The Python/C API
Release 3.2.6

Guido van Rossum
Fred L. Drake, Jr., editor

October 12, 2014

Python Software Foundation
Email: docs@python.org

CONTENTS

Introduction 3
1.1 Include Files o L e e e 3
1.2 Objects, Types and Reference Counts o ittt 4
1.3 EXCEPHONS . . . o v i ottt e e e e e e e e e e e e e e e e e e e 7
1.4 Embedding Python e e e 9
1.5 Debugging Builds L e e 10
The Very High Level Layer 13
Reference Counting 17
Exception Handling 19
4.1 Exception Objects e e e 23
4.2 Unicode Exception Objects o i it e e 23
4.3 Recursion Control L e e e e e e e e e e e 24
4.4 Standard EXCeptions oL e e e e e e e e e e e e e 25
Utilities 27
5.1 Operating System UtIIIties o i i e e e e e e e e e e e e e e e e e 27
5.2 System Functions L e e e e e e e 27
53 ProcessControl e e e 28
54 Importing Moduleso e 29
5.5 Datamarshalling support e e 32
5.6 Parsing arguments and building values 33
5.7 String conversion and formatting L. L L e e e e e e e e e e 40
5.8 Reflection. L e 41
5.9 Codec registry and support functionso Lo L 42
Abstract Objects Layer 45
6.1 Object Protocol e e e e e e 45
6.2 Number Protocol e e 49
6.3 Sequence Protocol L 52
6.4 Mapping Protocol L e 54
6.5 Iterator Protocol L e e 54
6.6 Buffer Protocol e 55
6.7 Old Buffer Protocol e e e 59
Concrete Objects Layer 61
7.1 Fundamental Objects i e e e e e e e e e e 61
7.2 Numeric Objects o e e e e e e e e e 62

7.3 Sequence ObJECtS o v v v i e e e e e e e

7.4 Mapping ObJects v v i e e e e e e e e e e e e e e e e e
7.5 Other ObJects v v o v v e e e e e e e e e e e e e e e
8 [Initialization, Finalization, and Threads
8.1 Initializing and finalizing the interpreter e e e e e e
8.2 Process-wide parameterso e e e e e e e e e e e e e e
8.3 Thread State and the Global Interpreter Lock 0.
8.4 Sub-interpreter SUPPOIt v o o vt i e e e e e e e e e e e e e e e e
8.5 Asynchronous Notifications L e e
8.6 Profilingand Tracing L e e e e e e e e e e
8.7 Advanced Debugger Support. e e e e e e e e
9 Memory Management
0.1 OVEIVIEW . . . o o ittt e e e e e e e e e e e e
9.2 Memory Interface L e e e e e e e
0.3 Exampleso e
10 Object Implementation Support
10.1 Allocating Objectsonthe Heap
10.2 Common Object SIruCtures v v v v i it e e e e e e e e e e e e e e e e
103 Type Objects o vt i e e e e e e
10.4 Number Object StruCtures o o v v vt e e et e e e e e e e e
10.5 Mapping Object StruCtures v v v v v e e e e e e e e e e e e e e e e e
10.6 Sequence Object SIrUCIUIES v v v v v v v e e e e e e e e e e e e e e e e e e e
10.7 Buffer Object Structures e e e
10.8 Supporting Cyclic Garbage Collection oo
A Glossary
About these documents
B.1 Contributors to the Python Documentation e
C History and License
C.1 History of the software e
C.2 Terms and conditions for accessing or otherwise using Python
C.3 Licenses and Acknowledgements for Incorporated Software
D Copyright
Index

67
86
88

105
105
106
108
113
114
115
116

117
117
118
118

121
121
122
125
138
139
140
140
141

143

151
151

153
153
154
157

169

171

The Python/C API, Release 3.2.6

This manual documents the API used by C and C++ programmers who want to write extension modules or embed
Python. It is a companion to extending-index, which describes the general principles of extension writing but does not
document the API functions in detail.

