
What’s New in Python
Release 3.3.4

A. M. Kuchling

February 09, 2014

Python Software Foundation
Email: docs@python.org

Contents

1 Summary – Release highlights 3

2 PEP 405: Virtual Environments 4

3 PEP 420: Implicit Namespace Packages 4

4 PEP 3118: New memoryview implementation and buffer protocol documentation 5
4.1 Features . 5
4.2 API changes . 5

5 PEP 393: Flexible String Representation 6
5.1 Functionality . 6
5.2 Performance and resource usage . 6

6 PEP 397: Python Launcher for Windows 7

7 PEP 3151: Reworking the OS and IO exception hierarchy 7

8 PEP 380: Syntax for Delegating to a Subgenerator 8

9 PEP 409: Suppressing exception context 9

10 PEP 414: Explicit Unicode literals 10

11 PEP 3155: Qualified name for classes and functions 11

12 PEP 412: Key-Sharing Dictionary 12

13 PEP 362: Function Signature Object 12

14 PEP 421: Adding sys.implementation 12
14.1 SimpleNamespace . 12

15 Using importlib as the Implementation of Import 13
15.1 New APIs . 13
15.2 Visible Changes . 13

16 Other Language Changes 14

17 A Finer-Grained Import Lock 14

18 Builtin functions and types 15

19 New Modules 15
19.1 faulthandler . 15
19.2 ipaddress . 15
19.3 lzma . 15

20 Improved Modules 16
20.1 abc . 16
20.2 array . 16
20.3 base64 . 16
20.4 binascii . 16
20.5 bz2 . 16
20.6 codecs . 17
20.7 collections . 17
20.8 contextlib . 17
20.9 crypt . 17
20.10curses . 18
20.11datetime . 18
20.12decimal . 18

Features . 18
API changes . 19

20.13email . 19
Policy Framework . 19
Provisional Policy with New Header API . 20
Other API Changes . 21

20.14ftplib . 21
20.15functools . 22
20.16gc . 22
20.17hmac . 22
20.18http . 22
20.19html . 22
20.20imaplib . 22
20.21inspect . 22
20.22io . 23
20.23itertools . 23
20.24logging . 23
20.25math . 23
20.26mmap . 23
20.27multiprocessing . 23
20.28nntplib . 24
20.29os . 24
20.30pdb . 26
20.31pickle . 26
20.32pydoc . 26
20.33re . 26
20.34sched . 26
20.35select . 26
20.36shlex . 27
20.37shutil . 27
20.38signal . 27

20.39smtpd . 28
20.40smtplib . 28
20.41socket . 28
20.42socketserver . 28
20.43sqlite3 . 28
20.44ssl . 29
20.45stat . 29
20.46struct . 29
20.47subprocess . 29
20.48sys . 30
20.49tarfile . 30
20.50tempfile . 30
20.51textwrap . 30
20.52threading . 30
20.53time . 30
20.54types . 31
20.55unittest . 31
20.56urllib . 31
20.57webbrowser . 31
20.58xml.etree.ElementTree . 31
20.59zlib . 31

21 Optimizations 31

22 Build and C API Changes 32

23 Deprecated 33
23.1 Unsupported Operating Systems . 33
23.2 Deprecated Python modules, functions and methods . 33
23.3 Deprecated functions and types of the C API . 33
23.4 Deprecated features . 35

24 Porting to Python 3.3 35
24.1 Porting Python code . 35
24.2 Porting C code . 36
24.3 Building C extensions . 37
24.4 Command Line Switch Changes . 37

Index 38

This article explains the new features in Python 3.3, compared to 3.2. Python 3.3 was released on September 29, 2012.
For full details, see the changelog.

See also:

PEP 398 - Python 3.3 Release Schedule

1 Summary – Release highlights

New syntax features:

• New yield from expression for generator delegation.

http://docs.python.org/3.3/whatsnew/changelog.html
http://www.python.org/dev/peps/pep-0398

• The u’unicode’ syntax is accepted again for str objects.

New library modules:

• faulthandler (helps debugging low-level crashes)

• ipaddress (high-level objects representing IP addresses and masks)

• lzma (compress data using the XZ / LZMA algorithm)

• unittest.mock (replace parts of your system under test with mock objects)

• venv (Python virtual environments, as in the popular virtualenv package)

New built-in features:

• Reworked I/O exception hierarchy.

Implementation improvements:

• Rewritten import machinery based on importlib.

• More compact unicode strings.

• More compact attribute dictionaries.

Significantly Improved Library Modules:

• C Accelerator for the decimal module.

• Better unicode handling in the email module (provisional).

Security improvements:

• Hash randomization is switched on by default.

Please read on for a comprehensive list of user-facing changes.

2 PEP 405: Virtual Environments

Virtual environments help create separate Python setups while sharing a system-wide base install, for ease of main-
tenance. Virtual environments have their own set of private site packages (i.e. locally-installed libraries), and are
optionally segregated from the system-wide site packages. Their concept and implementation are inspired by the
popular virtualenv third-party package, but benefit from tighter integration with the interpreter core.

This PEP adds the venv module for programmatic access, and the pyvenv script for command-line access and ad-
ministration. The Python interpreter checks for a pyvenv.cfg, file whose existence signals the base of a virtual
environment’s directory tree.

See also:

PEP 405 - Python Virtual Environments PEP written by Carl Meyer; implementation by Carl Meyer and Vinay
Sajip

3 PEP 420: Implicit Namespace Packages

Native support for package directories that don’t require __init__.py marker files and can automatically span
multiple path segments (inspired by various third party approaches to namespace packages, as described in PEP 420)

See also:

http://www.python.org/dev/peps/pep-0405
http://www.python.org/dev/peps/pep-0420

PEP 420 - Implicit Namespace Packages PEP written by Eric V. Smith; implementation by Eric V. Smith and Barry
Warsaw

4 PEP 3118: New memoryview implementation and buffer protocol
documentation

The implementation of PEP 3118 has been significantly improved.

The new memoryview implementation comprehensively fixes all ownership and lifetime issues of dynamically allo-
cated fields in the Py_buffer struct that led to multiple crash reports. Additionally, several functions that crashed or
returned incorrect results for non-contiguous or multi-dimensional input have been fixed.

The memoryview object now has a PEP-3118 compliant getbufferproc() that checks the consumer’s request type.
Many new features have been added, most of them work in full generality for non-contiguous arrays and arrays with
suboffsets.

The documentation has been updated, clearly spelling out responsibilities for both exporters and consumers. Buffer
request flags are grouped into basic and compound flags. The memory layout of non-contiguous and multi-dimensional
NumPy-style arrays is explained.

4.1 Features

• All native single character format specifiers in struct module syntax (optionally prefixed with ‘@’) are now
supported.

• With some restrictions, the cast() method allows changing of format and shape of C-contiguous arrays.

• Multi-dimensional list representations are supported for any array type.

• Multi-dimensional comparisons are supported for any array type.

• One-dimensional memoryviews of hashable (read-only) types with formats B, b or c are now hashable. (Con-
tributed by Antoine Pitrou in issue 13411)

• Arbitrary slicing of any 1-D arrays type is supported. For example, it is now possible to reverse a memoryview
in O(1) by using a negative step.

4.2 API changes

• The maximum number of dimensions is officially limited to 64.

• The representation of empty shape, strides and suboffsets is now an empty tuple instead of None.

• Accessing a memoryview element with format ‘B’ (unsigned bytes) now returns an integer (in accordance with
the struct module syntax). For returning a bytes object the view must be cast to ‘c’ first.

• memoryview comparisons now use the logical structure of the operands and compare all array elements by
value. All format strings in struct module syntax are supported. Views with unrecognised format strings are still
permitted, but will always compare as unequal, regardless of view contents.

• For further changes see Build and C API Changes and Porting C code.

(Contributed by Stefan Krah in issue 10181)

See also:

PEP 3118 - Revising the Buffer Protocol

http://www.python.org/dev/peps/pep-0420
http://www.python.org/dev/peps/pep-3118
http://bugs.python.org/issue13411
http://bugs.python.org/issue10181
http://www.python.org/dev/peps/pep-3118

5 PEP 393: Flexible String Representation

The Unicode string type is changed to support multiple internal representations, depending on the character with the
largest Unicode ordinal (1, 2, or 4 bytes) in the represented string. This allows a space-efficient representation in com-
mon cases, but gives access to full UCS-4 on all systems. For compatibility with existing APIs, several representations
may exist in parallel; over time, this compatibility should be phased out.

On the Python side, there should be no downside to this change.

On the C API side, PEP 393 is fully backward compatible. The legacy API should remain available at least five
years. Applications using the legacy API will not fully benefit of the memory reduction, or - worse - may use a bit
more memory, because Python may have to maintain two versions of each string (in the legacy format and in the new
efficient storage).

5.1 Functionality

Changes introduced by PEP 393 are the following:

• Python now always supports the full range of Unicode codepoints, including non-BMP ones (i.e. from U+0000
to U+10FFFF). The distinction between narrow and wide builds no longer exists and Python now behaves like
a wide build, even under Windows.

• With the death of narrow builds, the problems specific to narrow builds have also been fixed, for example:

– len() now always returns 1 for non-BMP characters, so len(’\U0010FFFF’) == 1;

– surrogate pairs are not recombined in string literals, so ’\uDBFF\uDFFF’ != ’\U0010FFFF’;

– indexing or slicing non-BMP characters returns the expected value, so ’\U0010FFFF’[0] now returns
’\U0010FFFF’ and not ’\uDBFF’;

– all other functions in the standard library now correctly handle non-BMP codepoints.

• The value of sys.maxunicode is now always 1114111 (0x10FFFF in hexadecimal). The
PyUnicode_GetMax() function still returns either 0xFFFF or 0x10FFFF for backward compatibility, and
it should not be used with the new Unicode API (see issue 13054).

• The ./configure flag --with-wide-unicode has been removed.

5.2 Performance and resource usage

The storage of Unicode strings now depends on the highest codepoint in the string:

• pure ASCII and Latin1 strings (U+0000-U+00FF) use 1 byte per codepoint;

• BMP strings (U+0000-U+FFFF) use 2 bytes per codepoint;

• non-BMP strings (U+10000-U+10FFFF) use 4 bytes per codepoint.

The net effect is that for most applications, memory usage of string storage should decrease significantly - especially
compared to former wide unicode builds - as, in many cases, strings will be pure ASCII even in international contexts
(because many strings store non-human language data, such as XML fragments, HTTP headers, JSON-encoded data,
etc.). We also hope that it will, for the same reasons, increase CPU cache efficiency on non-trivial applications. The
memory usage of Python 3.3 is two to three times smaller than Python 3.2, and a little bit better than Python 2.7, on a
Django benchmark (see the PEP for details).

See also:

PEP 393 - Flexible String Representation PEP written by Martin von Löwis; implementation by Torsten Becker
and Martin von Löwis.

http://www.python.org/dev/peps/pep-0393
http://bugs.python.org/issue13054
http://www.python.org/dev/peps/pep-0393

6 PEP 397: Python Launcher for Windows

The Python 3.3 Windows installer now includes a py launcher application that can be used to launch Python applica-
tions in a version independent fashion.

