object given an argument tuple
suitable for passing to datetime.date.fromtimestamp ().

116 Chapter 8. Concrete Objects Layer

CHAPTER
NINE

INITIALIZATION, FINALIZATION, AND THREADS

9.1 Initializing and finalizing the interpreter

void Py_Initialize ()
Initialize the Python interpreter. In an application embedding Python, this should be called before using any
other Python/C API functions; with the exception of Py_SetProgramName (), Py_SetPythonHome ()
and Py_SetPath (). This initializes the table of loaded modules (sys.modules), and creates the funda-
mental modules builtins, __main__ and sys. It also initializes the module search path (sys.path). It
does not set sys.argv; use PySys_SetArgvEx () for that. This is a no-op when called for a second time
(without calling Py Finalize () first). There is no return value; it is a fatal error if the initialization fails.

void Py_InitializeEx (int initsigs)
This function works like Py Tnitialize () if initsigsis 1. If initsigs is 0, it skips initialization registration
of signal handlers, which might be useful when Python is embedded.

intPy IsInitialized()
Return true (nonzero) when the Python interpreter has been initialized, false (zero) if not. After
Py _Finalize () is called, this returns false until Py. Tnitialize () is called again.

void Py_Finalize ()
Undo all initializations made by Py_Tnitialize () and subsequent use of Python/C API functions, and
destroy all sub-interpreters (see Py_NewInterpreter () below) that were created and not yet destroyed
since the last call to Py Tnitialize (). Ideally, this frees all memory allocated by the Python interpreter.
This is a no-op when called for a second time (without calling Py _Tnitialize () again first). There is no
return value; errors during finalization are ignored.

This function is provided for a number of reasons. An embedding application might want to restart Python
without having to restart the application itself. An application that has loaded the Python interpreter from a
dynamically loadable library (or DLL) might want to free all memory allocated by Python before unloading the
DLL. During a hunt for memory leaks in an application a developer might want to free all memory allocated by
Python before exiting from the application.

Bugs and caveats: The destruction of modules and objects in modules is done in random order; this may cause
destructors (__del___ () methods) to fail when they depend on other objects (even functions) or modules.
Dynamically loaded extension modules loaded by Python are not unloaded. Small amounts of memory allocated
by the Python interpreter may not be freed (if you find a leak, please report it). Memory tied up in circular
references between objects is not freed. Some memory allocated by extension modules may not be freed. Some
extensions may not work properly if their initialization routine is called more than once; this can happen if an
application calls Py _Tnitialize () and Py_Finalize () more than once.

117

The Python/C API, Release 3.4.9rc1

9.2 Process-wide parameters

int Py_SetStandardStreamEncoding (const char *encoding, const char *errors)

This function should be called before Py Tnitialize (), if it is called at all. It specifies which encoding
and error handling to use with standard 10, with the same meanings as in str.encode ().

It overrides PYTHONIOENCODING values, and allows embedding code to control IO encoding when the envi-
ronment variable does not work.

encoding and/or errors may be NULL to use PYTHONIOENCODING and/or default values (depending on
other settings).

Note that sys.stderr always uses the “backslashreplace” error handler, regardless of this (or any other)
setting.

If Py Finalize () is called, this function will need to be called again in order to affect subsequent calls to
Py Initialize().

Returns 0 if successful, a nonzero value on error (e.g. calling after the interpreter has already been initialized).

New in version 3.4.

void Py_SetProgramName (wchar_t *name)

This function should be called before Py Tnitialize () is called for the first time, if it is called at all. It
tells the interpreter the value of the argv [0] argument to the main () function of the program (converted to
wide characters). This is used by Py GetPath () and some other functions below to find the Python run-time
libraries relative to the interpreter executable. The default value is 'python'. The argument should point to
a zero-terminated wide character string in static storage whose contents will not change for the duration of the
program’s execution. No code in the Python interpreter will change the contents of this storage.

wchar* Py_GetProgramName ()

Return the program name set with Py Set ProgramName (), or the default. The returned string points into
static storage; the caller should not modify its value.

wchar_t* Py _GetPrefix ()

Return the prefix for installed platform-independent files. This is derived through a number of complicated rules
from the program name set with Py_SetProgramName () and some environment variables; for example,
if the program name is ' /usr/local/bin/python’, the prefixis ' /usr/local'. The returned string
points into static storage; the caller should not modify its value. This corresponds to the prefix variable in
the top-level Makefile and the ——prefix argument to the configure script at build time. The value is
available to Python code as sys.prefix. It is only useful on Unix. See also the next function.

wchar_t* Py_GetExecPrefix ()

Return the exec-prefix for installed platform-dependent files. This is derived through a number of compli-
cated rules from the program name set with Py SetProgramName () and some environment variables;
for example, if the program name is ' /usr/local/bin/python', the exec-prefix is ' /usr/local’.
The returned string points into static storage; the caller should not modify its value. This corresponds to the
exec_prefix variable in the top-level Makefile and the ——exec-prefix argument to the configure
script at build time. The value is available to Python code as sys.exec_prefix. Itis only useful on Unix.

Background: The exec-prefix differs from the prefix when platform dependent files (such as executables and
shared libraries) are installed in a different directory tree. In a typical installation, platform dependent files may
be installed in the /usr/local/plat subtree while platform independent may be installed in /usr/local.

Generally speaking, a platform is a combination of hardware and software families, e.g. Sparc machines run-
ning the Solaris 2.x operating system are considered the same platform, but Intel machines running Solaris 2.x
are another platform, and Intel machines running Linux are yet another platform. Different major revisions of
the same operating system generally also form different platforms. Non-Unix operating systems are a different

118

Chapter 9. Initialization, Finalization, and Threads

The Python/C API, Release 3.4.9rc1

story; the installation strategies on those systems are so different that the prefix and exec-prefix are meaning-
less, and set to the empty string. Note that compiled Python bytecode files are platform independent (but not
independent from the Python version by which they were compiled!).

System administrators will know how to configure the mount or automount programs to share /usr/local
between platforms while having /usr/local/plat be a different filesystem for each platform.

wchar_t* Py_GetProgramFullPath ()
Return the full program name of the Python executable; this is computed as a side-effect of deriving the default
module search path from the program name (set by Py_SetProgramName () above). The returned string
points into static storage; the caller should not modify its value. The value is available to Python code as
sys.executable.

wchar_t* Py_GetPath ()
Return the default module search path; this is computed from the program name (set by
Py_SetProgramName () above) and some environment variables. The returned string consists of a
series of directory names separated by a platform dependent delimiter character. The delimiter characteris ' : '
on Unix and Mac OS X, '; ' on Windows. The returned string points into static storage; the caller should not
modify its value. The list sys.path is initialized with this value on interpreter startup; it can be (and usually
is) modified later to change the search path for loading modules.

void Py_SetPath (const wchar_t *)
Set the default module search path. If this function is called before Py Initialize (), then
Py _GetPath () won’t attempt to compute a default search path but uses the one provided instead. This is
useful if Python is embedded by an application that has full knowledge of the location of all modules. The path
components should be separated by the platform dependent delimiter character, which is ' : ' on Unix and Mac
OS X, '; ' on Windows.

This also causes sys . executable to be set only to the raw program name (see Py_ SetProgramName ())
and for sys.prefix and sys.exec_prefix to be empty. It is up to the caller to modify these if required
after calling Py_Tnitialize ().

The path argument is copied internally, so the caller may free it after the call completes.

const char* Py_GetVersion ()
Return the version of this Python interpreter. This is a string that looks something like

"3.0a5+ (py3k:63103M, May 12 2008, 00:53:55) \n[GCC 4.2.3]"

The first word (up to the first space character) is the current Python version; the first three characters are the
major and minor version separated by a period. The returned string points into static storage; the caller should
not modify its value. The value is available to Python code as sys.version.

const char* Py_GetPlatform ()
Return the platform identifier for the current platform. On Unix, this is formed from the “official” name of the
operating system, converted to lower case, followed by the major revision number; e.g., for Solaris 2.x, which is
also known as SunOS 5.x, the value is ' sunos5'. On Mac OS X, itis 'darwin'. On Windows, itis 'win'.
The returned string points into static storage; the caller should not modify its value. The value is available to
Python code as sys.platform.

const char* Py_GetCopyright ()
Return the official copyright string for the current Python version, for example

'"Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam'

The returned string points into static storage; the caller should not modify its value. The value is available to
Python code as sys.copyright.

const char* Py_GetCompiler ()
Return an indication of the compiler used to build the current Python version, in square brackets, for example:

9.2. Process-wide parameters 119

The Python/C API, Release 3.4.9rc1

"[GCC 2.7.2.2]"

The returned string points into static storage; the caller should not modify its value. The value is available to
Python code as part of the variable sys.version.

const char* Py _GetBuildInfo ()
Return information about the sequence number and build date and time of the current Python interpreter instance,
for example

"#67, Aug 1 1997, 22:34:28"

The returned string points into static storage; the caller should not modify its value. The value is available to
Python code as part of the variable sys.version.

void PySys_SetArgvEx (int argc, wchar_t **argy, int updatepath)
Set sys.argv based on argc and argv. These parameters are similar to those passed to the program’s main ()
function with the difference that the first entry should refer to the script file to be executed rather than the exe-
cutable hosting the Python interpreter. If there isn’t a script that will be run, the first entry in argv can be an empty
string. If this function fails to initialize sys . argv, a fatal condition is signalled using Py_FatalError ().