CONTENTS 1

The Python/C API, Release 3.2.6

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

The Application Programmer’s Interface to Python gives C and C++ programmers access to the Python interpreter at
a variety of levels. The API is equally usable from C++, but for brevity it is generally referred to as the Python/C
API. There are two fundamentally different reasons for using the Python/C API. The first reason is to write extension
modules for specific purposes; these are C modules that extend the Python interpreter. This is probably the most
common use. The second reason is to use Python as a component in a larger application; this technique is generally
referred to as embedding Python in an application.

Writing an extension module is a relatively well-understood process, where a “cookbook” approach works well. There
are several tools that automate the process to some extent. While people have embedded Python in other applications
since its early existence, the process of embedding Python is less straightforward than writing an extension.

Many API functions are useful independent of whether you’re embedding or extending Python; moreover, most ap-
plications that embed Python will need to provide a custom extension as well, so it’s probably a good idea to become
familiar with writing an extension before attempting to embed Python in a real application.

1.1 Include Files

All function, type and macro definitions needed to use the Python/C API are included in your code by the following
line:

#include "Python.h"

This implies inclusion of the following standard headers: <stdio.h>, <string.h>, <errno.h>,
<limits.h>, <assert.h>and <stdlib.h> (if available).

Note: Since Python may define some pre-processor definitions which affect the standard headers on some systems,
you must include Python . h before any standard headers are included.

All user visible names defined by Python.h (except those defined by the included standard headers) have one of the
prefixes Py or _Py. Names beginning with _Py are for internal use by the Python implementation and should not be
used by extension writers. Structure member names do not have a reserved prefix.

Important: user code should never define names that begin with Py or _Py. This confuses the reader, and jeopardizes
the portability of the user code to future Python versions, which may define additional names beginning with one of
these prefixes.

The header files are typically installed with Python. On Unix, these are located in the directories
prefix/include/pythonversion/ and exec_prefix/include/pythonversion/, where prefix
and

The Python/C API, Release 3.2.6

exec_prefix are defined by the corresponding parameters to Python’s configure script and version is
sys.version[:3]. On Windows, the headers are installed in prefix/include, where prefix is the in-
stallation directory specified to the installer.

To include the headers, place both directories (if different) on your compiler’s search path for includes. Do not place
the parent directories on the search path and then use #include <pythonX.Y/Python.h>; this will break on
multi-platform builds since the platform independent headers under

prefix include the platform specific headers from
exec_prefix.

C++ users should note that though the API is defined entirely using C, the header files do properly declare the entry
points to be extern "C", so there is no need to do anything special to use the API from C++.

1.2 Objects, Types and Reference Counts

Most Python/C API functions have one or more arguments as well as a return value of type PyOb ject . This type is
a pointer to an opaque data type representing an arbitrary Python object. Since all Python object types are treated the
same way by the Python language in most situations (e.g., assignments, scope rules, and argument passing), it is only
fitting that they should be represented by a single C type. Almost all Python objects live on the heap: you never declare
an automatic or static variable of type PyOb ject, only pointer variables of type PyOb ject » can be declared. The
sole exception are the type objects; since these must never be deallocated, they are typically static PyTypeObject
objects.

All Python objects (even Python integers) have a type and a reference count. An object’s type determines what kind of
object it is (e.g., an integer, a list, or a user-defined function; there are many more as explained in fypes). For each of
the well-known types there is a macro to check whether an object is of that type; for instance, PyList_Check (a)
is true if (and only if) the object pointed to by a is a Python list.

1.2.1 Reference Counts

The reference count is important because today’s computers have a finite (and often severely limited) memory size; it
counts how many different places there are that have a reference to an object. Such a place could be another object, or
a global (or static) C variable, or a local variable in some C function. When an object’s reference count becomes zero,
the object is deallocated. If it contains references to other objects, their reference count is decremented. Those other
objects may be deallocated in turn, if this decrement makes their reference count become zero, and so on. (There’s an
obvious problem with objects that reference each other here; for now, the solution is “don’t do that.”)