This launcher is invoked implicitly when double-clicking *.py files. If only a single Python version is installed on
the system, that version will be used to run the file. If multiple versions are installed, the most recent version is used
by default, but this can be overridden by including a Unix-style “shebang line” in the Python script.

The launcher can also be used explicitly from the command line as the py application. Running py follows the
same version selection rules as implicitly launching scripts, but a more specific version can be selected by passing
appropriate arguments (such as -3 to request Python 3 when Python 2 is also installed, or -2.6 to specifclly request
an earlier Python version when a more recent version is installed).

In addition to the launcher, the Windows installer now includes an option to add the newly installed Python to the
system PATH (contributed by Brian Curtin in issue 3561).

See also:

PEP 397 - Python Launcher for Windows PEP written by Mark Hammond and Martin v. Löwis; implementation
by Vinay Sajip.

Launcher documentation: launcher

Installer PATH modification: windows-path-mod

7 PEP 3151: Reworking the OS and IO exception hierarchy

The hierarchy of exceptions raised by operating system errors is now both simplified and finer-grained.

You don’t have to worry anymore about choosing the appropriate exception type between OSError, IOError,
EnvironmentError, WindowsError, mmap.error, socket.error or select.error. All these excep-
tion types are now only one: OSError. The other names are kept as aliases for compatibility reasons.

Also, it is now easier to catch a specific error condition. Instead of inspecting the errno attribute (or args[0]) for a
particular constant from the errno module, you can catch the adequate OSError subclass. The available subclasses
are the following:

• BlockingIOError

• ChildProcessError

• ConnectionError

• FileExistsError

• FileNotFoundError

• InterruptedError

• IsADirectoryError

• NotADirectoryError

• PermissionError

• ProcessLookupError

• TimeoutError

And the ConnectionError itself has finer-grained subclasses:

• BrokenPipeError

http://bugs.python.org/issue3561
http://www.python.org/dev/peps/pep-0397

• ConnectionAbortedError

• ConnectionRefusedError

• ConnectionResetError

Thanks to the new exceptions, common usages of the errno can now be avoided. For example, the following code
written for Python 3.2:

from errno import ENOENT, EACCES, EPERM

try:
with open("document.txt") as f:

content = f.read()
except IOError as err:

if err.errno == ENOENT:
print("document.txt file is missing")

elif err.errno in (EACCES, EPERM):
print("You are not allowed to read document.txt")

else:
raise

can now be written without the errno import and without manual inspection of exception attributes:

try:
with open("document.txt") as f:

content = f.read()
except FileNotFoundError:

print("document.txt file is missing")
except PermissionError:

print("You are not allowed to read document.txt")

See also:

PEP 3151 - Reworking the OS and IO Exception Hierarchy PEP written and implemented by Antoine Pitrou

8 PEP 380: Syntax for Delegating to a Subgenerator

PEP 380 adds the yield from expression, allowing a generator to delegate part of its operations to another genera-
tor. This allows a section of code containing yield to be factored out and placed in another generator. Additionally,
the subgenerator is allowed to return with a value, and the value is made available to the delegating generator.

While designed primarily for use in delegating to a subgenerator, the yield from expression actually allows dele-
gation to arbitrary subiterators.

For simple iterators, yield from iterable is essentially just a shortened form of for item in
iterable: yield item:

>>> def g(x):
... yield from range(x, 0, -1)
... yield from range(x)
...
>>> list(g(5))
[5, 4, 3, 2, 1, 0, 1, 2, 3, 4]

However, unlike an ordinary loop, yield from allows subgenerators to receive sent and thrown values directly from
the calling scope, and return a final value to the outer generator:

http://www.python.org/dev/peps/pep-3151

>>> def accumulate():
... tally = 0
... while 1:
... next = yield
... if next is None:
... return tally
... tally += next
...
>>> def gather_tallies(tallies):
... while 1:
... tally = yield from accumulate()
... tallies.append(tally)
...
>>> tallies = []
>>> acc = gather_tallies(tallies)
>>> next(acc) # Ensure the accumulator is ready to accept values
>>> for i in range(4):
... acc.send(i)
...
>>> acc.send(None) # Finish the first tally
>>> for i in range(5):
... acc.send(i)
...
>>> acc.send(None) # Finish the second tally
>>> tallies
[6, 10]

The main principle driving this change is to allow even generators that are designed to be used with the send and
throw methods to be split into multiple subgenerators as easily as a single large function can be split into multiple
subfunctions.

See also:

PEP 380 - Syntax for Delegating to a Subgenerator PEP written by Greg Ewing; implementation by Greg Ewing,
integrated into 3.3 by Renaud Blanch, Ryan Kelly and Nick Coghlan; documentation by Zbigniew Jędrzejewski-
Szmek and Nick Coghlan

9 PEP 409: Suppressing exception context

PEP 409 introduces new syntax that allows the display of the chained exception context to be disabled. This allows
cleaner error messages in applications that convert between exception types:

>>> class D:
... def __init__(self, extra):
... self._extra_attributes = extra
... def __getattr__(self, attr):
... try:
... return self._extra_attributes[attr]
... except KeyError:
... raise AttributeError(attr) from None
...
>>> D({}).x
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

http://www.python.org/dev/peps/pep-0380

File "<stdin>", line 8, in __getattr__
AttributeError: x

Without the from None suffix to suppress the cause, the original exception would be displayed by default:

>>> class C:
... def __init__(self, extra):
... self._extra_attributes = extra
... def __getattr__(self, attr):
... try:
... return self._extra_attributes[attr]
... except KeyError:
... raise AttributeError(attr)
...
>>> C({}).x
Traceback (most recent call last):

File "<stdin>", line 6, in __getattr__
KeyError: ’x’

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 8, in __getattr__

AttributeError: x

No debugging capability is lost, as the original exception context remains available if needed (for example, if an
intervening library has incorrectly suppressed valuable underlying details):

>>> try:
... D({}).x
... except AttributeError as exc:
... print(repr(exc.__context__))
...
KeyError(’x’,)

See also:

PEP 409 - Suppressing exception context PEP written by Ethan Furman; implemented by Ethan Furman and Nick
Coghlan.

10 PEP 414: Explicit Unicode literals

To ease the transition from Python 2 for Unicode aware Python applications that make heavy use of Unicode literals,
Python 3.3 once again supports the “u” prefix for string literals. This prefix has no semantic significance in Python 3,
it is provided solely to reduce the number of purely mechanical changes in migrating to Python 3, making it easier for
developers to focus on the more significant semantic changes (such as the stricter default separation of binary and text
data).

See also:

PEP 414 - Explicit Unicode literals PEP written by Armin Ronacher.

http://www.python.org/dev/peps/pep-0409
http://www.python.org/dev/peps/pep-0414

11 PEP 3155: Qualified name for classes and functions

Functions and class objects have a new __qualname__ attribute representing the “path” from the module top-level
to their definition. For global functions and classes, this is the same as __name__. For other functions and classes, it
provides better information about where they were actually defined, and how they might be accessible from the global
scope.

Example with (non-bound) methods:

>>> class C:
... def meth(self):
... pass
>>> C.meth.__name__
’meth’
>>> C.meth.__qualname__
’C.meth’

Example with nested classes:

>>> class C:
... class D:
... def meth(self):
... pass
...
>>> C.D.__name__
’D’
>>> C.D.__qualname__
’C.D’
>>> C.D.meth.__name__
’meth’
>>> C.D.meth.__qualname__
’C.D.meth’

Example with nested functions:

>>> def outer():
... def inner():
... pass
... return inner
...
>>> outer().__name__
’inner’
>>> outer().__qualname__
’outer.<locals>.inner’

The string representation of those objects is also changed to include the new, more precise information:

>>> str(C.D)
"<class ’__main__.C.D’>"
>>> str(C.D.meth)
’<function C.D.meth at 0x7f46b9fe31e0>’

See also:

PEP 3155 - Qualified name for classes and functions PEP written and implemented by Antoine Pitrou.

http://www.python.org/dev/peps/pep-3155

12 PEP 412: Key-Sharing Dictionary

Dictionaries used for the storage of objects’ attributes are now able to share part of their internal storage between each
other (namely, the part which stores the keys and their respective hashes). This reduces the memory consumption of
programs creating many instances of non-builtin types.

See also:

PEP 412 - Key-Sharing Dictionary PEP written and implemented by Mark Shannon.

13 PEP 362: Function Signature Object

A new function inspect.signature() makes introspection of python callables easy and straightforward. A
broad range of callables is supported: python functions, decorated or not, classes, and functools.partial()
objects. New classes inspect.Signature, inspect.Parameter and inspect.BoundArguments hold
information about the call signatures, such as, annotations, default values, parameters kinds, and bound arguments,
which considerably simplifies writing decorators and any code that validates or amends calling signatures or argu-
ments.

See also:

PEP 362: - Function Signature Object PEP written by Brett Cannon, Yury Selivanov, Larry Hastings, Jiwon Seo;
implemented by Yury Selivanov.

14 PEP 421: Adding sys.implementation

A new attribute on the sys module exposes details specific to the implementation of the currently running interpreter.
The initial set of attributes on sys.implementation are name, version, hexversion, and cache_tag.

The intention of sys.implementation is to consolidate into one namespace the implementation-specific data
used by the standard library. This allows different Python implementations to share a single standard library code base
much more easily. In its initial state, sys.implementation holds only a small portion of the implementation-
specific data. Over time that ratio will shift in order to make the standard library more portable.

One example of improved standard library portability is cache_tag. As of Python 3.3,
sys.implementation.cache_tag is used by importlib to support PEP 3147 compliance. Any
Python implementation that uses importlib for its built-in import system may use cache_tag to control the
caching behavior for modules.

14.1 SimpleNamespace

The implementation of sys.implementation also introduces a new type to Python:
types.SimpleNamespace. In contrast to a mapping-based namespace, like dict, SimpleNamespace
is attribute-based, like object. However, unlike object, SimpleNamespace instances are writable. This means
that you can add, remove, and modify the namespace through normal attribute access.

See also:

PEP 421 - Adding sys.implementation PEP written and implemented by Eric Snow.

http://www.python.org/dev/peps/pep-0412
http://www.python.org/dev/peps/pep-0362
http://www.python.org/dev/peps/pep-3147
http://www.python.org/dev/peps/pep-0421

15 Using importlib as the Implementation of Import

issue 2377 - Replace __import__ w/ importlib.__import__ issue 13959 - Re-implement parts of imp in pure Python
issue 14605 - Make import machinery explicit issue 14646 - Require loaders set __loader__ and __package__

The __import__() function is now powered by importlib.__import__(). This work leads to the com-
pletion of “phase 2” of PEP 302. There are multiple benefits to this change. First, it has allowed for more of the
machinery powering import to be exposed instead of being implicit and hidden within the C code. It also provides a
single implementation for all Python VMs supporting Python 3.3 to use, helping to end any VM-specific deviations in
import semantics. And finally it eases the maintenance of import, allowing for future growth to occur.