If updatepath is zero, this is all the function does. If updatepath is non-zero, the function also modifies sys.
path according to the following algorithm:

* If the name of an existing script is passed in argv [0], the absolute path of the directory where the script
is located is prepended to sys . path.

* Otherwise (that is, if argc is 0 or argv [0] doesn’t point to an existing file name), an empty string is
prepended to sys . path, which is the same as prepending the current working directory (" . ").

Note: It is recommended that applications embedding the Python interpreter for purposes other than executing
a single script pass 0 as updatepath, and update sys . path themselves if desired. See CVE-2008-5983.

On versions before 3.1.3, you can achieve the same effect by manually popping the first sys.path element
after having called PySys_SetArgv (), for example using:

PyRun_SimpleString ("import sys; sys.path.pop(0)\n");

New in version 3.1.3.

void PySys_SetArgv (int argc, wchar_t **argy)
This function works like Py Sys_SetArgvEx () with updatepath set to 1 unless the python interpreter was
started with the —I.

Changed in version 3.4: The updatepath value depends on —I.

void Py_SetPythonHome (wchar_t *home)
Set the default “home” directory, that is, the location of the standard Python libraries. See PYTHONHOME for
the meaning of the argument string.

The argument should point to a zero-terminated character string in static storage whose contents will not change
for the duration of the program’s execution. No code in the Python interpreter will change the contents of this
storage.

w_char* Py_GetPythonHome ()
Return the default “home”, that is, the value set by a previous call to Py_SetPythonHome (), or the value of
the PYTHONHOME environment variable if it is set.

120 Chapter 9. Initialization, Finalization, and Threads

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5983

The Python/C API, Release 3.4.9rc1

9.3 Thread State and the Global Interpreter Lock

The Python interpreter is not fully thread-safe. In order to support multi-threaded Python programs, there’s a global
lock, called the global interpreter lock or GIL, that must be held by the current thread before it can safely access
Python objects. Without the lock, even the simplest operations could cause problems in a multi-threaded program:
for example, when two threads simultaneously increment the reference count of the same object, the reference count
could end up being incremented only once instead of twice.

Therefore, the rule exists that only the thread that has acquired the G/L may operate on Python objects or call Python/C
API functions. In order to emulate concurrency of execution, the interpreter regularly tries to switch threads (see
sys.setswitchinterval ()). The lock is also released around potentially blocking I/O operations like reading
or writing a file, so that other Python threads can run in the meantime.

The Python interpreter keeps some thread-specific bookkeeping information inside a data structure called
PyThreadState. There’s also one global variable pointing to the current PyThreadState: it can be retrieved
using PyThreadState_Get ().

9.3.1 Releasing the GIL from extension code

Most extension code manipulating the G/L has the following simple structure:

Save the thread state in a local variable.
Release the global interpreter lock.
. Do some blocking I/O operation
Reacquire the global interpreter lock.
Restore the thread state from the local variable.

This is so common that a pair of macros exists to simplify it:

Py_BEGIN_ALLOW_THREADS
. Do some blocking I/O operation
Py_END_ALLOW_THREADS

The Py BEGIN_ALLOW_THREADS macro opens a new block and declares a hidden local variable; the
Py_END_ALLOW_THREADS macro closes the block. These two macros are still available when Python is compiled
without thread support (they simply have an empty expansion).

When thread support is enabled, the block above expands to the following code:

PyThreadState *_save;

_save = PyEval_SaveThread();
...Do some blocking I/O operation...
PyEval_RestoreThread (_save);

Here is how these functions work: the global interpreter lock is used to protect the pointer to the current thread state.
When releasing the lock and saving the thread state, the current thread state pointer must be retrieved before the lock is
released (since another thread could immediately acquire the lock and store its own thread state in the global variable).
Conversely, when acquiring the lock and restoring the thread state, the lock must be acquired before storing the thread
state pointer.

Note: Calling system I/O functions is the most common use case for releasing the GIL, but it can also be useful before
calling long-running computations which don’t need access to Python objects, such as compression or cryptographic

9.3. Thread State and the Global Interpreter Lock 121

The Python/C API, Release 3.4.9rc1

functions operating over memory buffers. For example, the standard z1ib and hashlib modules release the GIL
when compressing or hashing data.

9.3.2 Non-Python created threads

When threads are created using the dedicated Python APIs (such as the threading module), a thread state is auto-
matically associated to them and the code showed above is therefore correct. However, when threads are created from
C (for example by a third-party library with its own thread management), they don’t hold the GIL, nor is there a thread
state structure for them.

If you need to call Python code from these threads (often this will be part of a callback API provided by the afore-
mentioned third-party library), you must first register these threads with the interpreter by creating a thread state data
structure, then acquiring the GIL, and finally storing their thread state pointer, before you can start using the Python/C
API. When you are done, you should reset the thread state pointer, release the GIL, and finally free the thread state
data structure.

The PyGILState_Ensure () and PyGILState_Release () functions do all of the above automatically. The
typical idiom for calling into Python from a C thread is:

PyGILState_ STATE gstate;
gstate = PyGILState_Ensure();

/% Perform Python actions here. x/
result = CallSomeFunction () ;
/* evaluate result or handle exception */

/% Release the thread. No Python API allowed beyond this point. */
PyGILState_Release (gstate);

Note that the PyGILState_x* () functions assume there is only one global interpreter (created automatically by
Py_TInitialize ()). Python supports the creation of additional interpreters (using Py_NewInterpreter ()),
but mixing multiple interpreters and the PyGILState_* () APIis unsupported.

Another important thing to note about threads is their behaviour in the face of the C fork () call. On most systems
with fork (), after a process forks only the thread that issued the fork will exist. That also means any locks held
by other threads will never be released. Python solves this for os. fork () by acquiring the locks it uses internally
before the fork, and releasing them afterwards. In addition, it resets any lock-objects in the child. When extending or
embedding Python, there is no way to inform Python of additional (non-Python) locks that need to be acquired before
or reset after a fork. OS facilities such as pthread_atfork () would need to be used to accomplish the same thing.
Additionally, when extending or embedding Python, calling fork () directly rather than through os. fork () (and
returning to or calling into Python) may result in a deadlock by one of Python’s internal locks being held by a thread
that is defunct after the fork. PyOS_AfterFork () tries to reset the necessary locks, but is not always able to.

9.3.3 High-level API

These are the most commonly used types and functions when writing C extension code, or when embedding the Python
interpreter:

PyInterpreterState
This data structure represents the state shared by a number of cooperating threads. Threads belonging to the
same interpreter share their module administration and a few other internal items. There are no public members
in this structure.

122 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, Release 3.4.9rc1

Threads belonging to different interpreters initially share nothing, except process state like available memory,
open file descriptors and such. The global interpreter lock is also shared by all threads, regardless of to which
interpreter they belong.

PyThreadState
This data structure represents the state of a single thread. The only public data member is
PyInterpreterState xinterp, which points to this thread’s interpreter state.

void PyEval_InitThreads ()
Initialize and acquire the global interpreter lock. It should be called in the main thread before creating a second
thread or engaging in any other thread operations such as PyEval ReleaseThread (tstate). Itis not
needed before calling PyEval_SaveThread () or PyEval_RestoreThread ().

This is a no-op when called for a second time.

Changed in version 3.2: This function cannot be called before Py Tnitialize () anymore.

Note: When only the main thread exists, no GIL operations are needed. This is a common situation (most
Python programs do not use threads), and the lock operations slow the interpreter down a bit. Therefore, the
lock is not created initially. This situation is equivalent to having acquired the lock: when there is only a single
thread, all object accesses are safe. Therefore, when this function initializes the global interpreter lock, it also
acquires it. Before the Python _thread module creates a new thread, knowing that either it has the lock or the
lock hasn’t been created yet, it calls PyEval InitThreads (). When this call returns, it is guaranteed that
the lock has been created and that the calling thread has acquired it.

It is not safe to call this function when it is unknown which thread (if any) currently has the global interpreter
lock.

This function is not available when thread support is disabled at compile time.

int PyEval_ThreadsInitialized()
Returns a non-zero value if PyEval_ InitThreads () has been called. This function can be called without
holding the GIL, and therefore can be used to avoid calls to the locking API when running single-threaded. This
function is not available when thread support is disabled at compile time.

PyThreadState* PyEval_SaveThread ()
Release the global interpreter lock (if it has been created and thread support is enabled) and reset the thread
state to NULL, returning the previous thread state (which is not NULL). If the lock has been created, the current
thread must have acquired it. (This function is available even when thread support is disabled at compile time.)

void PyEval_RestoreThread (PyThreadState *tstate)
Acquire the global interpreter lock (if it has been created and thread support is enabled) and set the thread state
to tstate, which must not be NULL. If the lock has been created, the current thread must not have acquired it,
otherwise deadlock ensues. (This function is available even when thread support is disabled at compile time.)

PyThreadState* PyThreadState_Get ()
Return the current thread state. The global interpreter lock must be held. When the current thread state is NULL,
this issues a fatal error (so that the caller needn’t check for NULL).