Reference counts are always manipulated explicitly. The normal way is to use the macro Py_ INCREF () to increment
an object’s reference count by one, and Py_DECREF () to decrement it by one. The Py_DECREF () macro is
considerably more complex than the incref one, since it must check whether the reference count becomes zero and then
cause the object’s deallocator to be called. The deallocator is a function pointer contained in the object’s type structure.
The type-specific deallocator takes care of decrementing the reference counts for other objects contained in the object
if this is a compound object type, such as a list, as well as performing any additional finalization that’s needed. There’s
no chance that the reference count can overflow; at least as many bits are used to hold the reference count as there are
distinct memory locations in virtual memory (assuming sizeof (Py_ssize_t) >= sizeof (voidx)). Thus,
the reference count increment is a simple operation.

It is not necessary to increment an object’s reference count for every local variable that contains a pointer to an object.
In theory, the object’s reference count goes up by one when the variable is made to point to it and it goes down by
one when the variable goes out of scope. However, these two cancel each other out, so at the end the reference count
hasn’t changed. The only real reason to use the reference count is to prevent the object from being deallocated as long
as our variable is pointing to it. If we know that there is at least one other reference to the object that lives at least as
long as our variable, there is no need to increment the reference count temporarily. An important situation where this

4 Chapter 1. Introduction

The Python/C API, Release 3.2.6

arises is in objects that are passed as arguments to C functions in an extension module that are called from Python; the
call mechanism guarantees to hold a reference to every argument for the duration of the call.

However, a common pitfall is to extract an object from a list and hold on to it for a while without incrementing its
reference count. Some other operation might conceivably remove the object from the list, decrementing its reference
count and possible deallocating it. The real danger is that innocent-looking operations may invoke arbitrary Python
code which could do this; there is a code path which allows control to flow back to the user from a Py_DECREF (),
so almost any operation is potentially dangerous.

A safe approach is to always use the generic operations (functions whose name begins with PyObject_,
PyNumber_, PySequence_ or PyMapping_). These operations always increment the reference count of the
object they return. This leaves the caller with the responsibility to call Py_DECREF () when they are done with the
result; this soon becomes second nature.

Reference Count Details

The reference count behavior of functions in the Python/C API is best explained in terms of ownership of references.
Ownership pertains to references, never to objects (objects are not owned: they are always shared). “Owning a
reference” means being responsible for calling Py_DECREEF on it when the reference is no longer needed. Ownership
can also be transferred, meaning that the code that receives ownership of the reference then becomes responsible for
eventually decref’ing it by calling Py_ DECREF () or Py_XDECREF () when it’s no longer needed—or passing on
this responsibility (usually to its caller). When a function passes ownership of a reference on to its caller, the caller is
said to receive a new reference. When no ownership is transferred, the caller is said to borrow the reference. Nothing
needs to be done for a borrowed reference.

Conversely, when a calling function passes in a reference to an object, there are two possibilities: the function steals
a reference to the object, or it does not. Stealing a reference means that when you pass a reference to a function, that
function assumes that it now owns that reference, and you are not responsible for it any longer.

Few functions steal references; the two notable exceptions are PyList_SetItem() and PyTuple_SetItem(),
which steal a reference to the item (but not to the tuple or list into which the item is put!). These functions were
designed to steal a reference because of a common idiom for populating a tuple or list with newly created objects; for
example, the code to create the tuple (1, 2, "three") could look like this (forgetting about error handling for
the moment; a better way to code this is shown below):

PyObject =*t;

t = PyTuple_New
PyTuple_SetItem
PyTuple_SetItem
PyTuple_SetItem

3);

t, 0, PyLong_FromLong(1lL));

t, 1, PyLong_FromLong (2L));

t, 2, PyUnicode_FromString("three"));

—_— e~ o~ o~

Here, PyLong_FromLong () returns a new reference which is immediately stolen by PyTuple_SetItem().
When you want to keep using an object although the reference to it will be stolen, use Py_ INCREF () to grab another
reference before calling the reference-stealing function.