For the common user, there should be no visible change in semantics. For those whose code currently manipulates
import or calls import programmatically, the code changes that might possibly be required are covered in the Porting
Python code section of this document.

15.1 New APIs

One of the large benefits of this work is the exposure of what goes into making the import statement work. That means
the various importers that were once implicit are now fully exposed as part of the importlib package.

The abstract base classes defined in importlib.abc have been expanded to properly delineate be-
tween meta path finders and path entry finders by introducing importlib.abc.MetaPathFinder and
importlib.abc.PathEntryFinder, respectively. The old ABC of importlib.abc.Finder is now only
provided for backwards-compatibility and does not enforce any method requirements.

In terms of finders, importlib.machinery.FileFinder exposes the mechanism used to search for source and
bytecode files of a module. Previously this class was an implicit member of sys.path_hooks.

For loaders, the new abstract base class importlib.abc.FileLoader helps write a
loader that uses the file system as the storage mechanism for a module’s code. The
loader for source files (importlib.machinery.SourceFileLoader), sourceless byte-
code files (importlib.machinery.SourcelessFileLoader), and extension modules
(importlib.machinery.ExtensionFileLoader) are now available for direct use.

ImportError now has name and path attributes which are set when there is relevant data to provide. The message
for failed imports will also provide the full name of the module now instead of just the tail end of the module’s name.

The importlib.invalidate_caches() function will now call the method with the same name on all finders
cached in sys.path_importer_cache to help clean up any stored state as necessary.

15.2 Visible Changes

For potential required changes to code, see the Porting Python code section.

Beyond the expanse of what importlib now exposes, there are other visible changes to import. The biggest is
that sys.meta_path and sys.path_hooks now store all of the meta path finders and path entry hooks used by
import. Previously the finders were implicit and hidden within the C code of import instead of being directly exposed.
This means that one can now easily remove or change the order of the various finders to fit one’s needs.

Another change is that all modules have a __loader__ attribute, storing the loader used to create the module. PEP
302 has been updated to make this attribute mandatory for loaders to implement, so in the future once 3rd-party loaders
have been updated people will be able to rely on the existence of the attribute. Until such time, though, import is setting
the module post-load.

Loaders are also now expected to set the __package__ attribute from PEP 366. Once again, import itself is already
setting this on all loaders from importlib and import itself is setting the attribute post-load.

http://bugs.python.org/issue2377
http://bugs.python.org/issue13959
http://bugs.python.org/issue14605
http://bugs.python.org/issue14646
http://www.python.org/dev/peps/pep-0302
http://www.python.org/dev/peps/pep-0302
http://www.python.org/dev/peps/pep-0302
http://www.python.org/dev/peps/pep-0366

None is now inserted into sys.path_importer_cache when no finder can be found on sys.path_hooks.
Since imp.NullImporter is not directly exposed on sys.path_hooks it could no longer be relied upon to
always be available to use as a value representing no finder found.

All other changes relate to semantic changes which should be taken into consideration when updating code for Python
3.3, and thus should be read about in the Porting Python code section of this document.

(Implementation by Brett Cannon)

16 Other Language Changes

Some smaller changes made to the core Python language are:

• Added support for Unicode name aliases and named sequences. Both unicodedata.lookup() and
’\N{...}’ now resolve name aliases, and unicodedata.lookup() resolves named sequences too.

(Contributed by Ezio Melotti in issue 12753)

• Unicode database updated to UCD version 6.1.0

• Equality comparisons on range() objects now return a result reflecting the equality of the underlying se-
quences generated by those range objects. (issue 13201)

• The count(), find(), rfind(), index() and rindex() methods of bytes and bytearray objects
now accept an integer between 0 and 255 as their first argument.

(Contributed by Petri Lehtinen in issue 12170)

• The rjust(), ljust(), and center() methods of bytes and bytearray now accept a bytearray
for the fill argument. (Contributed by Petri Lehtinen in issue 12380.)

• New methods have been added to list and bytearray: copy() and clear() (issue 10516). Conse-
quently, MutableSequence now also defines a clear() method (issue 11388).

• Raw bytes literals can now be written rb"..." as well as br"...".

(Contributed by Antoine Pitrou in issue 13748.)

• dict.setdefault() now does only one lookup for the given key, making it atomic when used with built-in
types.

(Contributed by Filip Gruszczyński in issue 13521.)

• The error messages produced when a function call does not match the function signature have been significantly
improved.

(Contributed by Benjamin Peterson.)

17 A Finer-Grained Import Lock

Previous versions of CPython have always relied on a global import lock. This led to unexpected annoyances, such
as deadlocks when importing a module would trigger code execution in a different thread as a side-effect. Clumsy
workarounds were sometimes employed, such as the PyImport_ImportModuleNoBlock() C API function.

In Python 3.3, importing a module takes a per-module lock. This correctly serializes importation of a given module
from multiple threads (preventing the exposure of incompletely initialized modules), while eliminating the aforemen-
tioned annoyances.

(Contributed by Antoine Pitrou in issue 9260.)

http://bugs.python.org/issue12753
http://bugs.python.org/issue13201
http://bugs.python.org/issue12170
http://bugs.python.org/issue12380
http://bugs.python.org/issue10516
http://bugs.python.org/issue11388
http://bugs.python.org/issue13748
http://bugs.python.org/issue13521
http://bugs.python.org/issue9260

18 Builtin functions and types

• open() gets a new opener parameter: the underlying file descriptor for the file object is then obtained by
calling opener with (file, flags). It can be used to use custom flags like os.O_CLOEXEC for example. The ’x’
mode was added: open for exclusive creation, failing if the file already exists.

• print(): added the flush keyword argument. If the flush keyword argument is true, the stream is forcibly
flushed.

• hash(): hash randomization is enabled by default, see object.__hash__() and PYTHONHASHSEED.

• The str type gets a new casefold() method: return a casefolded copy of the string, casefolded strings may
be used for caseless matching. For example, ’ß’.casefold() returns ’ss’.

• The sequence documentation has been substantially rewritten to better explain the binary/text sequence distinc-
tion and to provide specific documentation sections for the individual builtin sequence types (issue 4966)

19 New Modules

19.1 faulthandler

This new debug module faulthandler contains functions to dump Python tracebacks explicitly, on a fault (a
crash like a segmentation fault), after a timeout, or on a user signal. Call faulthandler.enable() to install
fault handlers for the SIGSEGV, SIGFPE, SIGABRT, SIGBUS, and SIGILL signals. You can also enable them at
startup by setting the PYTHONFAULTHANDLER environment variable or by using -X faulthandler command
line option.

Example of a segmentation fault on Linux:

$ python -q -X faulthandler
>>> import ctypes
>>> ctypes.string_at(0)
Fatal Python error: Segmentation fault

Current thread 0x00007fb899f39700:
File "/home/python/cpython/Lib/ctypes/__init__.py", line 486 in string_at
File "<stdin>", line 1 in <module>

Segmentation fault

19.2 ipaddress

The new ipaddress module provides tools for creating and manipulating objects representing IPv4 and IPv6 ad-
dresses, networks and interfaces (i.e. an IP address associated with a specific IP subnet).

(Contributed by Google and Peter Moody in PEP 3144)

19.3 lzma

The newly-added lzma module provides data compression and decompression using the LZMA algorithm, including
support for the .xz and .lzma file formats.

(Contributed by Nadeem Vawda and Per Øyvind Karlsen in issue 6715)

http://bugs.python.org/issue4966
http://www.python.org/dev/peps/pep-3144
http://bugs.python.org/issue6715

20 Improved Modules

20.1 abc

Improved support for abstract base classes containing descriptors composed with abstract methods. The recommended
approach to declaring abstract descriptors is now to provide __isabstractmethod__ as a dynamically updated
property. The built-in descriptors have been updated accordingly.

• abc.abstractproperty has been deprecated, use propertywith abc.abstractmethod() instead.

• abc.abstractclassmethod has been deprecated, use classmethod with
abc.abstractmethod() instead.

• abc.abstractstaticmethod has been deprecated, use staticmethod with
abc.abstractmethod() instead.

(Contributed by Darren Dale in issue 11610)

abc.ABCMeta.register() now returns the registered subclass, which means it can now be used as a class
decorator (issue 10868).

20.2 array

The array module supports the long long type using q and Q type codes.

(Contributed by Oren Tirosh and Hirokazu Yamamoto in issue 1172711)

20.3 base64

ASCII-only Unicode strings are now accepted by the decoding functions of the base64 modern interface. For
example, base64.b64decode(’YWJj’) returns b’abc’. (Contributed by Catalin Iacob in issue 13641.)

20.4 binascii

In addition to the binary objects they normally accept, the a2b_ functions now all also accept ASCII-only strings as
input. (Contributed by Antoine Pitrou in issue 13637.)

20.5 bz2

The bz2 module has been rewritten from scratch. In the process, several new features have been added:

• New bz2.open() function: open a bzip2-compressed file in binary or text mode.

• bz2.BZ2File can now read from and write to arbitrary file-like objects, by means of its constructor’s fileobj
argument.

(Contributed by Nadeem Vawda in issue 5863)

• bz2.BZ2File and bz2.decompress() can now decompress multi-stream inputs (such as those produced
by the pbzip2 tool). bz2.BZ2File can now also be used to create this type of file, using the ’a’ (append)
mode.

(Contributed by Nir Aides in issue 1625)

• bz2.BZ2File now implements all of the io.BufferedIOBase API, except for the detach() and
truncate() methods.

http://bugs.python.org/issue11610
http://bugs.python.org/issue10868
http://bugs.python.org/issue1172711
http://bugs.python.org/issue13641
http://bugs.python.org/issue13637
http://bugs.python.org/issue5863
http://bugs.python.org/issue1625

20.6 codecs

The mbcs codec has been rewritten to handle correctly replace and ignore error handlers on all Windows ver-
sions. The mbcs codec now supports all error handlers, instead of only replace to encode and ignore to decode.

A new Windows-only codec has been added: cp65001 (issue 13216). It is the Windows code page 65001 (Windows
UTF-8, CP_UTF8). For example, it is used by sys.stdout if the console output code page is set to cp65001 (e.g.,
using chcp 65001 command).

Multibyte CJK decoders now resynchronize faster. They only ignore the first byte of an invalid byte sequence. For
example, b’\xff\n’.decode(’gb2312’, ’replace’) now returns a \n after the replacement character.

(issue 12016)

Incremental CJK codec encoders are no longer reset at each call to their encode() methods. For example:

$./python -q
>>> import codecs
>>> encoder = codecs.getincrementalencoder(’hz’)(’strict’)
>>> b’’.join(encoder.encode(x) for x in ’\u52ff\u65bd\u65bc\u4eba\u3002 Bye.’)
b’~{NpJ)l6HK!#~} Bye.’

This example gives b’~{Np~}~{J)~}~{l6~}~{HK~}~{!#~} Bye.’ with older Python versions.

(issue 12100)

The unicode_internal codec has been deprecated.