PyThreadState* PyThreadState_Swap (PyThreadState *tstate)
Swap the current thread state with the thread state given by the argument zstate, which may be NULL. The global
interpreter lock must be held and is not released.

void PyEval_ReInitThreads ()
This function is called from Py0OS_AfterFork () to ensure that newly created child processes don’t hold
locks referring to threads which are not running in the child process.

The following functions use thread-local storage, and are not compatible with sub-interpreters:

9.3. Thread State and the Global Interpreter Lock 123

The Python/C API, Release 3.4.9rc1

PyGILState_STATE PyGILState_Ensure ()
Ensure that the current thread is ready to call the Python C API regardless of the current state of Python, or
of the global interpreter lock. This may be called as many times as desired by a thread as long as each call is
matched withacallto PyGILState Release (). In general, other thread-related APIs may be used between
PyGILState_Ensure () and PyGILState_Release () calls as long as the thread state is restored to its
previous state before the Release(). For example, normal usage of the Py BEGIN_ALLOW_THREADS and
Py_END_ALLOW_THREADS macros is acceptable.

The return value is an opaque “handle” to the thread state when PyGILState Ensure () was called, and
must be passed to PyGILState Release () toensure Python is left in the same state. Even though recursive
calls are allowed, these handles cannot be shared - each unique call to PyGILState_Ensure () must save
the handle for its call to PyGILState_Release ().

When the function returns, the current thread will hold the GIL and be able to call arbitrary Python code. Failure
is a fatal error.

void PyGILState_Release (PyGILState STATE)
Release any resources previously acquired. After this call, Python’s state will be the same as it was prior to the
corresponding PyGILState Ensure () call (but generally this state will be unknown to the caller, hence the
use of the GILState API).

Every call to PyGILState Ensure () must be matched by a call to PyGILState Release () on the
same thread.

PyThreadState* PyGILState_GetThisThreadState ()
Get the current thread state for this thread. May return NULL if no GILState API has been used on the current
thread. Note that the main thread always has such a thread-state, even if no auto-thread-state call has been made
on the main thread. This is mainly a helper/diagnostic function.

int PyGILState_Check ()
Return 1 if the current thread is holding the GIL and 0 otherwise. This function can be called from any thread
at any time. Only if it has had its Python thread state initialized and currently is holding the GIL will it return
1. This is mainly a helper/diagnostic function. It can be useful for example in callback contexts or memory
allocation functions when knowing that the GIL is locked can allow the caller to perform sensitive actions or
otherwise behave differently.

New in version 3.4.

The following macros are normally used without a trailing semicolon; look for example usage in the Python source
distribution.

Py BEGIN_ALLOW_THREADS
This macro expandsto { PyThreadState *_save; _save = PyEval_SaveThread () ;. Note that
it contains an opening brace; it must be matched with a following Py END ALLOW_THREADS macro. See
above for further discussion of this macro. It is a no-op when thread support is disabled at compile time.

Py END_ALLOW_THREADS
This macro expands to PyEval_RestoreThread (_save); }. Note that it contains a closing brace; it
must be matched with an earlier Py BEGIN ALLOW _THREADS macro. See above for further discussion of
this macro. It is a no-op when thread support is disabled at compile time.

Py_BLOCK_ THREADS
This macro expands to PyEval_RestoreThread(_save);: it is equivalent to
Py _END_ALLOW_THREADS without the closing brace. It is a no-op when thread support is disabled at
compile time.

Py_UNBLOCK_THREADS
This macro expands to _save = PyEval_SaveThread();: it is equivalent to
Py _BEGIN_ALLOW_THREADS without the opening brace and variable declaration. It is a no-op when
thread support is disabled at compile time.

124 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, Release 3.4.9rc1

9.3.4 Low-level API

All of the following functions are only available when thread support is enabled at compile time, and must be called
only when the global interpreter lock has been created.

PylInterpreterState* PyInterpreterState_New ()
Create a new interpreter state object. The global interpreter lock need not be held, but may be held if it is
necessary to serialize calls to this function.

void PyInterpreterState_Clear (PylnterpreterState *interp)
Reset all information in an interpreter state object. The global interpreter lock must be held.

void PyInterpreterState_Delete (PylnterpreterState *interp)
Destroy an interpreter state object. The global interpreter lock need not be held. The interpreter state must have
been reset with a previous call to PyInterpreterState_Clear ().

PyThreadState* PyThreadState_New (PylnterpreterState *interp)
Create a new thread state object belonging to the given interpreter object. The global interpreter lock need not
be held, but may be held if it is necessary to serialize calls to this function.

void PyThreadState_Clear (PyThreadState *tstate)
Reset all information in a thread state object. The global interpreter lock must be held.

void PyThreadState_Delete (PyThreadState *tstate)
Destroy a thread state object. The global interpreter lock need not be held. The thread state must have been reset
with a previous call to PyThreadState Clear ().

PyObject* PyThreadState_GetDict ()
Return value: Borrowed reference. Return a dictionary in which extensions can store thread-specific state
information. Each extension should use a unique key to use to store state in the dictionary. It is okay to call this
function when no current thread state is available. If this function returns NULL, no exception has been raised
and the caller should assume no current thread state is available.

int PyThreadState_SetAsyncExc (long id, PyObject *exc)
Asynchronously raise an exception in a thread. The id argument is the thread id of the target thread; exc is the
exception object to be raised. This function does not steal any references to exc. To prevent naive misuse, you
must write your own C extension to call this. Must be called with the GIL held. Returns the number of thread
states modified; this is normally one, but will be zero if the thread id isn’t found. If exc is NULL, the pending
exception (if any) for the thread is cleared. This raises no exceptions.

void PyEval_AcquireThread (PyThreadState *tstate)
Acquire the global interpreter lock and set the current thread state to tstate, which should not be NULL. The
lock must have been created earlier. If this thread already has the lock, deadlock ensues.

PyEval_ RestoreThread () is a higher-level function which is always available (even when thread support
isn’t enabled or when threads have not been initialized).

void PyEval_ReleaseThread (PyThreadState *tstate)
Reset the current thread state to NULL and release the global interpreter lock. The lock must have been created
earlier and must be held by the current thread. The zstate argument, which must not be NULL, is only used to
check that it represents the current thread state — if it isn’t, a fatal error is reported.

PyEval_SaveThread () is a higher-level function which is always available (even when thread support isn’t
enabled or when threads have not been initialized).

void PyEval_AcquireLock ()
Acquire the global interpreter lock. The lock must have been created earlier. If this thread already has the lock,
a deadlock ensues.

Deprecated since version 3.2: This function does not update the current thread state. Please use
PyEval_RestoreThread () or PyEval_AcquireThread () instead.

9.3. Thread State and the Global Interpreter Lock 125

The Python/C API, Release 3.4.9rc1

void PyEval_ReleaseLock ()
Release the global interpreter lock. The lock must have been created earlier.

Deprecated since version 3.2: This function does not update the current thread state. Please use
PyEval_SaveThread() or PyEval_ReleaseThread () instead.

9.4 Sub-interpreter support

While in most uses, you will only embed a single Python interpreter, there are cases where you need to create several
independent interpreters in the same process and perhaps even in the same thread. Sub-interpreters allow you to do
that. You can switch between sub-interpreters using the PyThreadState_Swap () function. You can create and
destroy them using the following functions:

PyThreadState* Py_NewInterpreter ()
Create a new sub-interpreter. This is an (almost) totally separate environment for the execution of Python code.
In particular, the new interpreter has separate, independent versions of all imported modules, including the
fundamental modules builtins, _ main__ and sys. The table of loaded modules (sys.modules) and
the module search path (sys.path) are also separate. The new environment has no sys.argv variable. It
has new standard I/O stream file objects sys.stdin, sys.stdout and sys.stderr (however these refer
to the same underlying file descriptors).

The return value points to the first thread state created in the new sub-interpreter. This thread state is made in the
current thread state. Note that no actual thread is created; see the discussion of thread states below. If creation
of the new interpreter is unsuccessful, NULL is returned; no exception is set since the exception state is stored
in the current thread state and there may not be a current thread state. (Like all other Python/C API functions,
the global interpreter lock must be held before calling this function and is still held when it returns; however,
unlike most other Python/C API functions, there needn’t be a current thread state on entry.)

Extension modules are shared between (sub-)interpreters as follows: the first time a particular extension is
imported, it is initialized normally, and a (shallow) copy of its module’s dictionary is squirreled away. When the
same extension is imported by another (sub-)interpreter, a new module is initialized and filled with the contents
of this copy; the extension’s init function is not called. Note that this is different from what happens when an
extension is imported after the interpreter has been completely re-initialized by calling Py_Finalize () and
Py_Initialize ();in thatcase, the extension’s initmodule function is called again.

void Py_EndInterpreter (PyThreadState *tstate)
Destroy the (sub-)interpreter represented by the given thread state. The given thread state must be the current
thread state. See the discussion of thread states below. When the call returns, the current thread state is NULL.
All thread states associated with this interpreter are destroyed. (The global interpreter lock must be held before
calling this function and is still held when it returns.) Py_Finalize () will destroy all sub-interpreters that
haven’t been explicitly destroyed at that point.