Incidentally, PyTuple_SetItem() is the only way to set tuple items; PySequence_SetItem() and
PyObject_SetItem() refuse to do this since tuples are an immutable data type. You should only use
PyTuple_SetItem () for tuples that you are creating yourself.

Equivalent code for populating a list can be written using PyList_New () and PyList_SetItem().

However, in practice, you will rarely use these ways of creating and populating a tuple or list. There’s a generic
function, Py_BuildValue (), that can create most common objects from C values, directed by a format string.
For example, the above two blocks of code could be replaced by the following (which also takes care of the error
checking):

1.2. Objects, Types and Reference Counts 5

The Python/C API, Release 3.2.6

PyObject *tuple, =list;

tuple = Py_Buildvalue (" (iis)", 1, 2, "three");
list = Py_Buildvalue("[iis]", 1, 2, "three");

It is much more common to use PyObject_SetItem () and friends with items whose references you are only
borrowing, like arguments that were passed in to the function you are writing. In that case, their behaviour regarding
reference counts is much saner, since you don’t have to increment a reference count so you can give a reference away
(“have it be stolen”). For example, this function sets all items of a list (actually, any mutable sequence) to a given item:
int

set_all (PyObject *target, PyObject *item)

{

Py_ssize_t i, nj;

n = PyObject_Length(target);

if (n < 0)
return -1;
for (1 = 0; i < n; i++) {

PyObject xindex = PyLong_FromSsize_t (1i);
if (!index)
return -1;
if (PyObject_SetItem(target, index, item) < 0) {
Py_DECREF (index) ;
return -1;
}
Py_DECREF (index) ;
}
return 0;

}

The situation is slightly different for function return values. While passing a reference to most functions does not
change your ownership responsibilities for that reference, many functions that return a reference to an object give you
ownership of the reference. The reason is simple: in many cases, the returned object is created on the fly, and the
reference you get is the only reference to the object. Therefore, the generic functions that return object references, like
PyObject_GetItem () and PySequence_GetItem (), always return a new reference (the caller becomes the
owner of the reference).

It is important to realize that whether you own a reference returned by a function depends on which function you call
only — the plumage (the type of the object passed as an argument to the function) doesn’t enter into it! Thus, if you
extract an item from a list using PyList_GetItem (), you don’t own the reference — but if you obtain the same
item from the same list using PySequence_GetItem () (which happens to take exactly the same arguments), you
do own a reference to the returned object.

Here is an example of how you could write a function that computes the sum of the items in a list of integers; once
using PyList_GetItem (), and once using PySequence_GetItem().

long

sum_list (PyObject =xlist)

{
Py_ssize_t i, n;
long total = 0, value;
PyObject xitem;

n = PyList_Size(list);
if (n < 0)
return -1; /+ Not a list =/

6 Chapter 1. Introduction

The Python/C API, Release 3.2.6

for (i = 0; 1 < n; i++) {
item = PyList_GetItem(list, 1); /» Can’t fail */
if (!PyLong_Check (item)) continue; /x Skip non-integers x/
value = PyLong_AsLong (item) ;
if (value == -1 && PyErr_Occurred())
/* Integer too big to fit in a C long, bail out #*/
return -1;
total += wvalue;
}
return total;

}

long
sum_sequence (PyObject xsequence)
{
Py_ssize_t i, n;
long total = 0, value;
PyObject xitem;
n = PySequence_Length (sequence);
if (n < 0)
return -1; /* Has no length =/

for (i = 0; 1 < n; i++) {
item = PySequence_GetItem(sequence, 1i);
if (item == NULL)

return -1; /% Not a sequence, or other failure #*/
if (PyLong_Check (item)) {
value = PyLong_AsLong(item);
Py_DECREF (item) ;
if (value == -1 && PyErr_Occurred())
/* Integer too big to fit in a C long, bail out */
return -1;
total += value;
}
else {
Py_DECREF (item); /x Discard reference ownership #*/

}

return total;

1.2.2 Types

There are few other data types that play a significant role in the Python/C API; most are simple C types such as int,
long, double and char*. A few structure types are used to describe static tables used to list the functions exported
by a module or the data attributes of a new object type, and another is used to describe the value of a complex number.
These will be discussed together with the functions that use them.