20.7 collections

Addition of a new ChainMap class to allow treating a number of mappings as a single unit. (Written by Raymond
Hettinger for issue 11089, made public in issue 11297)

The abstract base classes have been moved in a new collections.abc module, to better differentiate between
the abstract and the concrete collections classes. Aliases for ABCs are still present in the collections module to
preserve existing imports. (issue 11085)

The Counter class now supports the unary + and - operators, as well as the in-place operators +=, -=, |=, and &=.
(Contributed by Raymond Hettinger in issue 13121.)

20.8 contextlib

ExitStack now provides a solid foundation for programmatic manipulation of context managers and similar cleanup
functionality. Unlike the previous contextlib.nested API (which was deprecated and removed), the new API
is designed to work correctly regardless of whether context managers acquire their resources in their __init__
method (for example, file objects) or in their __enter__ method (for example, synchronisation objects from the
threading module).

(issue 13585)

20.9 crypt

Addition of salt and modular crypt format (hashing method) and the mksalt() function to the crypt module.

(issue 10924)

http://bugs.python.org/issue13216
http://bugs.python.org/issue12016
http://bugs.python.org/issue12100
http://bugs.python.org/issue11089
http://bugs.python.org/issue11297
http://bugs.python.org/issue11085
http://bugs.python.org/issue13121
http://bugs.python.org/issue13585
http://bugs.python.org/issue10924

20.10 curses

• If the curses module is linked to the ncursesw library, use Unicode functions when Unicode strings or char-
acters are passed (e.g. waddwstr()), and bytes functions otherwise (e.g. waddstr()).

• Use the locale encoding instead of utf-8 to encode Unicode strings.

• curses.window has a new curses.window.encoding attribute.

• The curses.window class has a new get_wch() method to get a wide character

• The curses module has a new unget_wch() function to push a wide character so the next get_wch()
will return it

(Contributed by Iñigo Serna in issue 6755)

20.11 datetime

• Equality comparisons between naive and aware datetime instances now return False instead of raising
TypeError (issue 15006).

• New datetime.datetime.timestamp() method: Return POSIX timestamp corresponding to the
datetime instance.

• The datetime.datetime.strftime() method supports formatting years older than 1000.

• The datetime.datetime.astimezone() method can now be called without arguments to convert date-
time instance to the system timezone.

20.12 decimal

issue 7652 - integrate fast native decimal arithmetic. C-module and libmpdec written by Stefan Krah.

The new C version of the decimal module integrates the high speed libmpdec library for arbitrary precision correctly-
rounded decimal floating point arithmetic. libmpdec conforms to IBM’s General Decimal Arithmetic Specification.

Performance gains range from 10x for database applications to 100x for numerically intensive applications. These
numbers are expected gains for standard precisions used in decimal floating point arithmetic. Since the precision
is user configurable, the exact figures may vary. For example, in integer bignum arithmetic the differences can be
significantly higher.

The following table is meant as an illustration. Benchmarks are available at
http://www.bytereef.org/mpdecimal/quickstart.html.

decimal.py _decimal speedup
pi 42.02s 0.345s 120x
telco 172.19s 5.68s 30x
psycopg 3.57s 0.29s 12x

Features

• The FloatOperation signal optionally enables stricter semantics for mixing floats and Decimals.

• If Python is compiled without threads, the C version automatically disables the expensive thread local context
machinery. In this case, the variable HAVE_THREADS is set to False.

http://bugs.python.org/issue6755
http://bugs.python.org/issue15006
http://bugs.python.org/issue7652
http://www.bytereef.org/mpdecimal/quickstart.html

API changes

• The C module has the following context limits, depending on the machine architecture:

32-bit 64-bit
MAX_PREC 425000000 999999999999999999
MAX_EMAX 425000000 999999999999999999
MIN_EMIN -425000000 -999999999999999999

• In the context templates (DefaultContext, BasicContext and ExtendedContext) the magnitude of
Emax and Emin has changed to 999999.

• The Decimal constructor in decimal.py does not observe the context limits and converts values with arbitrary
exponents or precision exactly. Since the C version has internal limits, the following scheme is used: If possible,
values are converted exactly, otherwise InvalidOperation is raised and the result is NaN. In the latter case
it is always possible to use create_decimal() in order to obtain a rounded or inexact value.

• The power function in decimal.py is always correctly-rounded. In the C version, it is defined in terms of the
correctly-rounded exp() and ln() functions, but the final result is only “almost always correctly rounded”.

• In the C version, the context dictionary containing the signals is a MutableMapping. For speed reasons,
flags and traps always refer to the same MutableMapping that the context was initialized with. If a new
signal dictionary is assigned, flags and traps are updated with the new values, but they do not reference the
RHS dictionary.

• Pickling a Context produces a different output in order to have a common interchange format for the Python
and C versions.

• The order of arguments in the Context constructor has been changed to match the order displayed by repr().

• The watchexp parameter in the quantize() method is deprecated.

20.13 email

Policy Framework

The email package now has a policy framework. A Policy is an object with several methods and properties that
control how the email package behaves. The primary policy for Python 3.3 is the Compat32 policy, which provides
backward compatibility with the email package in Python 3.2. A policy can be specified when an email message
is parsed by a parser, or when a Message object is created, or when an email is serialized using a generator.
Unless overridden, a policy passed to a parser is inherited by all the Message object and sub-objects created by
the parser. By default a generator will use the policy of the Message object it is serializing. The default policy
is compat32.

The minimum set of controls implemented by all policy objects are:

max_line_length The maximum length, excluding the linesep character(s), individual lines may
have when a Message is serialized. Defaults to 78.

linesep The character used to separate individual lines when a Message is serialized.
Defaults to \n.

cte_type 7bit or 8bit. 8bit applies only to a Bytes generator, and means that
non-ASCII may be used where allowed by the protocol (or where it exists in the
original input).

raise_on_defect Causes a parser to raise error when defects are encountered instead of adding
them to the Message object’s defects list.

A new policy instance, with new settings, is created using the clone() method of policy objects. clone takes any
of the above controls as keyword arguments. Any control not specified in the call retains its default value. Thus you
can create a policy that uses \r\n linesep characters like this:

mypolicy = compat32.clone(linesep=’\r\n’)

Policies can be used to make the generation of messages in the format needed by your application simpler. Instead of
having to remember to specify linesep=’\r\n’ in all the places you call a generator, you can specify it once,
when you set the policy used by the parser or the Message, whichever your program uses to create Message
objects. On the other hand, if you need to generate messages in multiple forms, you can still specify the parameters in
the appropriate generator call. Or you can have custom policy instances for your different cases, and pass those in
when you create the generator.

Provisional Policy with New Header API

While the policy framework is worthwhile all by itself, the main motivation for introducing it is to allow the creation
of new policies that implement new features for the email package in a way that maintains backward compatibility
for those who do not use the new policies. Because the new policies introduce a new API, we are releasing them in
Python 3.3 as a provisional policy. Backwards incompatible changes (up to and including removal of the code) may
occur if deemed necessary by the core developers.

The new policies are instances of EmailPolicy, and add the following additional controls:

refold_source Controls whether or not headers parsed by a parser are refolded by the
generator. It can be none, long, or all. The default is long, which means
that source headers with a line longer than max_line_length get refolded.
none means no line get refolded, and all means that all lines get refolded.

header_factory A callable that take a name and value and produces a custom header object.

The header_factory is the key to the new features provided by the new policies. When one of the new policies
is used, any header retrieved from a Message object is an object produced by the header_factory, and any time
you set a header on a Message it becomes an object produced by header_factory. All such header objects have
a name attribute equal to the header name. Address and Date headers have additional attributes that give you access
to the parsed data of the header. This means you can now do things like this:

>>> m = Message(policy=SMTP)
>>> m[’To’] = ’Éric <foo@example.com>’
>>> m[’to’]
’Éric <foo@example.com>’
>>> m[’to’].addresses
(Address(display_name=’Éric’, username=’foo’, domain=’example.com’),)
>>> m[’to’].addresses[0].username
’foo’
>>> m[’to’].addresses[0].display_name
’Éric’
>>> m[’Date’] = email.utils.localtime()
>>> m[’Date’].datetime
datetime.datetime(2012, 5, 25, 21, 39, 24, 465484, tzinfo=datetime.timezone(datetime.timedelta(-1, 72000), ’EDT’))
>>> m[’Date’]
’Fri, 25 May 2012 21:44:27 -0400’
>>> print(m)
To: =?utf-8?q?=C3=89ric?= <foo@example.com>
Date: Fri, 25 May 2012 21:44:27 -0400

You will note that the unicode display name is automatically encoded as utf-8 when the message is serialized, but
that when the header is accessed directly, you get the unicode version. This eliminates any need to deal with the
email.header decode_header() or make_header() functions.

You can also create addresses from parts:

>>> m[’cc’] = [Group(’pals’, [Address(’Bob’, ’bob’, ’example.com’),
... Address(’Sally’, ’sally’, ’example.com’)]),
... Address(’Bonzo’, addr_spec=’bonz@laugh.com’)]
>>> print(m)
To: =?utf-8?q?=C3=89ric?= <foo@example.com>
Date: Fri, 25 May 2012 21:44:27 -0400
cc: pals: Bob <bob@example.com>, Sally <sally@example.com>;, Bonzo <bonz@laugh.com>

Decoding to unicode is done automatically:

>>> m2 = message_from_string(str(m))
>>> m2[’to’]
’Éric <foo@example.com>’

When you parse a message, you can use the addresses and groups attributes of the header objects to access the
groups and individual addresses:

>>> m2[’cc’].addresses
(Address(display_name=’Bob’, username=’bob’, domain=’example.com’), Address(display_name=’Sally’, username=’sally’, domain=’example.com’), Address(display_name=’Bonzo’, username=’bonz’, domain=’laugh.com’))
>>> m2[’cc’].groups
(Group(display_name=’pals’, addresses=(Address(display_name=’Bob’, username=’bob’, domain=’example.com’), Address(display_name=’Sally’, username=’sally’, domain=’example.com’)), Group(display_name=None, addresses=(Address(display_name=’Bonzo’, username=’bonz’, domain=’laugh.com’),))

In summary, if you use one of the new policies, header manipulation works the way it ought to: your application
works with unicode strings, and the email package transparently encodes and decodes the unicode to and from the
RFC standard Content Transfer Encodings.

Other API Changes

New BytesHeaderParser, added to the parser module to complement HeaderParser and complete the
Bytes API.

New utility functions:

• format_datetime(): given a datetime, produce a string formatted for use in an email header.

• parsedate_to_datetime(): given a date string from an email header, convert it into an aware
datetime, or a naive datetime if the offset is -0000.

• localtime(): With no argument, returns the current local time as an aware datetime using the local
timezone. Given an aware datetime, converts it into an aware datetime using the local timezone.

20.14 ftplib

• ftplib.FTP now accepts a source_address keyword argument to specify the (host, port) to use
as the source address in the bind call when creating the outgoing socket. (Contributed by Giampaolo Rodolà in
issue 8594.)