9.4.1 Bugs and caveats

Because sub-interpreters (and the main interpreter) are part of the same process, the insulation between them isn’t
perfect — for example, using low-level file operations like os.close () they can (accidentally or maliciously)
affect each other’s open files. Because of the way extensions are shared between (sub-)interpreters, some extensions
may not work properly; this is especially likely when the extension makes use of (static) global variables, or when
the extension manipulates its module’s dictionary after its initialization. It is possible to insert objects created in one
sub-interpreter into a namespace of another sub-interpreter; this should be done with great care to avoid sharing user-
defined functions, methods, instances or classes between sub-interpreters, since import operations executed by such
objects may affect the wrong (sub-)interpreter’s dictionary of loaded modules.

126 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, Release 3.4.9rc1

Also note that combining this functionality with PyGILState_x« () APIsis delicate, because these APIs assume a bi-
jection between Python thread states and OS-level threads, an assumption broken by the presence of sub-interpreters. It
is highly recommended that you don’t switch sub-interpreters between a pair of matching PyGILState Ensure ()
and PyGILState_Release () calls. Furthermore, extensions (such as ctypes) using these APIs to allow calling
of Python code from non-Python created threads will probably be broken when using sub-interpreters.

9.5 Asynchronous Notifications

A mechanism is provided to make asynchronous notifications to the main interpreter thread. These notifications take
the form of a function pointer and a void pointer argument.

int Py_ AddPendingCall (int (*func)(void *), void *arg)
Schedule a function to be called from the main interpreter thread. On success, O is returned and func is queued
for being called in the main thread. On failure, -1 is returned without setting any exception.

When successfully queued, func will be eventually called from the main interpreter thread with the argument arg.
It will be called asynchronously with respect to normally running Python code, but with both these conditions
met:

* on a bytecode boundary;
» with the main thread holding the global interpreter lock (func can therefore use the full C API).

func must return 0 on success, or -1 on failure with an exception set. func won’t be interrupted to perform another
asynchronous notification recursively, but it can still be interrupted to switch threads if the global interpreter lock
is released.

This function doesn’t need a current thread state to run, and it doesn’t need the global interpreter lock.

Warning: This is a low-level function, only useful for very special cases. There is no guarantee that func
will be called as quick as possible. If the main thread is busy executing a system call, func won’t be called
before the system call returns. This function is generally not suitable for calling Python code from arbitrary
C threads. Instead, use the PyGILState API.

New in version 3.1.

9.6 Profiling and Tracing

The Python interpreter provides some low-level support for attaching profiling and execution tracing facilities. These
are used for profiling, debugging, and coverage analysis tools.

This C interface allows the profiling or tracing code to avoid the overhead of calling through Python-level callable
objects, making a direct C function call instead. The essential attributes of the facility have not changed; the interface
allows trace functions to be installed per-thread, and the basic events reported to the trace function are the same as had
been reported to the Python-level trace functions in previous versions.

int (xPy_tracefunc) (PyObject *obj, PyFrameObject *frame, int what, PyObject *arg)
The type of the trace function registered using PyEval SetProfile () and PyEval_SetTrace (). The
first parameter is the object passed to the registration function as obj, frame is the frame object to which the
event pertains, what is one of the constants PyTrace_CALL, PyTrace_EXCEPTION, PyTrace_LINE,
PyTrace_RETURN, PyTrace_C_CALL, PyTrace_C_EXCEPTION, or PyTrace_C_RETURN, and arg
depends on the value of what:

9.5. Asynchronous Notifications 127

The Python/C API, Release 3.4.9rc1

Value of what Meaning of arg

PyTrace_CALL Always NULL.

PyTrace_EXCEPTION Exception information as returned by sys.exc_info ().
PyTrace_LINE Always NULL.

PyTrace_RETURN Value being returned to the caller, or NULL if caused by an exception.
PyTrace_C_CALL Function object being called.

PyTrace_C_EXCEPTION | Function object being called.

PyTrace_C_RETURN Function object being called.

int PyTrace_CALL
The value of the what parameter to a Py_t racefunc function when a new call to a function or method is
being reported, or a new entry into a generator. Note that the creation of the iterator for a generator function is
not reported as there is no control transfer to the Python bytecode in the corresponding frame.

int PyTrace_EXCEPTION
The value of the what parameter to a Pyt race func function when an exception has been raised. The call-
back function is called with this value for what when after any bytecode is processed after which the exception
becomes set within the frame being executed. The effect of this is that as exception propagation causes the
Python stack to unwind, the callback is called upon return to each frame as the exception propagates. Only trace
functions receives these events; they are not needed by the profiler.

int PyTrace_LINE
The value passed as the what parameter to a trace function (but not a profiling function) when a line-number
event is being reported.

int PyTrace_RETURN
The value for the what parameter to Py_ t racefunc functions when a call is returning without propagating
an exception.

int PyTrace_C_CALL
The value for the what parameter to Py_ t racefunc functions when a C function is about to be called.

int PyTrace_C_EXCEPTION
The value for the what parameter to Py_ t race func functions when a C function has raised an exception.

int PyTrace_C_RETURN
The value for the what parameter to Py_ t race func functions when a C function has returned.

void PyEval_SetProfile (Py_tracefunc func, PyObject *obj)
Set the profiler function to func. The obj parameter is passed to the function as its first parameter, and may
be any Python object, or NULL. If the profile function needs to maintain state, using a different value for obj
for each thread provides a convenient and thread-safe place to store it. The profile function is called for all
monitored events except the line-number events.

void PyEval_SetTrace (Py_tracefunc func, PyObject *obj)
Set the tracing function to func. This is similar to PyEval SetProfile (), except the tracing function does
receive line-number events.

PyObject* PyEval_GetCallStats (PyObject *self)
Return a tuple of function call counts. There are constants defined for the positions within the tuple:

128 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, Release 3.4.9rc1

<
L
c
D

Name

PCALL_ALL
PCALL_FUNCTION
PCALL_FAST_FUNCTION
PCALL_FASTER_FUNCTION
PCALIL_METHOD
PCALL_BOUND_METHOD
PCALL_CFUNCTION
PCALL_TYPE
PCALL_GENERATOR
PCALL_OTHER
PCALL_POP

O 00| A N[N K| W —|O

—
=)

PCALL_FAST_FUNCTION means no argument tuple needs to be created. PCALL_FASTER_FUNCTION
means that the fast-path frame setup code is used.

If there is a method call where the call can be optimized by changing the argument tuple and calling the function
directly, it gets recorded twice.

This function is only present if Python is compiled with CALL_PROFILE defined.

9.7 Advanced Debugger Support

These functions are only intended to be used by advanced debugging tools.

PyInterpreterState* PyInterpreterState_Head ()
Return the interpreter state object at the head of the list of all such objects.

PylnterpreterState* PyInterpreterState_Next (PylnterpreterState *interp)
Return the next interpreter state object after interp from the list of all such objects.

PyThreadState * PyInterpreterState_ThreadHead (PylnterpreterState *interp)
Return the pointer to the first PyThreadState object in the list of threads associated with the interpreter
interp.

PyThreadState* PyThreadState_Next (PyThreadState *tstate)
Return the next thread state object after fstate from the list of all such objects belonging to the same
PyInterpreterState object.

9.7. Advanced Debugger Support 129

The Python/C API, Release 3.4.9rc1

130 Chapter 9. Initialization, Finalization, and Threads

CHAPTER
TEN

MEMORY MANAGEMENT

10.1 Overview

Memory management in Python involves a private heap containing all Python objects and data structures. The man-
agement of this private heap is ensured internally by the Python memory manager. The Python memory manager
has different components which deal with various dynamic storage management aspects, like sharing, segmentation,
preallocation or caching.

At the lowest level, a raw memory allocator ensures that there is enough room in the private heap for storing all
Python-related data by interacting with the memory manager of the operating system. On top of the raw memory
allocator, several object-specific allocators operate on the same heap and implement distinct memory management
policies adapted to the peculiarities of every object type. For example, integer objects are managed differently within
the heap than strings, tuples or dictionaries because integers imply different storage requirements and speed/space
tradeoffs. The Python memory manager thus delegates some of the work to the object-specific allocators, but ensures
that the latter operate within the bounds of the private heap.

It is important to understand that the management of the Python heap is performed by the interpreter itself and that the
user has no control over it, even if she regularly manipulates object pointers to memory blocks inside that heap. The
allocation of heap space for Python objects and other internal buffers is performed on demand by the Python memory
manager through the Python/C API functions listed in this document.

To avoid memory corruption, extension writers should never try to operate on Python objects with the functions
exported by the C library: malloc (), calloc (), realloc () and free (). This will result in mixed calls
between the C allocator and the Python memory manager with fatal consequences, because they implement different
algorithms and operate on different heaps. However, one may safely allocate and release memory blocks with the C
library allocator for individual purposes, as shown in the following example:

PyObject =xres;
char *«buf = (char x) malloc (BUFSIZ); /+ for I/0 =/

if (buf == NULL)
return PyErr_NoMemory () ;
...Do some I/O operation involving buf...
res = PyBytes_FromString (buf);
free(buf); /% malloc'ed =/
return res;

In this example, the memory request for the I/O buffer is handled by the C library allocator. The Python memory
manager is involved only in the allocation of the string object returned as a result.