1.3 Exceptions

The Python programmer only needs to deal with exceptions if specific error handling is required; unhandled exceptions
are automatically propagated to the caller, then to the caller’s caller, and so on, until they reach the top-level interpreter,
where they are reported to the user accompanied by a stack traceback.

1.3. Exceptions 7

The Python/C API, Release 3.2.6

For C programmers, however, error checking always has to be explicit. All functions in the Python/C API can raise
exceptions, unless an explicit claim is made otherwise in a function’s documentation. In general, when a function
encounters an error, it sets an exception, discards any object references that it owns, and returns an error indicator.
If not documented otherwise, this indicator is either NULL or -1, depending on the function’s return type. A few
functions return a Boolean true/false result, with false indicating an error. Very few functions return no explicit error
indicator or have an ambiguous return value, and require explicit testing for errors with PyErr_Occurred (). These
exceptions are always explicitly documented.

Exception state is maintained in per-thread storage (this is equivalent to using global storage in an unthreaded appli-
cation). A thread can be in one of two states: an exception has occurred, or not. The function PyErr_Occurred ()
can be used to check for this: it returns a borrowed reference to the exception type object when an exception has
occurred, and NULL otherwise. There are a number of functions to set the exception state: PyErr_SetString ()
is the most common (though not the most general) function to set the exception state, and PyErr_Clear () clears
the exception state.

The full exception state consists of three objects (all of which can be NULL): the exception type, the corresponding
exception value, and the traceback. These have the same meanings as the Python result of sys.exc_info () ; how-
ever, they are not the same: the Python objects represent the last exception being handled by a Python try ... except
statement, while the C level exception state only exists while an exception is being passed on between C functions
until it reaches the Python bytecode interpreter’s main loop, which takes care of transferring it to sys.exc_info ()
and friends.

Note that starting with Python 1.5, the preferred, thread-safe way to access the exception state from Python code is
to call the function sys.exc_info (), which returns the per-thread exception state for Python code. Also, the
semantics of both ways to access the exception state have changed so that a function which catches an exception will
save and restore its thread’s exception state so as to preserve the exception state of its caller. This prevents common
bugs in exception handling code caused by an innocent-looking function overwriting the exception being handled; it
also reduces the often unwanted lifetime extension for objects that are referenced by the stack frames in the traceback.

As a general principle, a function that calls another function to perform some task should check whether the called
function raised an exception, and if so, pass the exception state on to its caller. It should discard any object references
that it owns, and return an error indicator, but it should not set another exception — that would overwrite the exception
that was just raised, and lose important information about the exact cause of the error.

A simple example of detecting exceptions and passing them on is shown in the sum_sequence () example above.
It so happens that this example doesn’t need to clean up any owned references when it detects an error. The following
example function shows some error cleanup. First, to remind you why you like Python, we show the equivalent Python
code:

def incr_item(dict, key):
try:
item = dict[key]
except KeyError:
item = 0
dict[key] = item + 1
Here is the corresponding C code, in all its glory:
int
incr_item(PyObject =xdict, PyObject xkey)
{
/+ Objects all initialized to NULL for Py XDECREF x/
PyObject xitem = NULL, =xconst_one = NULL, *incremented_item = NULL;
int rv = -1; /% Return value initialized to -1 (failure) =*/

item = PyObject_GetItem(dict, key);
if (item == NULL) {
/+ Handle KeyError only: */

8 Chapter 1. Introduction

The Python/C API, Release 3.2.6

if (!PyErr_ExceptionMatches (PyExc_KeyError))
goto error;