• The FTP_TLS class now provides a new ccc() function to revert control channel back to plaintext. This can
be useful to take advantage of firewalls that know how to handle NAT with non-secure FTP without opening
fixed ports. (Contributed by Giampaolo Rodolà in issue 12139)

• Added ftplib.FTP.mlsd() method which provides a parsable directory listing format and deprecates
ftplib.FTP.nlst() and ftplib.FTP.dir(). (Contributed by Giampaolo Rodolà in issue 11072)

http://bugs.python.org/issue8594
http://bugs.python.org/issue12139
http://bugs.python.org/issue11072

20.15 functools

The functools.lru_cache() decorator now accepts a typed keyword argument (that defaults to False to
ensure that it caches values of different types that compare equal in separate cache slots. (Contributed by Raymond
Hettinger in issue 13227.)

20.16 gc

It is now possible to register callbacks invoked by the garbage collector before and after collection using the new
callbacks list.

20.17 hmac

A new compare_digest() function has been added to prevent side channel attacks on digests through timing
analysis. (Contributed by Nick Coghlan and Christian Heimes in issue 15061)

20.18 http

http.server.BaseHTTPRequestHandler now buffers the headers and writes them all at once when
end_headers() is called. A new method flush_headers() can be used to directly manage when the ac-
cumlated headers are sent. (Contributed by Andrew Schaaf in issue 3709.)

http.server now produces valid HTML 4.01 strict output. (Contributed by Ezio Melotti in issue 13295.)

http.client.HTTPResponse now has a readinto() method, which means it can be used as a
io.RawIOBase class. (Contributed by John Kuhn in issue 13464.)

20.19 html

html.parser.HTMLParser is now able to parse broken markup without raising errors, therefore the strict ar-
gument of the constructor and the HTMLParseError exception are now deprecated. The ability to parse broken
markup is the result of a number of bug fixes that are also available on the latest bug fix releases of Python 2.7/3.2.
(Contributed by Ezio Melotti in issue 15114, and issue 14538, issue 13993, issue 13960, issue 13358, issue 1745761,
issue 755670, issue 13357, issue 12629, issue 1200313, issue 670664, issue 13273, issue 12888, issue 7311)

A new html5 dictionary that maps HTML5 named character references to the equivalent Unicode character(s) (e.g.
html5[’gt;’] == ’>’) has been added to the html.entities module. The dictionary is now also used by
HTMLParser. (Contributed by Ezio Melotti in issue 11113 and issue 15156)

20.20 imaplib

The IMAP4_SSL constructor now accepts an SSLContext parameter to control parameters of the secure channel.

(Contributed by Sijin Joseph in issue 8808)

20.21 inspect

A new getclosurevars() function has been added. This function reports the current binding of all names refer-
enced from the function body and where those names were resolved, making it easier to verify correct internal state
when testing code that relies on stateful closures.

http://bugs.python.org/issue13227
http://bugs.python.org/issue15061
http://bugs.python.org/issue3709
http://bugs.python.org/issue13295
http://bugs.python.org/issue13464
http://bugs.python.org/issue15114
http://bugs.python.org/issue14538
http://bugs.python.org/issue13993
http://bugs.python.org/issue13960
http://bugs.python.org/issue13358
http://bugs.python.org/issue1745761
http://bugs.python.org/issue755670
http://bugs.python.org/issue13357
http://bugs.python.org/issue12629
http://bugs.python.org/issue1200313
http://bugs.python.org/issue670664
http://bugs.python.org/issue13273
http://bugs.python.org/issue12888
http://bugs.python.org/issue7311
http://bugs.python.org/issue11113
http://bugs.python.org/issue15156
http://bugs.python.org/issue8808

(Contributed by Meador Inge and Nick Coghlan in issue 13062)

A new getgeneratorlocals() function has been added. This function reports the current binding of local
variables in the generator’s stack frame, making it easier to verify correct internal state when testing generators.

(Contributed by Meador Inge in issue 15153)

20.22 io

The open() function has a new ’x’ mode that can be used to exclusively create a new file, and raise a
FileExistsError if the file already exists. It is based on the C11 ‘x’ mode to fopen().

(Contributed by David Townshend in issue 12760)

The constructor of the TextIOWrapper class has a new write_through optional argument. If write_through is True,
calls to write() are guaranteed not to be buffered: any data written on the TextIOWrapper object is immediately
handled to its underlying binary buffer.

20.23 itertools

accumulate() now takes an optional func argument for providing a user-supplied binary function.

20.24 logging

The basicConfig() function now supports an optional handlers argument taking an iterable of handlers to be
added to the root logger.

A class level attribute append_nul has been added to SysLogHandler to allow control of the appending of the
NUL (\000) byte to syslog records, since for some deamons it is required while for others it is passed through to the
log.

20.25 math

The math module has a new function, log2(), which returns the base-2 logarithm of x.

(Written by Mark Dickinson in issue 11888).

20.26 mmap

The read() method is now more compatible with other file-like objects: if the argument is omitted or specified as
None, it returns the bytes from the current file position to the end of the mapping. (Contributed by Petri Lehtinen in
issue 12021.)

20.27 multiprocessing

The new multiprocessing.connection.wait() function allows to poll multiple objects (such as connec-
tions, sockets and pipes) with a timeout. (Contributed by Richard Oudkerk in issue 12328.)

multiprocessing.Connection objects can now be transferred over multiprocessing connections. (Contributed
by Richard Oudkerk in issue 4892.)

multiprocessing.Process now accepts a daemon keyword argument to override the default behavior of in-
heriting the daemon flag from the parent process (issue 6064).

http://bugs.python.org/issue13062
http://bugs.python.org/issue15153
http://bugs.python.org/issue12760
http://bugs.python.org/issue11888
http://bugs.python.org/issue12021
http://bugs.python.org/issue12328
http://bugs.python.org/issue4892
http://bugs.python.org/issue6064

New attribute attribute multiprocessing.Process.sentinel allows a program to wait on multiple
Process objects at one time using the appropriate OS primitives (for example, select on posix systems).

New methods multiprocessing.pool.Pool.starmap() and starmap_async() provide
itertools.starmap() equivalents to the existing multiprocessing.pool.Pool.map() and
map_async() functions. (Contributed by Hynek Schlawack in issue 12708.)

20.28 nntplib

The nntplib.NNTP class now supports the context manager protocol to unconditionally consume socket.error
exceptions and to close the NNTP connection when done:

>>> from nntplib import NNTP
>>> with NNTP(’news.gmane.org’) as n:
... n.group(’gmane.comp.python.committers’)
...
(’211 1755 1 1755 gmane.comp.python.committers’, 1755, 1, 1755, ’gmane.comp.python.committers’)
>>>

(Contributed by Giampaolo Rodolà in issue 9795)

20.29 os

• The os module has a new pipe2() function that makes it possible to create a pipe with O_CLOEXEC or
O_NONBLOCK flags set atomically. This is especially useful to avoid race conditions in multi-threaded pro-
grams.

• The os module has a new sendfile() function which provides an efficent “zero-copy” way for copying data
from one file (or socket) descriptor to another. The phrase “zero-copy” refers to the fact that all of the copying of
data between the two descriptors is done entirely by the kernel, with no copying of data into userspace buffers.
sendfile() can be used to efficiently copy data from a file on disk to a network socket, e.g. for downloading
a file.

(Patch submitted by Ross Lagerwall and Giampaolo Rodolà in issue 10882.)

• To avoid race conditions like symlink attacks and issues with temporary files and directories, it is more reliable
(and also faster) to manipulate file descriptors instead of file names. Python 3.3 enhances existing functions and
introduces new functions to work on file descriptors (issue 4761, issue 10755 and issue 14626).

– The os module has a new fwalk() function similar to walk() except that it also yields file descriptors
referring to the directories visited. This is especially useful to avoid symlink races.

– The following functions get new optional dir_fd (paths relative to directory descriptors) and/or
follow_symlinks (not following symlinks): access(), chflags(), chmod(), chown(),
link(), lstat(), mkdir(), mkfifo(), mknod(), open(), readlink(), remove(),
rename(), replace(), rmdir(), stat(), symlink(), unlink(), utime(). Platform
support for using these parameters can be checked via the sets os.supports_dir_fd and
os.supports_follows_symlinks.

– The following functions now support a file descriptor for their path argument: chdir(), chmod(),
chown(), execve(), listdir(), pathconf(), exists(), stat(), statvfs(), utime().
Platform support for this can be checked via the os.supports_fd set.

• access() accepts an effective_ids keyword argument to turn on using the effective uid/gid
rather than the real uid/gid in the access check. Platform support for this can be checked via the
supports_effective_ids set.

http://bugs.python.org/issue12708
http://bugs.python.org/issue9795
http://bugs.python.org/issue10882
http://bugs.python.org/issue4761
http://bugs.python.org/issue10755
http://bugs.python.org/issue14626

• The os module has two new functions: getpriority() and setpriority(). They can be used to get
or set process niceness/priority in a fashion similar to os.nice() but extended to all processes instead of just
the current one.

(Patch submitted by Giampaolo Rodolà in issue 10784.)

• The new os.replace() function allows cross-platform renaming of a file with overwriting the destination.
With os.rename(), an existing destination file is overwritten under POSIX, but raises an error under Win-
dows. (Contributed by Antoine Pitrou in issue 8828.)

• The stat family of functions (stat(), fstat(), and lstat()) now support reading a file’s timestamps with
nanosecond precision. Symmetrically, utime() can now write file timestamps with nanosecond precision.
(Contributed by Larry Hastings in issue 14127.)

• The new os.get_terminal_size() function queries the size of the terminal attached to a file descrip-
tor. See also shutil.get_terminal_size(). (Contributed by Zbigniew Jędrzejewski-Szmek in issue
13609.)

• New functions to support Linux extended attributes (issue 12720): getxattr(), listxattr(),
removexattr(), setxattr().

• New interface to the scheduler. These functions control how a process is allocated
CPU time by the operating system. New functions: sched_get_priority_max(),
sched_get_priority_min(), sched_getaffinity(), sched_getparam(),
sched_getscheduler(), sched_rr_get_interval(), sched_setaffinity(),
sched_setparam(), sched_setscheduler(), sched_yield(),

• New functions to control the file system:

– posix_fadvise(): Announces an intention to access data in a specific pattern thus allowing the kernel
to make optimizations.

– posix_fallocate(): Ensures that enough disk space is allocated for a file.

– sync(): Force write of everything to disk.

• Additional new posix functions:

– lockf(): Apply, test or remove a POSIX lock on an open file descriptor.

– pread(): Read from a file descriptor at an offset, the file offset remains unchanged.

– pwrite(): Write to a file descriptor from an offset, leaving the file offset unchanged.

– readv(): Read from a file descriptor into a number of writable buffers.

– truncate(): Truncate the file corresponding to path, so that it is at most length bytes in size.

– waitid(): Wait for the completion of one or more child processes.

– writev(): Write the contents of buffers to a file descriptor, where buffers is an arbitrary sequence of
buffers.

– getgrouplist() (issue 9344): Return list of group ids that specified user belongs to.

• times() and uname(): Return type changed from a tuple to a tuple-like object with named attributes.