In most situations, however, it is recommended to allocate memory from the Python heap specifically because the latter
is under control of the Python memory manager. For example, this is required when the interpreter is extended with
new object types written in C. Another reason for using the Python heap is the desire to inform the Python memory
manager about the memory needs of the extension module. Even when the requested memory is used exclusively for

131

The Python/C API, Release 3.4.9rc1

internal, highly-specific purposes, delegating all memory requests to the Python memory manager causes the inter-
preter to have a more accurate image of its memory footprint as a whole. Consequently, under certain circumstances,
the Python memory manager may or may not trigger appropriate actions, like garbage collection, memory compaction
or other preventive procedures. Note that by using the C library allocator as shown in the previous example, the
allocated memory for the I/O buffer escapes completely the Python memory manager.

10.2 Raw Memory Interface

The following function sets are wrappers to the system allocator. These functions are thread-safe, the G/L does not
need to be held.

The default raw memory block allocator uses the following functions: malloc (), realloc () and free (); call
malloc (1) when requesting zero bytes.

New in version 3.4.

void* PyMem RawMalloc (size_t n)
Allocates n bytes and returns a pointer of type void= to the allocated memory, or NULL if the request fails.
Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyMem_RawMalloc (1) had been
called instead. The memory will not have been initialized in any way.

void* PyMem RawRealloc (void *p, size_t n)
Resizes the memory block pointed to by p to n bytes. The contents will be unchanged to the minimum of the old
and the new sizes. If p is NULL, the call is equivalent to PyMem_RawMalloc (n); else if n is equal to zero,
the memory block is resized but is not freed, and the returned pointer is non-NULL. Unless p is NULL, it must
have been returned by a previous call to PyMem RawMalloc () or PyMem RawRealloc (). If the request
fails, PyMem RawRealloc () returns NULL and p remains a valid pointer to the previous memory area.

void PyMem_RawFree (void *p)
Frees the memory block pointed to by p, which must have been returned by a previous call to
PyMem_RawMalloc () or PyMem RawRealloc (). Otherwise, or if PyMem_Free (p) has been called
before, undefined behavior occurs. If p is NULL, no operation is performed.

10.3 Memory Interface

The following function sets, modeled after the ANSI C standard, but specifying behavior when requesting zero bytes,
are available for allocating and releasing memory from the Python heap.

The default memory block allocator uses the following functions: malloc (), realloc () and free (); call
malloc (1) when requesting zero bytes.

Warning: The G/L must be held when using these functions.

void* PyMem Malloc (size_t n)
Allocates n bytes and returns a pointer of type voidx to the allocated memory, or NULL if the request fails.
Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyMem_Malloc (1) had been
called instead. The memory will not have been initialized in any way.

void* PyMem_Realloc (void *p, size_t n)
Resizes the memory block pointed to by p to n bytes. The contents will be unchanged to the minimum of the
old and the new sizes. If p is NULL, the call is equivalent to PyMem_Malloc (n); else if n is equal to zero,
the memory block is resized but is not freed, and the returned pointer is non-NULL. Unless p is NULL, it must

132 Chapter 10. Memory Management

The Python/C API, Release 3.4.9rc1

have been returned by a previous call to PyMem Malloc () or PyMem Realloc (). If the request fails,
PyMem_Realloc () returns NULL and p remains a valid pointer to the previous memory area.

void PyMem_Free (void *p)
Frees the memory block pointed to by p, which must have been returned by a previous call to
PyMem_Malloc () or PyMem Realloc (). Otherwise, or if PyMem_Free (p) has been called before,
undefined behavior occurs. If p is NULL, no operation is performed.

The following type-oriented macros are provided for convenience. Note that TYPE refers to any C type.

TYPE* PyMem_New (TYPE, size_t n)
Same as PyMem _Malloc (),butallocates (n » sizeof (TYPE)) bytes of memory. Returns a pointer cast
to TYPE+. The memory will not have been initialized in any way.

TYPE* PyMem_Resize (void *p, TYPE, size_t n)
Same as PyMem Realloc (), but the memory block is resizedto (n * sizeof (TYPE)) bytes. Returns a
pointer cast to TYPE«. On return, p will be a pointer to the new memory area, or NULL in the event of failure.
This is a C preprocessor macro; p is always reassigned. Save the original value of p to avoid losing memory
when handling errors.

void PyMem_Del (void *p)
Same as PyMem_ Free ().

In addition, the following macro sets are provided for calling the Python memory allocator directly, without involving
the C API functions listed above. However, note that their use does not preserve binary compatibility across Python
versions and is therefore deprecated in extension modules.

PyMem_MALLOC (), PyMem_REALLOC (), PyMem_FREE ().

PyMem_NEW (), PyMem_RESIZE (), PyMem_DEL ().

10.4 Customize Memory Allocators

New in version 3.4.

PyMemAllocator
Structure used to describe a memory block allocator. The structure has four fields:

Field Meaning
void xctx user context passed as first argu-
ment

voidx malloc (void *ctx, size_t size) allocate a memory block

void* realloc (void xctx, void xptr, size_t allocate or resize a memory block

new_size)

void free(void *ctx, void *ptr) free a memory block
PyMemAllocatorDomain

Enum used to identify an allocator domain. Domains:

e PYMEM_DOMAIN_RAW: functions PyMem RawMalloc (), PyMem RawRealloc () and
PyMem RawFree ()

e PYMEM_DOMAIN_MEM: functions PyMem Malloc (), PyMem Realloc () and PyMem Free ()

e PYMEM_DOMAIN_OBJ: functions PyObject_Malloc(), PyObject_Realloc () and
PyObject_Free ()

10.4. Customize Memory Allocators 133

The Python/C API, Release 3.4.9rc1

void PyMem_GetAllocator (PyMemAllocatorDomain domain, PyMemAllocator *allocator)
Get the memory block allocator of the specified domain.

void PyMem_SetAllocator (PyMemAllocatorDomain domain, PyMemAllocator *allocator)
Set the memory block allocator of the specified domain.

The new allocator must return a distinct non-NULL pointer when requesting zero bytes.

For the PYMEM_DOMAIN_RAW domain, the allocator must be thread-safe: the G/L is not held when the allocator
is called.

If the new allocator is not a hook (does not call the previous allocator), the PyMem SetupDebugHooks ()
function must be called to reinstall the debug hooks on top on the new allocator.

void PyMem_SetupDebugHooks (void)
Setup hooks to detect bugs in the following Python memory allocator functions:

* PyMem RawMalloc (), PyMem RawRealloc (), PyMem RawFree ()
* PyMem Malloc (), PyMem Realloc(),PyMem Free/()
e PyObject_Malloc(),PyObject_Realloc(),PyObject_Free()

Newly allocated memory is filled with the byte 0xCB, freed memory is filled with the byte 0xDB. Additional
checks:

¢ detect API violations, ex: PyObject_Free () called on a buffer allocated by PyMem Malloc ()
¢ detect write before the start of the buffer (buffer underflow)
e detect write after the end of the buffer (buffer overflow)

The function does nothing if Python is not compiled is debug mode.

10.5 Customize PyObject Arena Allocator

Python has a pymalloc allocator for allocations smaller than 512 bytes. This allocator is optimized for small ob-
jects with a short lifetime. It uses memory mappings called “arenas” with a fixed size of 256 KB. It falls back to
PyMem _RawMalloc () and PyMem RawRealloc () for allocations larger than 512 bytes. pymalloc is the default
allocator used by PyObject_Malloc ().

The default arena allocator uses the following functions:
e VirtualAlloc () and VirtualFree () on Windows,
e mmap () and munmap () if available,
* malloc () and free () otherwise.

New in version 3.4.

PyObjectArenaAllocator
Structure used to describe an arena allocator. The structure has three fields:

Field Meaning

void *ctx user context passed as first argument
voidx alloc(void *ctx, size_t size) allocate an arena of size bytes
void free(void xctx, size_t size, void xptr) free an arena

PyObject_GetArenalAllocator (PyObjectArenaAllocator *allocator)
Get the arena allocator.

134 Chapter 10. Memory Management

The Python/C API, Release 3.4.9rc1

PyObject_SetArenalAllocator (PyObjectArenaAllocator *allocator)
Set the arena allocator.

10.6 Examples

Here is the example from section Overview, rewritten so that the I/O buffer is allocated from the Python heap by using
the first function set:

PyObject =xres;

char +buf = (char %) PyMem_Malloc (BUFSIZ); /* for I/0 x/
if (buf == NULL)

return PyErr_NoMemory () ;
/* ...Do some I/O operation involving buf... */

res = PyBytes_FromString (buf);
PyMem_Free (buf); /* allocated with PyMem Malloc x/
return res;

The same code using the type-oriented function set:

PyObject =xres;
char +buf = PyMem_New (char, BUFSIZ); /x for I/0 x/

if (buf == NULL)
return PyErr_NoMemory () ;
/* ...Do some I/O operation involving buf... */

res = PyBytes_FromString (buf) ;
PyMem_Del (buf); /# allocated with PyMem New #*/
return res;

Note that in the two examples above, the buffer is always manipulated via functions belonging to the same set. Indeed,
it is required to use the same memory API family for a given memory block, so that the risk of mixing different
allocators is reduced to a minimum. The following code sequence contains two errors, one of which is labeled as fatal
because it mixes two different allocators operating on different heaps.

char +bufl = PyMem_New (char, BUFSIZ);
char buf2 = (char %) malloc(BUFSIZ);
char +buf3 = (char %) PyMem Malloc (BUFSIZ);

PyMem_Del (buf3); /* Wrong —- should be PyMem Free() */

free (buf2); /* Right ——- allocated via malloc() =*/
free (bufl); /* Fatal —-- should be PyMem Del () */

In addition to the functions aimed at handling raw memory blocks from the Python heap, objects in Python are allocated
and released with PyOb ject_New (), PyOb ject_NewVar () and PyOb ject_Del ().