/% Clear the error and use zero: */
PyErr_Clear();
item = PyLong_FromLong (0L);
if (item == NULL)
goto error;
}
const_one = PylLong_FromLong (1lL);
if (const_one == NULL)
goto error;

incremented_item = PyNumber_Add(item, const_one);
if (incremented_item == NULL)
goto error;

if (PyObject_SetItem(dict, key, incremented_item) < 0)
goto error;

rv = 0; /+ Success #*/

/% Continue with cleanup code x/

error:
/% Cleanup code, shared by success and failure path #*/

/% Use Py XDECREF () to ignore NULL references #*/
Py_XDECREF (item) ;

Py_XDECREF (const_one) ;

Py_XDECREF (incremented_item) ;

return rv; /+ -1 for error, 0 for success #*/

}

This example represents an endorsed use of the goto statement in C! It illustrates the use of
PyErr_ExceptionMatches () and PyErr_Clear () to handle specific exceptions, and the use of
Py_XDECREF () to dispose of owned references that may be NULL (note the ' X’ in the name; Py_DECREF ()
would crash when confronted with a NULL reference). It is important that the variables used to hold owned references
are initialized to NULL for this to work; likewise, the proposed return value is initialized to —1 (failure) and only set
to success after the final call made is successful.

1.4 Embedding Python

The one important task that only embedders (as opposed to extension writers) of the Python interpreter have to worry
about is the initialization, and possibly the finalization, of the Python interpreter. Most functionality of the interpreter
can only be used after the interpreter has been initialized.

The basic initialization functionis Py_Initialize (). This initializes the table of loaded modules, and creates the
fundamental modules builtins, ___main__, and sys. It also initializes the module search path (sys.path).

Py_TInitialize () does not set the “script argument list” (sys.argv). If this variable is needed by Python
code that will be executed later, it must be set explicitly with a call to PySys_SetArgvEx (argc, argv,
updatepath) afterthecallto Py_Tnitialize ().

On most systems (in particular, on Unix and Windows, although the details are slightly different),

1.4. Embedding Python 9

The Python/C API, Release 3.2.6

Py_Initialize () calculates the module search path based upon its best guess for the location of the standard
Python interpreter executable, assuming that the Python library is found in a fixed location relative to the Python in-
terpreter executable. In particular, it looks for a directory named 1ib/pythonX.Y relative to the parent directory
where the executable named python is found on the shell command search path (the environment variable PATH).

For instance, if the Python executable is found in /usr/local/bin/python, it will assume that the libraries
are in /usr/local/lib/pythonX.Y. (In fact, this particular path is also the “fallback” location, used when no
executable file named python is found along PATH.) The user can override this behavior by setting the environment
variable PYTHONHOME, or insert additional directories in front of the standard path by setting PYTHONPATH.

The embedding application can steer the search by calling Py SetProgramName (file) before calling
Py_Initialize (). Note that

PYTHONHOME still overrides this and PYTHONPATH is still inserted in front of the standard path. An applica-
tion that requires total control has to provide its own implementation of Py_GetPath (), Py_GetPrefix (),
Py_GetExecPrefix (),and Py_GetProgramFullPath () (all defined in Modules/getpath.c).

Sometimes, it is desirable to “uninitialize” Python. For instance, the application may want to start over (make another
calltoPy_TInitialize ()) or the application is simply done with its use of Python and wants to free memory allo-
cated by Python. This can be accomplished by calling Py_Finalize (). The function Py_TIsInitialized()
returns true if Python is currently in the initialized state. More information about these functions is given in a later
chapter. Notice that Py_Finalize () does not free all memory allocated by the Python interpreter, e.g. memory
allocated by extension modules currently cannot be released.

1.5 Debugging Builds

Python can be built with several macros to enable extra checks of the interpreter and extension modules. These checks
tend to add a large amount of overhead to the runtime so they are not enabled by default.