• Some platforms now support additional constants for the lseek() function, such as os.SEEK_HOLE and
os.SEEK_DATA.

• New constants RTLD_LAZY, RTLD_NOW, RTLD_GLOBAL, RTLD_LOCAL, RTLD_NODELETE,
RTLD_NOLOAD, and RTLD_DEEPBIND are available on platforms that support them. These are for
use with the sys.setdlopenflags() function, and supersede the similar constants defined in ctypes
and DLFCN. (Contributed by Victor Stinner in issue 13226.)

http://bugs.python.org/issue10784
http://bugs.python.org/issue8828
http://bugs.python.org/issue14127
http://bugs.python.org/issue13609
http://bugs.python.org/issue13609
http://bugs.python.org/issue12720
http://bugs.python.org/issue9344
http://bugs.python.org/issue13226

• os.symlink() now accepts (and ignores) the target_is_directory keyword argument on non-
Windows platforms, to ease cross-platform support.

20.30 pdb

Tab-completion is now available not only for command names, but also their arguments. For example, for the break
command, function and file names are completed.

(Contributed by Georg Brandl in issue 14210)

20.31 pickle

pickle.Pickler objects now have an optional dispatch_table attribute allowing to set per-pickler reduction
functions.

(Contributed by Richard Oudkerk in issue 14166.)

20.32 pydoc

The Tk GUI and the serve() function have been removed from the pydoc module: pydoc -g and serve()
have been deprecated in Python 3.2.

20.33 re

str regular expressions now support \u and \U escapes.

(Contributed by Serhiy Storchaka in issue 3665.)

20.34 sched

• run() now accepts a blocking parameter which when set to False makes the method execute the scheduled
events due to expire soonest (if any) and then return immediately. This is useful in case you want to use the
scheduler in non-blocking applications. (Contributed by Giampaolo Rodolà in issue 13449)

• scheduler class can now be safely used in multi-threaded environments. (Contributed by Josiah Carlson and
Giampaolo Rodolà in issue 8684)

• timefunc and delayfunct parameters of scheduler class constructor are now optional and defaults to
time.time() and time.sleep() respectively. (Contributed by Chris Clark in issue 13245)

• enter() and enterabs() argument parameter is now optional. (Contributed by Chris Clark in issue 13245)

• enter() and enterabs() now accept a kwargs parameter. (Contributed by Chris Clark in issue 13245)

20.35 select

Solaris and derivatives platforms have a new class select.devpoll for high performance asynchronous sockets
via /dev/poll. (Contributed by Jesús Cea Avión in issue 6397.)

http://bugs.python.org/issue14210
http://bugs.python.org/issue14166
http://bugs.python.org/issue3665
http://bugs.python.org/issue13449
http://bugs.python.org/issue8684
http://bugs.python.org/issue13245
http://bugs.python.org/issue13245
http://bugs.python.org/issue13245
http://bugs.python.org/issue6397

20.36 shlex

The previously undocumented helper function quote from the pipes modules has been moved to the shlex mod-
ule and documented. quote() properly escapes all characters in a string that might be otherwise given special
meaning by the shell.

20.37 shutil

• New functions:

– disk_usage(): provides total, used and free disk space statistics. (Contributed by Giampaolo Rodolà
in issue 12442)

– chown(): allows one to change user and/or group of the given path also specifying the user/group names
and not only their numeric ids. (Contributed by Sandro Tosi in issue 12191)

– shutil.get_terminal_size(): returns the size of the terminal window to which the interpreter is
attached. (Contributed by Zbigniew Jędrzejewski-Szmek in issue 13609.)

• copy2() and copystat() now preserve file timestamps with nanosecond precision on platforms that sup-
port it. They also preserve file “extended attributes” on Linux. (Contributed by Larry Hastings in issue 14127
and issue 15238.)

• Several functions now take an optional symlinks argument: when that parameter is true, symlinks aren’t
dereferenced and the operation instead acts on the symlink itself (or creates one, if relevant). (Contributed by
Hynek Schlawack in issue 12715.)

• When copying files to a different file system, move() now handles symlinks the way the posix mv command
does, recreating the symlink rather than copying the target file contents. (Contributed by Jonathan Niehof in
issue 9993.) move() now also returns the dst argument as its result.

• rmtree() is now resistant to symlink attacks on platforms which support the new dir_fd parameter in
os.open() and os.unlink(). (Contributed by Martin von Löwis and Hynek Schlawack in issue 4489.)

20.38 signal

• The signal module has new functions:

– pthread_sigmask(): fetch and/or change the signal mask of the calling thread (Contributed by Jean-
Paul Calderone in issue 8407);

– pthread_kill(): send a signal to a thread;

– sigpending(): examine pending functions;

– sigwait(): wait a signal;

– sigwaitinfo(): wait for a signal, returning detailed information about it;

– sigtimedwait(): like sigwaitinfo() but with a timeout.

• The signal handler writes the signal number as a single byte instead of a nul byte into the wakeup file descriptor.
So it is possible to wait more than one signal and know which signals were raised.

• signal.signal() and signal.siginterrupt() raise an OSError, instead of a RuntimeError: OSEr-
ror has an errno attribute.

http://bugs.python.org/issue12442
http://bugs.python.org/issue12191
http://bugs.python.org/issue13609
http://bugs.python.org/issue14127
http://bugs.python.org/issue15238
http://bugs.python.org/issue12715
http://bugs.python.org/issue9993
http://bugs.python.org/issue4489
http://bugs.python.org/issue8407

20.39 smtpd

The smtpd module now supports RFC 5321 (extended SMTP) and RFC 1870 (size extension). Per the standard,
these extensions are enabled if and only if the client initiates the session with an EHLO command.

(Initial ELHO support by Alberto Trevino. Size extension by Juhana Jauhiainen. Substantial additional work on the
patch contributed by Michele Orrù and Dan Boswell. issue 8739)

20.40 smtplib

The SMTP, SMTP_SSL, and LMTP classes now accept a source_address keyword argument to specify the
(host, port) to use as the source address in the bind call when creating the outgoing socket. (Contributed by
Paulo Scardine in issue 11281.)

SMTP now supports the context manager protocol, allowing an SMTP instance to be used in a with statement. (Con-
tributed by Giampaolo Rodolà in issue 11289.)

The SMTP_SSL constructor and the starttls() method now accept an SSLContext parameter to control parame-
ters of the secure channel. (Contributed by Kasun Herath in issue 8809)

20.41 socket

• The socket class now exposes additional methods to process ancillary data when supported by the underlying
platform:

– sendmsg()

– recvmsg()

– recvmsg_into()

(Contributed by David Watson in issue 6560, based on an earlier patch by Heiko Wundram)

• The socket class now supports the PF_CAN protocol family (http://en.wikipedia.org/wiki/Socketcan), on
Linux (http://lwn.net/Articles/253425).

(Contributed by Matthias Fuchs, updated by Tiago Gonçalves in issue 10141)

• The socket class now supports the PF_RDS protocol family (http://en.wikipedia.org/wiki/Reliable_Datagram_Sockets
and http://oss.oracle.com/projects/rds/).

• The socket class now supports the PF_SYSTEM protocol family on OS X. (Contributed by Michael Goder-
bauer in issue 13777.)

• New function sethostname() allows the hostname to be set on unix systems if the calling process has
sufficient privileges. (Contributed by Ross Lagerwall in issue 10866.)

20.42 socketserver

BaseServer now has an overridable method service_actions() that is called by the serve_forever()
method in the service loop. ForkingMixIn now uses this to clean up zombie child proceses. (Contributed by Justin
Warkentin in issue 11109.)

20.43 sqlite3

New sqlite3.Connection method set_trace_callback() can be used to capture a trace of all sql com-
mands processed by sqlite. (Contributed by Torsten Landschoff in issue 11688.)

http://tools.ietf.org/html/rfc5321.html
http://tools.ietf.org/html/rfc1870.html
http://bugs.python.org/issue8739
http://bugs.python.org/issue11281
http://bugs.python.org/issue11289
http://bugs.python.org/issue8809
http://bugs.python.org/issue6560
http://en.wikipedia.org/wiki/Socketcan
http://lwn.net/Articles/253425
http://bugs.python.org/issue10141
http://en.wikipedia.org/wiki/Reliable_Datagram_Sockets
http://oss.oracle.com/projects/rds/
http://bugs.python.org/issue13777
http://bugs.python.org/issue10866
http://bugs.python.org/issue11109
http://bugs.python.org/issue11688

20.44 ssl

• The ssl module has two new random generation functions:

– RAND_bytes(): generate cryptographically strong pseudo-random bytes.

– RAND_pseudo_bytes(): generate pseudo-random bytes.

(Contributed by Victor Stinner in issue 12049)

• The sslmodule now exposes a finer-grained exception hierarchy in order to make it easier to inspect the various
kinds of errors. (Contributed by Antoine Pitrou in issue 11183)

• load_cert_chain() now accepts a password argument to be used if the private key is encrypted. (Con-
tributed by Adam Simpkins in issue 12803)

• Diffie-Hellman key exchange, both regular and Elliptic Curve-based, is now supported through the
load_dh_params() and set_ecdh_curve() methods. (Contributed by Antoine Pitrou in issue 13626
and issue 13627)

• SSL sockets have a new get_channel_binding() method allowing the implementation of certain authen-
tication mechanisms such as SCRAM-SHA-1-PLUS. (Contributed by Jacek Konieczny in issue 12551)

• You can query the SSL compression algorithm used by an SSL socket, thanks to its new compression()
method. The new attribute OP_NO_COMPRESSION can be used to disable compression. (Contributed by
Antoine Pitrou in issue 13634)

• Support has been added for the Next Procotol Negotiation extension using the
ssl.SSLContext.set_npn_protocols() method. (Contributed by Colin Marc in issue 14204)

• SSL errors can now be introspected more easily thanks to library and reason attributes. (Contributed by
Antoine Pitrou in issue 14837)

• The get_server_certificate() function now supports IPv6. (Contributed by Charles-François Natali
in issue 11811.)

• New attribute OP_CIPHER_SERVER_PREFERENCE allows setting SSLv3 server sockets to use the server’s
cipher ordering preference rather than the client’s (issue 13635).

20.45 stat

The undocumented tarfile.filemode function has been moved to stat.filemode(). It can be used to convert a
file’s mode to a string of the form ‘-rwxrwxrwx’.

(Contributed by Giampaolo Rodolà in issue 14807)

20.46 struct

The struct module now supports ssize_t and size_t via the new codes n and N, respectively. (Contributed by
Antoine Pitrou in issue 3163.)

20.47 subprocess

Command strings can now be bytes objects on posix platforms. (Contributed by Victor Stinner in issue 8513.)