These will be explained in the next chapter on defining and implementing new object types in C.

10.6. Examples 135

The Python/C API, Release 3.4.9rc1

136 Chapter 10. Memory Management

CHAPTER
ELEVEN

OBJECT IMPLEMENTATION SUPPORT

This chapter describes the functions, types, and macros used when defining new object types.

11.1 Allocating Objects on the Heap

PyObject* _PyObject_New (PyTypeObject *type)
Return value: New reference.

PyVarObject* _PyObject_NewVar (PyTypeObject *type, Py_ssize_t size)
Return value: New reference.

PyObject* PyObject_Init (PyObject *op, PyTypeObject *type)
Return value: Borrowed reference. Initialize a newly-allocated object op with its type and initial reference.
Returns the initialized object. If fype indicates that the object participates in the cyclic garbage detector, it is
added to the detector’s set of observed objects. Other fields of the object are not affected.

PyVarObject* PyObject_InitVar (PyVarObject *op, PyTypeObject *type, Py_ssize_t size)
Return value: Borrowed reference. This does everything PyOb ject_TInit () does, and also initializes the
length information for a variable-size object.

TYPE* PyObject_New (TYPE, PyTypeObject *type)
Return value: New reference. Allocate a new Python object using the C structure type TYPE and the Python
type object type. Fields not defined by the Python object header are not initialized; the object’s reference count
will be one. The size of the memory allocation is determined from the t p_basicsize field of the type object.

TYPE* PyObject_NewVar (TYPE, PyTypeObject *type, Py_ssize_t size)
Return value: New reference. Allocate a new Python object using the C structure type TYPE and the Python type
object type. Fields not defined by the Python object header are not initialized. The allocated memory allows
for the TYPE structure plus size fields of the size given by the tp_itemsize field of rype. This is useful for
implementing objects like tuples, which are able to determine their size at construction time. Embedding the
array of fields into the same allocation decreases the number of allocations, improving the memory management
efficiency.

void PyObject_Del (PyObject *op)
Releases memory allocated to an object using PyOb ject_New () or PyOb ject_NewVar (). This is nor-
mally called from the tp_dealloc handler specified in the object’s type. The fields of the object should not
be accessed after this call as the memory is no longer a valid Python object.

PyObject _Py_NoneStruct
Object which is visible in Python as None. This should only be accessed using the Py None macro, which
evaluates to a pointer to this object.

See also:

PyModule Create () To allocate and create extension modules.

137

The Python/C API, Release 3.4.9rc1

11.2 Common Object Structures

There are a large number of structures which are used in the definition of object types for Python. This section
describes these structures and how they are used.

All Python objects ultimately share a small number of fields at the beginning of the object’s representation in memory.
These are represented by the PyOb ject and PyVarOb ject types, which are defined, in turn, by the expansions of
some macros also used, whether directly or indirectly, in the definition of all other Python objects.

PyObject
All object types are extensions of this type. This is a type which contains the information Python needs to treat
a pointer to an object as an object. In a normal “release” build, it contains only the object’s reference count and
a pointer to the corresponding type object. Nothing is actually declared to be a PyOb ject, but every pointer
to a Python object can be cast to a PyOb ject . Access to the members must be done by using the macros
Py REFCNT and Py_TYPE.

PyVarObject
This is an extension of PyOb ject that adds the ob_size field. This is only used for objects that have some
notion of length. This type does not often appear in the Python/C API. Access to the members must be done by
using the macros Py. REFCNT, Py_ TYPE, and Py_SIZE.

PyObject_ HEAD
This is a macro used when declaring new types which represent objects without a varying length. The PyOb-
ject_ HEAD macro expands to:

PyObject ob_base;

See documentation of PyOb ject above.

PyObject_VAR_HEAD
This is a macro used when declaring new types which represent objects with a length that varies from instance
to instance. The PyObject_ VAR_HEAD macro expands to:

PyVarObject ob_base;

See documentation of PyVarOb ject above.

Py_TYPE (0)
This macro is used to access the ob_t ype member of a Python object. It expands to:

’(((PyObject*)(o))7>ob_type)

Py_REFCNT (0)
This macro is used to access the ob_refcnt member of a Python object. It expands to:

’(((PyObject*)(o))7>ob_refcnt)

Py_SIZE (0)
This macro is used to access the ob_size member of a Python object. It expands to:

’(((PyVarObject*)(o))7>ob_size)

PyObject_ HEAD_INIT (type)
This is a macro which expands to initialization values for a new PyOb ject type. This macro expands to:

_PyObject_EXTRA_INIT
1, type,

138 Chapter 11. Object Implementation Support

The Python/C API, Release 3.4.9rc1

PyVarObject_ HEAD_INIT (type, size)
This is a macro which expands to initialization values for a new PyVarOb ject type, including the ob_size
field. This macro expands to:

_PyObject_EXTRA_INIT
1, type, size,

PyCFunction
Type of the functions used to implement most Python callables in C. Functions of this type take two
PyOb ject » parameters and return one such value. If the return value is NULL, an exception shall have been
set. If not NULL, the return value is interpreted as the return value of the function as exposed in Python. The
function must return a new reference.

PyCFunctionWithKeywords
Type of the functions used to implement Python callables in C that take keyword arguments: they take three
PyOb ject » parameters and return one such value. See PyCFunction above for the meaning of the return
value.

PyMethodDef
Structure used to describe a method of an extension type. This structure has four fields:

Field C Type Meaning

ml_name char * name of the method

ml_meth PyCFunction | pointer to the C implementation

ml_flags | int flag bits indicating how the call should be constructed
ml_doc char * points to the contents of the docstring

The m1_meth is a C function pointer. The functions may be of different types, but they always return PyOb ject ».
If the function is not of the PyCFunction, the compiler will require a cast in the method table. Even though
PyCFunction defines the first parameter as PyOb ject #, it is common that the method implementation uses the
specific C type of the self object.

The m1_flags field is a bitfield which can include the following flags. The individual flags indicate either a calling
convention or a binding convention. Of the calling convention flags, only METH VARARGS and METH_KEYWORDS
can be combined (but note that METH_KEYWORDS alone is equivalent to METH_VARARGS | METH_KEYWORDS).
Any of the calling convention flags can be combined with a binding flag.

METH_VARARGS
This is the typical calling convention, where the methods have the type PyCFunct ion. The function expects
two PyOb ject » values. The first one is the self object for methods; for module functions, it is the module
object. The second parameter (often called args) is a tuple object representing all arguments. This parameter is
typically processed using PyArg ParseTuple () or PyArg UnpackTuple ().

METH_KEYWORDS
Methods with these flags must be of type PyCFunctionWithKeywords. The function ex-
pects three parameters: self, args, and a dictionary of all the keyword arguments. The flag
is typically combined with METH VARARGS, and the parameters are typically processed using
PyArg ParseTupleAndKeywords ().

METH_NOARGS
Methods without parameters don’t need to check whether arguments are given if they are listed with the
METH_NOARGS flag. They need to be of type PyCFunction. The first parameter is typically named self
and will hold a reference to the module or object instance. In all cases the second parameter will be NULL.

METH_O
Methods with a single object argument can be listed with the METH O flag, instead of invoking

11.2. Common Object Structures 139

The Python/C API, Release 3.4.9rc1

PyArg_ParseTuple () with a "O" argument. They have the type PyCFunction, with the self param-
eter, and a PyOb ject » parameter representing the single argument.

These two constants are not used to indicate the calling convention but the binding when use with methods of classes.
These may not be used for functions defined for modules. At most one of these flags may be set for any given method.

METH_CLASS
The method will be passed the type object as the first parameter rather than an instance of the type. This is used
to create class methods, similar to what is created when using the classmethod () built-in function.

METH_STATIC
The method will be passed NULL as the first parameter rather than an instance of the type. This is used to create
static methods, similar to what is created when using the staticmethod () built-in function.

One other constant controls whether a method is loaded in place of another definition with the same method name.

METH_COEXIST
The method will be loaded in place of existing definitions. Without METH_COEXIST, the default is to skip
repeated definitions. Since slot wrappers are loaded before the method table, the existence of a sq_contains
slot, for example, would generate a wrapped method named __contains__ () and preclude the loading of
a corresponding PyCFunction with the same name. With the flag defined, the PyCFunction will be loaded in
place of the wrapper object and will co-exist with the slot. This is helpful because calls to PyCFunctions are
optimized more than wrapper object calls.

PyMemberDef
Structure which describes an attribute of a type which corresponds to a C struct member. Its fields are:

Field C Type Meaning

name char * name of the member

type int the type of the member in the C struct

offset | Py_ssize_t | the offset in bytes that the member is located on the type’s object struct
flags int flag bits indicating if the field should be read-only or writable

doc char * points to the contents of the docstring

type can be one of many T_ macros corresponding to various C types. When the member is accessed in
Python, it will be converted to the equivalent Python type.