A new constant DEVNULL allows suppressing output in a platform-independent fashion. (Contributed by Ross Lager-
wall in issue 5870.)

http://bugs.python.org/issue12049
http://bugs.python.org/issue11183
http://bugs.python.org/issue12803
http://bugs.python.org/issue13626
http://bugs.python.org/issue13627
http://bugs.python.org/issue12551
http://bugs.python.org/issue13634
http://bugs.python.org/issue14204
http://bugs.python.org/issue14837
http://bugs.python.org/issue11811
http://bugs.python.org/issue13635
http://bugs.python.org/issue14807
http://bugs.python.org/issue3163
http://bugs.python.org/issue8513
http://bugs.python.org/issue5870

20.48 sys

The sys module has a new thread_info struct sequence holding informations about the thread implementation
(issue 11223).

20.49 tarfile

tarfile now supports lzma encoding via the lzma module. (Contributed by Lars Gustäbel in issue 5689.)

20.50 tempfile

tempfile.SpooledTemporaryFile‘s truncate() method now accepts a size parameter. (Contributed by
Ryan Kelly in issue 9957.)

20.51 textwrap

The textwrap module has a new indent() that makes it straightforward to add a common prefix to selected lines
in a block of text (issue 13857).

20.52 threading

threading.Condition, threading.Semaphore, threading.BoundedSemaphore,
threading.Event, and threading.Timer, all of which used to be factory functions returning a class
instance, are now classes and may be subclassed. (Contributed by Éric Araujo in issue 10968).

The threading.Thread constructor now accepts a daemon keyword argument to override the default behavior
of inheriting the deamon flag value from the parent thread (issue 6064).

The formerly private function _thread.get_ident is now available as the public function
threading.get_ident(). This eliminates several cases of direct access to the _thread module in the
stdlib. Third party code that used _thread.get_ident should likewise be changed to use the new public
interface.

20.53 time

The PEP 418 added new functions to the time module:

• get_clock_info(): Get information on a clock.

• monotonic(): Monotonic clock (cannot go backward), not affected by system clock updates.

• perf_counter(): Performance counter with the highest available resolution to measure a short duration.

• process_time(): Sum of the system and user CPU time of the current process.

Other new functions:

• clock_getres(), clock_gettime() and clock_settime() functions with CLOCK_xxx constants.
(Contributed by Victor Stinner in issue 10278)

To improve cross platform consistency, sleep() now raises a ValueError when passed a negative sleep value.
Previously this was an error on posix, but produced an infinite sleep on Windows.

http://bugs.python.org/issue11223
http://bugs.python.org/issue5689
http://bugs.python.org/issue9957
http://bugs.python.org/issue13857
http://bugs.python.org/issue10968
http://bugs.python.org/issue6064
http://www.python.org/dev/peps/pep-0418
http://bugs.python.org/issue10278

20.54 types

Add a new types.MappingProxyType class: Read-only proxy of a mapping. (issue 14386)

The new functions types.new_class and types.prepare_class provide support for PEP 3115 compliant dynamic type
creation. (issue 14588)

20.55 unittest

assertRaises(), assertRaisesRegex(), assertWarns(), and assertWarnsRegex() now accept a
keyword argument msg when used as context managers. (Contributed by Ezio Melotti and Winston Ewert in issue
10775)

unittest.TestCase.run() now returns the TestResult object.

20.56 urllib

The Request class, now accepts a method argument used by get_method() to determine what HTTP method
should be used. For example, this will send a ’HEAD’ request:

>>> urlopen(Request(’http://www.python.org’, method=’HEAD’))

(issue 1673007)

20.57 webbrowser

The webbrowser module supports more “browsers”: Google Chrome (named chrome, chromium, chrome-
browser or chromium-browser depending on the version and operating system), and the generic launchers xdg-
open, from the FreeDesktop.org project, and gvfs-open, which is the default URI handler for GNOME 3. (The former
contributed by Arnaud Calmettes in issue 13620, the latter by Matthias Klose in issue 14493)

20.58 xml.etree.ElementTree

The xml.etree.ElementTree module now imports its C accelerator by default; there is no longer a need to
explicitly import xml.etree.cElementTree (this module stays for backwards compatibility, but is now depre-
cated). In addition, the iter family of methods of Element has been optimized (rewritten in C). The module’s
documentation has also been greatly improved with added examples and a more detailed reference.

20.59 zlib

New attribute zlib.Decompress.eof makes it possible to distinguish between a properly-formed compressed
stream and an incomplete or truncated one. (Contributed by Nadeem Vawda in issue 12646.)

New attribute zlib.ZLIB_RUNTIME_VERSION reports the version string of the underlying zlib library that is
loaded at runtime. (Contributed by Torsten Landschoff in issue 12306.)

21 Optimizations

Major performance enhancements have been added:

• Thanks to PEP 393, some operations on Unicode strings have been optimized:

http://bugs.python.org/issue14386
http://bugs.python.org/issue14588
http://bugs.python.org/issue10775
http://bugs.python.org/issue10775
http://bugs.python.org/issue1673007
http://bugs.python.org/issue13620
http://bugs.python.org/issue14493
http://bugs.python.org/issue12646
http://bugs.python.org/issue12306
http://www.python.org/dev/peps/pep-0393

– the memory footprint is divided by 2 to 4 depending on the text

– encode an ASCII string to UTF-8 doesn’t need to encode characters anymore, the UTF-8 representation is
shared with the ASCII representation

– the UTF-8 encoder has been optimized

– repeating a single ASCII letter and getting a substring of a ASCII strings is 4 times faster

• UTF-8 is now 2x to 4x faster. UTF-16 encoding is now up to 10x faster.

(contributed by Serhiy Storchaka, issue 14624, issue 14738 and issue 15026.)

22 Build and C API Changes

Changes to Python’s build process and to the C API include:

• New PEP 3118 related function:

– PyMemoryView_FromMemory()

• PEP 393 added new Unicode types, macros and functions:

– High-level API:

* PyUnicode_CopyCharacters()

* PyUnicode_FindChar()

* PyUnicode_GetLength(), PyUnicode_GET_LENGTH

* PyUnicode_New()

* PyUnicode_Substring()

* PyUnicode_ReadChar(), PyUnicode_WriteChar()

– Low-level API:

* Py_UCS1, Py_UCS2, Py_UCS4 types

* PyASCIIObject and PyCompactUnicodeObject structures

* PyUnicode_READY

* PyUnicode_FromKindAndData()

* PyUnicode_AsUCS4(), PyUnicode_AsUCS4Copy()

* PyUnicode_DATA, PyUnicode_1BYTE_DATA, PyUnicode_2BYTE_DATA,
PyUnicode_4BYTE_DATA

* PyUnicode_KIND with PyUnicode_Kind enum: PyUnicode_WCHAR_KIND,
PyUnicode_1BYTE_KIND, PyUnicode_2BYTE_KIND, PyUnicode_4BYTE_KIND

* PyUnicode_READ, PyUnicode_READ_CHAR, PyUnicode_WRITE

* PyUnicode_MAX_CHAR_VALUE

• PyArg_ParseTuple now accepts a bytearray for the c format (issue 12380).

http://bugs.python.org/issue14624
http://bugs.python.org/issue14738
http://bugs.python.org/issue15026
http://www.python.org/dev/peps/pep-3118
http://www.python.org/dev/peps/pep-0393
http://bugs.python.org/issue12380

23 Deprecated

23.1 Unsupported Operating Systems

OS/2 and VMS are no longer supported due to the lack of a maintainer.

Windows 2000 and Windows platforms which set COMSPEC to command.com are no longer supported due to main-
tenance burden.

OSF support, which was deprecated in 3.2, has been completely removed.

23.2 Deprecated Python modules, functions and methods

• Passing a non-empty string to object.__format__() is deprecated, and will produce a TypeError in
Python 3.4 (issue 9856).

• The unicode_internal codec has been deprecated because of the PEP 393, use UTF-8, UTF-16
(utf-16-le or utf-16-be), or UTF-32 (utf-32-le or utf-32-be)

• ftplib.FTP.nlst() and ftplib.FTP.dir(): use ftplib.FTP.mlsd()

• platform.popen(): use the subprocess module. Check especially the subprocess-replacements section
(issue 11377).

• issue 13374: The Windows bytes API has been deprecated in the os module. Use Unicode filenames, instead
of bytes filenames, to not depend on the ANSI code page anymore and to support any filename.

• issue 13988: The xml.etree.cElementTree module is deprecated. The accelerator is used automatically
whenever available.

• The behaviour of time.clock() depends on the platform: use the new time.perf_counter() or
time.process_time() function instead, depending on your requirements, to have a well defined be-
haviour.

• The os.stat_float_times() function is deprecated.

• abc module:

– abc.abstractproperty has been deprecated, use property with abc.abstractmethod()
instead.

– abc.abstractclassmethod has been deprecated, use classmethod with
abc.abstractmethod() instead.

– abc.abstractstaticmethod has been deprecated, use staticmethod with
abc.abstractmethod() instead.

• importlib package:

– importlib.abc.SourceLoader.path_mtime() is now deprecated in favour of
importlib.abc.SourceLoader.path_stats() as bytecode files now store both the modifica-
tion time and size of the source file the bytecode file was compiled from.

23.3 Deprecated functions and types of the C API

The Py_UNICODE has been deprecated by PEP 393 and will be removed in Python 4. All functions using this type
are deprecated:

Unicode functions and methods using Py_UNICODE and Py_UNICODE* types:

http://bugs.python.org/issue9856
http://www.python.org/dev/peps/pep-0393
http://bugs.python.org/issue11377
http://bugs.python.org/issue13374
http://bugs.python.org/issue13988
http://www.python.org/dev/peps/pep-0393

• PyUnicode_FromUnicode: use PyUnicode_FromWideChar() or
PyUnicode_FromKindAndData()

• PyUnicode_AS_UNICODE, PyUnicode_AsUnicode(), PyUnicode_AsUnicodeAndSize(): use
PyUnicode_AsWideCharString()

• PyUnicode_AS_DATA: use PyUnicode_DATA with PyUnicode_READ and PyUnicode_WRITE

• PyUnicode_GET_SIZE, PyUnicode_GetSize(): use PyUnicode_GET_LENGTH or
PyUnicode_GetLength()

• PyUnicode_GET_DATA_SIZE: use PyUnicode_GET_LENGTH(str) * PyUnicode_KIND(str)
(only work on ready strings)

• PyUnicode_AsUnicodeCopy(): use PyUnicode_AsUCS4Copy() or
PyUnicode_AsWideCharString()

• PyUnicode_GetMax()

Functions and macros manipulating Py_UNICODE* strings:

• Py_UNICODE_strlen: use PyUnicode_GetLength() or PyUnicode_GET_LENGTH

• Py_UNICODE_strcat: use PyUnicode_CopyCharacters() or PyUnicode_FromFormat()

• Py_UNICODE_strcpy, Py_UNICODE_strncpy, Py_UNICODE_COPY: use
PyUnicode_CopyCharacters() or PyUnicode_Substring()

• Py_UNICODE_strcmp: use PyUnicode_Compare()

• Py_UNICODE_strncmp: use PyUnicode_Tailmatch()

• Py_UNICODE_strchr, Py_UNICODE_strrchr: use PyUnicode_FindChar()

• Py_UNICODE_FILL: use PyUnicode_Fill()

• Py_UNICODE_MATCH

Encoders:

• PyUnicode_Encode(): use PyUnicode_AsEncodedObject()

• PyUnicode_EncodeUTF7()

• PyUnicode_EncodeUTF8(): use PyUnicode_AsUTF8() or PyUnicode_AsUTF8String()

• PyUnicode_EncodeUTF32()

• PyUnicode_EncodeUTF16()

• PyUnicode_EncodeUnicodeEscape:() use PyUnicode_AsUnicodeEscapeString()

• PyUnicode_EncodeRawUnicodeEscape:() use PyUnicode_AsRawUnicodeEscapeString()

• PyUnicode_EncodeLatin1(): use PyUnicode_AsLatin1String()

• PyUnicode_EncodeASCII(): use PyUnicode_AsASCIIString()

• PyUnicode_EncodeCharmap()

• PyUnicode_TranslateCharmap()

• PyUnicode_EncodeMBCS(): use PyUnicode_AsMBCSString() or
PyUnicode_EncodeCodePage() (with CP_ACP code_page)

• PyUnicode_EncodeDecimal(), PyUnicode_TransformDecimalToASCII()

23.4 Deprecated features

The array module’s ’u’ format code is now deprecated and will be removed in Python 4 together with the rest of
the (Py_UNICODE) API.