140 Chapter 11. Object Implementation Support

The Python/C API, Release 3.4.9rc1

Macro name C type
T_SHORT short

T_INT int

T _LONG long
T_FLOAT float
T_DOUBLE double
T_STRING char *
T_OBIJECT PyObject *
T_OBJECT_EX PyObject *
T_CHAR char

T_BYTE char

T _UBYTE unsigned char
T_UINT unsigned int
T_USHORT unsigned short
T_ULONG unsigned long
T_BOOL char
T_LONGLONG long long
T_ULONGLONG | unsigned long long
T_PYSSIZET Py_ssize_t

T_OBJECT and T_OBJECT_EX differ in that T _OBJECT returns None if the member is NULL and
T_OBJECT_EX raises an AttributeError. Try to use T_OBJECT_EX over T_OBJECT because
T_OBJECT_EX handles use of the del statement on that attribute more correctly than T_OBJECT.

flags can be 0 for write and read access or READONLY for read-only access. Using T_STRING for type
implies READONLY. Only T_OBJECT and T_OBJECT_EX members can be deleted. (They are set to NULL).

11.3 Type Objects

Perhaps one of the most important structures of the Python object system is the structure that defines a new type:
the PyTypeOb ject structure. Type objects can be handled using any of the PyObject_x () or PyType_* ()
functions, but do not offer much that’s interesting to most Python applications. These objects are fundamental to how
objects behave, so they are very important to the interpreter itself and to any extension module that implements new

types.

Type objects are fairly large compared to most of the standard types. The reason for the size is that each type object
stores a large number of values, mostly C function pointers, each of which implements a small part of the type’s
functionality. The fields of the type object are examined in detail in this section. The fields will be described in the
order in which they occur in the structure.

Typedefs: unaryfunc, binaryfunc, ternaryfunc, inquiry, intargfunc, intintargfunc, intobjargproc, intintobjargproc, ob-
jobjargproc, destructor, freefunc, printfunc, getattrfunc, getattrofunc, setattrfunc, setattrofunc, reprfunc, hashfunc

The structure definition for Py TypeOb ject can be found in Include/object . h. For convenience of reference,
this repeats the definition found there:

typedef struct _typeobject {
PyObject_VAR_HEAD
const char *tp_name; /+ For printing, in format "<module>.<name>" */
Py_ssize_t tp_lbasicsize, tp_itemsize; /x For allocation #*/

/#* Methods to implement standard operations */

(continues on next page)

11.3. Type Objects 141

The Python/C API, Release 3.4.9rc1

(continued from previous page)

destructor tp_dealloc;

printfunc tp_print;

getattrfunc tp_getattr;

setattrfunc tp_setattr;

void xtp_reserved; /# formerly known as tp_compare #*/
reprfunc tp_repr;

/% Method suites for standard classes #*/

PyNumberMethods *tp_as_number;
PySequenceMethods xtp_as_sequence;
PyMappingMethods +*tp_as_mapping;

/% More standard operations (here for binary compatibility) */

hashfunc tp_hash;
ternaryfunc tp_call;
reprfunc tp_str;
getattrofunc tp_getattro;
setattrofunc tp_setattro;

/#* Functions to access object as input/output buffer =*/
PyBufferProcs *tp_as_buffer;

/* Flags to define presence of optional/expanded features x/
unsigned long tp_flags;

const char *tp_doc; /# Documentation string =/

/#* call function for all accessible objects */
traverseproc tp_traverse;

/+ delete references to contained objects */
inquiry tp_clear;

/#* rich comparisons =/
richcmpfunc tp_richcompare;

/* weak reference enabler #*/
Py_ssize_t tp_weaklistoffset;

/% Iterators */
getiterfunc tp_iter;
iternextfunc tp_iternext;

/* Attribute descriptor and subclassing stuff #*/
struct PyMethodDef x*tp_methods;
struct PyMemberDef *tp_members;
struct PyGetSetDef xtp_getset;
struct _typeobject *tp_base;
PyObject =tp_dict;

descrgetfunc tp_descr_get;
descrsetfunc tp_descr_set;
Py_ssize_t tp_dictoffset;
initproc tp_init;

allocfunc tp_alloc;

newfunc tp_new;

(continues on next page)

142

Chapter 11. Object Implementation Support

The Python/C API, Release 3.4.9rc1

(continued from previous page)

freefunc tp_free; /x Low-level free-memory routine x/
inquiry tp_is_gc; /# For PyObject_IS GC #*/

PyObject *tp_bases;

PyObject *tp_mro; /+ method resolution order =/
PyObject =tp_cache;

PyObject +tp_subclasses;

PyObject »tp_weaklist;

destructor tp_del;

/+ Type attribute cache version tag. Added in version 2.6 */
unsigned int tp_version_tag;

destructor tp_finalize;

} PyTypeObject;

The type object structure extends the PyVaroOb ject structure. The ob_size field is used for dynamic types (cre-
ated by type_new (), usually called from a class statement). Note that PyType Type (the metatype) initializes
tp_itemsize, which means that its instances (i.e. type objects) must have the ob_size field.

PyObject* PyObject ._ob_next

PyObject* PyObject ._ob_prev
These fields are only present when the macro Py_TRACE_REFS is defined. Their initialization to NULL is
taken care of by the PyObject_HEAD_INIT macro. For statically allocated objects, these fields always
remain NULL. For dynamically allocated objects, these two fields are used to link the object into a doubly-linked
list of all live objects on the heap. This could be used for various debugging purposes; currently the only use is
to print the objects that are still alive at the end of a run when the environment variable PYTHONDUMPREF'S is
set.

These fields are not inherited by subtypes.

Py_ssize_t PyObject .ob_refcnt
This is the type object’s reference count, initialized to 1 by the PyOb ject_HEAD_INIT macro. Note that for
statically allocated type objects, the type’s instances (objects whose ob_t ype points back to the type) do not
count as references. But for dynamically allocated type objects, the instances do count as references.

This field is not inherited by subtypes.

PyTypeObject* PyObject .ob_type
This is the type’s type, in other words its metatype. It is initialized by the argument to the
PyObject_HEAD_INIT macro, and its value should normally be §PyType_Type. However, for dynami-
cally loadable extension modules that must be usable on Windows (at least), the compiler complains that this is
not a valid initializer. Therefore, the convention is to pass NULL to the PyObject_HEAD_INIT macro and to
initialize this field explicitly at the start of the module’s initialization function, before doing anything else. This
is typically done like this:

Foo_Type.ob_type = &PyType_Type;

This should be done before any instances of the type are created. Py Type Ready () checks if ob_type is
NULL, and if so, initializes it to the ob_type field of the base class. PyType_Ready () will not change this
field if it is non-zero.

This field is inherited by subtypes.

Py_ssize_t PyVarObject .ob_size
For statically allocated type objects, this should be initialized to zero. For dynamically allocated type objects,
this field has a special internal meaning.

11.3. Type Objects 143

The Python/C API, Release 3.4.9rc1

This field is not inherited by subtypes.

const char* PyTypeObject . tp_name

Pointer to a NUL-terminated string containing the name of the type. For types that are accessible as module
globals, the string should be the full module name, followed by a dot, followed by the type name; for built-in
types, it should be just the type name. If the module is a submodule of a package, the full package name is
part of the full module name. For example, a type named T defined in module M in subpackage Q in package P
should have the tp_name initializer "P.Q .M. T".

For dynamically allocated type objects, this should just be the type name, and the module name explicitly stored
in the type dict as the value for key ' __module_ '.

For statically allocated type objects, the tp_name field should contain a dot. Everything before the last dot
is made accessible as the __module___ attribute, and everything after the last dot is made accessible as the
___name___ attribute.

If no dot is present, the entire tp_name field is made accessible as the __name__ attribute, and the
__module___ attribute is undefined (unless explicitly set in the dictionary, as explained above). This means
your type will be impossible to pickle.

This field is not inherited by subtypes.

Py_ssize t PyTypeObject.tp_basicsize
Py_ssize_t PyTypeObject.tp_itemsize

These fields allow calculating the size in bytes of instances of the type.

There are two kinds of types: types with fixed-length instances have a zero tp_itemsize field, types with
variable-length instances have a non-zero tp_itemsize field. For a type with fixed-length instances, all
instances have the same size, given in tp_basicsize.

For a type with variable-length instances, the instances must have an ob_size field, and the instance size
is tp_basicsize plus N times tp_itemsize, where N is the “length” of the object. The value of N
is typically stored in the instance’s ob_size field. There are exceptions: for example, ints use a negative
ob_size to indicate a negative number, and N is abs (ob_size) there. Also, the presence of an ob_size
field in the instance layout doesn’t mean that the instance structure is variable-length (for example, the structure
for the list type has fixed-length instances, yet those instances have a meaningful ob_size field).

The basic size includes the fields in the instance declared by the macro PyObject_HEAD or
PyObject_VAR_HEAD (whichever is used to declare the instance struct) and this in turn includes the
_ob_prev and _ob_next fields if they are present. This means that the only correct way to get an ini-
tializer for the tp_basicsizeistouse the sizeof operator on the struct used to declare the instance layout.
The basic size does not include the GC header size.

These fields are inherited separately by subtypes. If the base type has a non-zero tp_itemsize, it is gen-
erally not safe to set tp_itemsize to a different non-zero value in a subtype (though this depends on the
implementation of the base type).

A note about alignment: if the variable items require a particular alignment, this should be taken care of by
the value of tp_basicsize. Example: suppose a type implements an array of double. tp_itemsize
is sizeof (double). It is the programmer’s responsibility that tp_basicsize is a multiple of
sizeof (double) (assuming this is the alignment requirement for double).

destructor PyTypeObject .tp_dealloc

A pointer to the instance destructor function. This function must be defined unless the type guarantees that its
instances will never be deallocated (as is the case for the singletons None and E11ipsis).

The destructor function is called by the Py DECREF () and Py XDECREF () macros when the new
reference count is zero. At this point, the instance is still in existence, but there are no references
to it. The destructor function should free all references which the instance owns, free all memory
buffers owned by the instance (using the freeing function corresponding to the allocation function used

144

Chapter 11. Object Implementation Support

The Python/C API, Release 3.4.9rc1

to allocate the buffer), and finally (as its last action) call the type’s tp_ free function. If the type
is not subtypable (doesn’t have the Py TPFLAGS BASETYPE flag bit set), it is permissible to call
the object deallocator directly instead of via tp_free. The object deallocator should be the one
used to allocate the instance; this is normally PyObject_Del () if the instance was allocated using
PyObject_New () or PyObject_VarNew (), or PyObject_GC_Del () if the instance was allocated
using PyOb ject_GC_New () or PyObject_GC_NewVar ().

This field is inherited by subtypes.

printfunc PyTypeObject .tp_print
Reserved slot, formerly used for print formatting in Python 2.x.

getattrfunc PyTypeObject .tp_getattr
An optional pointer to the get-attribute-string function.

This field is deprecated. When it is defined, it should point to a function that acts the same as the tp_getattro
function, but taking a C string instead of a Python string object to give the attribute name. The signature is the
same as for PyOb ject_GetAttrString().

This field is inherited by subtypes together with tp_getattro: a subtype inherits both tp _getattr and
tp_getattro from its base type when the subtype’s tp_getattrand tp_getattro are both NULL.

setattrfunc PyTypeObject .tp_setattr
An optional pointer to the set-attribute-string function.

This field is deprecated. When it is defined, it should point to a function that acts the same as the tp_setattro
function, but taking a C string instead of a Python string object to give the attribute name. The signature is the
same as for PyOb ject_SetAttrString().

This field is inherited by subtypes together with tp_setattro: a subtype inherits both tp_setattr and
tp_setattro from its base type when the subtype’s tp_setattr and tp_setattro are both NULL.

void* PyTypeObject .tp_reserved
Reserved slot, formerly known as tp_compare.

reprfunc PyTypeObject .tp_repr
An optional pointer to a function that implements the built-in function repr ().

The signature is the same as for PyOb ject_Repr (); it must return a string or a Unicode object. Ideally, this
function should return a string that, when passed to eval (), given a suitable environment, returns an object
with the same value. If this is not feasible, it should return a string starting with ' <' and ending with '>"' from
which both the type and the value of the object can be deduced.

When this field is not set, a string of the form <%$s object at %p> isreturned, where %s is replaced by the
type name, and $p by the object’s memory address.

This field is inherited by subtypes.

PyNumberMethods* tp_as_number
Pointer to an additional structure that contains fields relevant only to objects which implement the number
protocol. These fields are documented in Number Object Structures.

The tp_as_number field is not inherited, but the contained fields are inherited individually.

PySequenceMethods* tp_as_sequence
Pointer to an additional structure that contains fields relevant only to objects which implement the sequence
protocol. These fields are documented in Sequence Object Structures.

The tp_as_sequence field is not inherited, but the contained fields are inherited individually.

PyMappingMethods* tp_as_mapping
Pointer to an additional structure that contains fields relevant only to objects which implement the mapping
protocol. These fields are documented in Mapping Object Structures.

11.3. Type Objects 145

The Python/C API, Release 3.4.9rc1

The tp_as_mapping field is not inherited, but the contained fields are inherited individually.

hashfunc PyTypeObject .tp_hash
An optional pointer to a function that implements the built-in function hash ().

The signature is the same as for PyOb ject__Hash (); it must return a value of the type Py_hash_t. The value
-1 should not be returned as a normal return value; when an error occurs during the computation of the hash
value, the function should set an exception and return —1.

This field can be set explicitly to PyOb ject_HashNotImplemented () to block inheritance of the hash
method from a parent type. This is interpreted as the equivalent of _ _hash__ = None at the Python level,
causing isinstance (o, collections.Hashable) to correctly return False. Note that the converse
is also true - setting __hash___ = None on a class at the Python level will result in the tp_hash slot being
setto PyOb ject_HashNotImplemented().

When this field is not set, an attempt to take the hash of the object raises TypeError.

This field is inherited by subtypes together with tp_richcompare: a subtype inherits both of
tp_richcompare and tp_hash, when the subtype’s tp_richcompare and tp_hash are both NULL.

ternaryfunc PyTypeObject .tp_call
An optional pointer to a function that implements calling the object. This should be NULL if the object is not
callable. The signature is the same as for PyOb ject_Call ().

This field is inherited by subtypes.

reprfunc PyTypeObject.tp_str
An optional pointer to a function that implements the built-in operation str (). (Note that str is a type now,
and str () calls the constructor for that type. This constructor calls PyOb ject_Str () to do the actual work,
and PyOb ject_Str () will call this handler.)

The signature is the same as for PyOb ject_ St r (); it must return a string or a Unicode object. This function
should return a “friendly” string representation of the object, as this is the representation that will be used,
among other things, by the print () function.

When this field is not set, PyOb ject_Repr () is called to return a string representation.
This field is inherited by subtypes.

getattrofunc PyTypeObject .tp_getattro
An optional pointer to the get-attribute function.

The signature is the same as for PyObject_GetAttr (). It is usually convenient to set this field to
PyObject_GenericGetAttr (), which implements the normal way of looking for object attributes.

This field is inherited by subtypes together with tp_getattr: a subtype inherits both tp_getattr and
tp_getattro from its base type when the subtype’s tp_getattrand tp_getattro are both NULL.

setattrofunc PyTypeObject .tp_setattro
An optional pointer to the set-attribute function.

The signature is the same as for PyObject_SetAttr (). It is usually convenient to set this field to
PyObject_GenericSetAttr (), which implements the normal way of setting object attributes.

This field is inherited by subtypes together with tp_setattr: a subtype inherits both tp setattr and
tp_setattro from its base type when the subtype’s tp _setattrand tp_ setattro are both NULL.

PyBufferProcs* PyTypeObject .tp_as_buffer
Pointer to an additional structure that contains fields relevant only to objects which implement the buffer inter-
face. These fields are documented in Buffer Object Structures.

The tp_as_buffer field is not inherited, but the contained fields are inherited individually.

146 Chapter 11. Object Implementation Support

The Python/C API, Release 3.4.9rc1

unsigned long PyTypeObject .tp_flags
This field is a bit mask of various flags. Some flags indicate variant semantics for certain situations; oth-
ers are used to indicate that certain fields in the type object (or in the extension structures referenced via
tp_as_number, tp_as_sequence, tp_as_mapping, and tp_as_buffer) that were historically not
always present are valid; if such a flag bit is clear, the type fields it guards must not be accessed and must be
considered to have a zero or NULL value instead.

Inheritance of this field is complicated. Most flag bits are inherited individually, i.e. if the base type has a flag
bit set, the subtype inherits this flag bit. The flag bits that pertain to extension structures are strictly inherited if
the extension structure is inherited, i.e. the base type’s value of the flag bit is copied into the subtype together
with a pointer to the extension structure. The Py TPFLAGS_HAVE_ GC flag bit is inherited together with the
tp_traverseand tp_clear fields,i.e. if the Py TPFLAGS HAVE_GC flag bit is clear in the subtype and
the tp_traverseand tp_clear fields in the subtype exist and have NULL values.

The following bit masks are currently defined; these can be ORed together using the | operator to form the
value of the tp_ f1ags field. The macro PyType HasFeature () takes a type and a flags value, #p and f,
and checks whether tp—>tp_flags & f isnon-zero.

Py TPFLAGS_HEAPTYPE
This bit is set when the type object itself is allocated on the heap. In this case, the ob_type field of its
instances is considered a reference to the type, and the type object is INCREF ed when a new instance is
created, and DECREF ed when an instance is destroyed (this does not apply to instances of subtypes; only
the type referenced by the instance’s ob_type gets INCREF’ed or DECREF ed).

Py TPFLAGS_BASETYPE
This bit is set when the type can be used as the base type of another type. If this bit is clear, the type cannot
be subtyped (similar to a “final” class in Java).

Py TPFLAGS_READY
This bit is set when the type object has been fully initialized by Py Type Ready ().

Py TPFLAGS_READYING
This bit is set while PyType Ready () is in the process of initializing the type object.

Py TPFLAGS_HAVE_GC
This bit is set when the object supports garbage collection. If this bit is set, instances must be created us-
ing PyObject_GC_New () and destroyed using PyOb ject_GC_Del (). More information in section
Supporting Cyclic Ga