24 Porting to Python 3.3

This section lists previously described changes and other bugfixes that may require changes to your code.

24.1 Porting Python code

• Hash randomization is enabled by default. Set the PYTHONHASHSEED environment variable to 0 to disable
hash randomization. See also the object.__hash__() method.

• issue 12326: On Linux, sys.platform doesn’t contain the major version anymore. It is now always ‘linux’,
instead of ‘linux2’ or ‘linux3’ depending on the Linux version used to build Python. Replace sys.platform ==
‘linux2’ with sys.platform.startswith(‘linux’), or directly sys.platform == ‘linux’ if you don’t need to support
older Python versions.

• issue 13847, issue 14180: time and datetime: OverflowError is now raised instead of ValueError
if a timestamp is out of range. OSError is now raised if C functions gmtime() or localtime() failed.

• The default finders used by import now utilize a cache of what is contained within a specific directory. If you cre-
ate a Python source file or sourceless bytecode file, make sure to call importlib.invalidate_caches()
to clear out the cache for the finders to notice the new file.

• ImportError now uses the full name of the module that was attemped to be imported. Doctests that check
ImportErrors’ message will need to be updated to use the full name of the module instead of just the tail of the
name.

• The index argument to __import__() now defaults to 0 instead of -1 and no longer support negative val-
ues. It was an oversight when PEP 328 was implemented that the default value remained -1. If you need
to continue to perform a relative import followed by an absolute import, then perform the relative import
using an index of 1, followed by another import using an index of 0. It is preferred, though, that you use
importlib.import_module() rather than call __import__() directly.

• __import__() no longer allows one to use an index value other than 0 for top-level modules. E.g.
__import__(’sys’, level=1) is now an error.

• Because sys.meta_path and sys.path_hooks now have finders on them by default, you will most likely
want to use list.insert() instead of list.append() to add to those lists.

• Because None is now inserted into sys.path_importer_cache, if you are clearing out entries in the
dictionary of paths that do not have a finder, you will need to remove keys paired with values of None and
imp.NullImporter to be backwards-compatible. This will lead to extra overhead on older versions of
Python that re-insert None into sys.path_importer_cache where it repesents the use of implicit finders,
but semantically it should not change anything.

• importlib.abc.Finder no longer specifies a find_module() abstract method that must be implemented. If
you were relying on subclasses to implement that method, make sure to check for the method’s existence first.
You will probably want to check for find_loader() first, though, in the case of working with path entry finders.

• pkgutil has been converted to use importlib internally. This eliminates many edge cases where the old
behaviour of the PEP 302 import emulation failed to match the behaviour of the real import system. The
import emulation itself is still present, but is now deprecated. The pkgutil.iter_importers() and

http://bugs.python.org/issue12326
http://bugs.python.org/issue13847
http://bugs.python.org/issue14180
http://www.python.org/dev/peps/pep-0328

pkgutil.walk_packages() functions special case the standard import hooks so they are still supported
even though they do not provide the non-standard iter_modules() method.

• A longstanding RFC-compliance bug (issue 1079) in the parsing done by
email.header.decode_header() has been fixed. Code that uses the standard idiom to convert
encoded headers into unicode (str(make_header(decode_header(h))) will see no change, but code
that looks at the individual tuples returned by decode_header will see that whitespace that precedes or follows
ASCII sections is now included in the ASCII section. Code that builds headers using make_header should
also continue to work without change, since make_header continues to add whitespace between ASCII and
non-ASCII sections if it is not already present in the input strings.

• email.utils.formataddr() now does the correct content transfer encoding when passed non-ASCII
display names. Any code that depended on the previous buggy behavior that preserved the non-ASCII unicode
in the formatted output string will need to be changed (issue 1690608).

• poplib.POP3.quit() may now raise protocol errors like all other poplib methods. Code that assumes
quit does not raise poplib.error_proto errors may need to be changed if errors on quit are encoun-
tered by a particular application (issue 11291).

• The strict argument to email.parser.Parser, deprecated since Python 2.4, has finally been removed.

• The deprecated method unittest.TestCase.assertSameElements has been removed.

• The deprecated variable time.accept2dyear has been removed.

• The deprecated Context._clamp attribute has been removed from the decimal module. It was previously
replaced by the public attribute clamp. (See issue 8540.)

• The undocumented internal helper class SSLFakeFile has been removed from smtplib, since its function-
ality has long been provided directly by socket.socket.makefile().

• Passing a negative value to time.sleep() on Windows now raises an error instead of sleeping forever. It has
always raised an error on posix.

• The ast.__version__ constant has been removed. If you need to make decisions affected by the AST
version, use sys.version_info to make the decision.

• Code that used to work around the fact that the threading module used factory functions by subclassing the
private classes will need to change to subclass the now-public classes.

• The undocumented debugging machinery in the threading module has been removed, simplifying the code. This
should have no effect on production code, but is mentioned here in case any application debug frameworks were
interacting with it (issue 13550).

24.2 Porting C code

• In the course of changes to the buffer API the undocumented smalltable member of the Py_buffer
structure has been removed and the layout of the PyMemoryViewObject has changed.

All extensions relying on the relevant parts in memoryobject.h or object.h must be rebuilt.

• Due to PEP 393, the Py_UNICODE type and all functions using this type are deprecated (but will stay available
for at least five years). If you were using low-level Unicode APIs to construct and access unicode objects and
you want to benefit of the memory footprint reduction provided by PEP 393, you have to convert your code to
the new Unicode API.

However, if you only have been using high-level functions such as PyUnicode_Concat(),
PyUnicode_Join() or PyUnicode_FromFormat(), your code will automatically take advantage of
the new unicode representations.

• PyImport_GetMagicNumber() now returns -1 upon failure.

http://bugs.python.org/issue1079
http://bugs.python.org/issue1690608
http://bugs.python.org/issue11291
http://bugs.python.org/issue8540
http://bugs.python.org/issue13550

• As a negative value for the level argument to __import__() is no longer valid, the same now
holds for PyImport_ImportModuleLevel(). This also means that the value of level used by
PyImport_ImportModuleEx() is now 0 instead of -1.

24.3 Building C extensions

• The range of possible file names for C extensions has been narrowed. Very rarely used spellings
have been suppressed: under POSIX, files named xxxmodule.so, xxxmodule.abi3.so and
xxxmodule.cpython-*.so are no longer recognized as implementing the xxx module. If you had been
generating such files, you have to switch to the other spellings (i.e., remove the module string from the file
names).

(implemented in issue 14040.)

24.4 Command Line Switch Changes

• The -Q command-line flag and related artifacts have been removed. Code checking sys.flags.division_warning
will need updating.

(issue 10998, contributed by Éric Araujo.)

• When python is started with -S, import site will no longer add site-specific paths to the module search
paths. In previous versions, it did.

(issue 11591, contributed by Carl Meyer with editions by Éric Araujo.)

http://bugs.python.org/issue14040
http://bugs.python.org/issue10998
http://bugs.python.org/issue11591

Index

E
environment variable

PYTHONFAULTHANDLER, 15
PYTHONHASHSEED, 15, 35

P
Python Enhancement Proposals

PEP 302, 13
PEP 3118, 5, 32
PEP 3144, 15
PEP 3147, 12
PEP 3151, 8
PEP 3155, 11
PEP 328, 35
PEP 362, 12
PEP 366, 13
PEP 380, 9
PEP 393, 6, 31–33
PEP 397, 7
PEP 398, 3
PEP 405, 4
PEP 409, 10
PEP 412, 12
PEP 414, 10
PEP 418, 30
PEP 420, 4
PEP 421, 12

PYTHONFAULTHANDLER, 15
PYTHONHASHSEED, 15, 35

R
RFC

RFC 1870, 28
RFC 5321, 28

Y
yield

yield from (in What’s New), 8

38

	Summary – Release highlights
	PEP 405: Virtual Environments
	PEP 420: Implicit Namespace Packages
	PEP 3118: New memoryview implementation and buffer protocol documentation
	Features
	API changes

	PEP 393: Flexible String Representation
	Functionality
	Performance and resource usage

	PEP 397: Python Launcher for Windows
	PEP 3151: Reworking the OS and IO exception hierarchy
	PEP 380: Syntax for Delegating to a Subgenerator
	PEP 409: Suppressing exception context
	PEP 414: Explicit Unicode literals
	PEP 3155: Qualified name for classes and functions
	PEP 412: Key-Sharing Dictionary
	PEP 362: Function Signature Object
	PEP 421: Adding sys.implementation
	SimpleNamespace

	Using importlib as the Implementation of Import
	New APIs
	Visible Changes

	Other Language Changes
	A Finer-Grained Import Lock
	Builtin functions and types
	New Modules
	faulthandler
	ipaddress
	lzma

	Improved Modules
	abc
	array
	base64
	binascii
	bz2
	codecs
	collections
	contextlib
	crypt
	curses
	datetime
	decimal
	Features
	API changes

	email
	Policy Framework
	Provisional Policy with New Header API
	Other API Changes

	ftplib
	functools
	gc
	hmac
	http
	html
	imaplib
	inspect
	io
	itertools
	logging
	math
	mmap
	multiprocessing
	nntplib
	os
	pdb
	pickle
	pydoc
	re
	sched
	select
	shlex
	shutil
	signal
	smtpd
	smtplib
	socket
	socketserver
	sqlite3
	ssl
	stat
	struct
	subprocess
	sys
	tarfile
	tempfile
	textwrap
	threading
	time
	types
	unittest
	urllib
	webbrowser
	xml.etree.ElementTree
	zlib

	Optimizations
	Build and C API Changes
	Deprecated
	Unsupported Operating Systems
	Deprecated Python modules, functions and methods
	Deprecated functions and types of the C API
	Deprecated features

	Porting to Python 3.3
	Porting Python code
	Porting C code
	Building C extensions
	Command Line Switch Changes

	Index