A full list of the various types of debugging builds is in the file Misc/SpecialBuilds. txt in the Python source
distribution. Builds are available that support tracing of reference counts, debugging the memory allocator, or low-
level profiling of the main interpreter loop. Only the most frequently-used builds will be described in the remainder of
this section.

Compiling the interpreter with the Py_ DEBUG macro defined produces what is generally meant by “a debug build” of
Python. Py_DEBUG is enabled in the Unix build by adding ——with-pydebugtothe . /configure command. It
is also implied by the presence of the not-Python-specific _DEBUG macro. When Py_DEBUG is enabled in the Unix
build, compiler optimization is disabled.

In addition to the reference count debugging described below, the following extra checks are performed:
» Extra checks are added to the object allocator.
» Extra checks are added to the parser and compiler.
* Downcasts from wide types to narrow types are checked for loss of information.

* A number of assertions are added to the dictionary and set implementations. In addition, the set object acquires
atest_c_api () method.

* Sanity checks of the input arguments are added to frame creation.

* The storage for ints is initialized with a known invalid pattern to catch reference to uninitialized digits.
* Low-level tracing and extra exception checking are added to the runtime virtual machine.

» Extra checks are added to the memory arena implementation.

 Extra debugging is added to the thread module.

10 Chapter 1. Introduction

The Python/C API, Release 3.2.6

There may be additional checks not mentioned here.

Defining Py_TRACE_REFS enables reference tracing. When defined, a circular doubly linked list of active objects
is maintained by adding two extra fields to every PyObject. Total allocations are tracked as well. Upon exit, all
existing references are printed. (In interactive mode this happens after every statement run by the interpreter.) Implied
by Py_DEBUG.

Please refer to Misc/SpecialBuilds.txt in the Python source distribution for more detailed information.

1.5. Debugging Builds 11

The Python/C API, Release 3.2.6

12 Chapter 1. Introduction

CHAPTER
TWO

THE VERY HIGH LEVEL LAYER

The functions in this chapter will let you execute Python source code given in a file or a buffer, but they will not let
you interact in a more detailed way with the interpreter.

Several of these functions accept a start symbol from the grammar as a parameter. The available start symbols are
Py_eval_input, Py_file_input, and Py_single_input. These are described following the functions
which accept them as parameters.

Note also that several of these functions take FILE+ parameters. One particular issue which needs to be handled
carefully is that the FILE structure for different C libraries can be different and incompatible. Under Windows (at
least), it is possible for dynamically linked extensions to actually use different libraries, so care should be taken that
FILE~* parameters are only passed to these functions if it is certain that they were created by the same library that the
Python runtime is using.

int Py_Main (int argc, wchar_t **argv)
The main program for the standard interpreter. This is made available for programs which embed Python. The
argc and argv parameters should be prepared exactly as those which are passed to a C program’s main ()
function (converted to wchar_t according to the user’s locale). It is important to note that the argument list may
be modified (but the contents of the strings pointed to by the argument list are not). The return value will be 0
if the interpreter exits normally (i.e., without an exception), 1 if the interpreter exits due to an exception, or 2 if
the parameter list does not represent a valid Python command line.

Note that if an otherwise unhandled Sy stemExit is raised, this function will not return 1, but exit the process,
as long as Py_InspectFlag is not set.

int PyRun_AnyFile (FILE *fp, const char *filename)

This is a simplified interface to PyRun_AnyFileExFlags () below, leaving closeit set to 0 and flags set to
NULL.

int PyRun_AnyFileFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving the closeit argument set to O.

int PyRun_AnyFileEx (FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving the flags argument set to NULL.

int PyRun_AnyFileExFlags (FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)
If fp refers to a file associated with an interactive device (console or terminal input or Unix pseudo-terminal),
return the value of PyRun_InteractiveLoop (), otherwise return the result of PyRun_SimpleFile ().
filename is decoded from the filesystem encoding (sys.getfilesystemencoding()). If filename is
NULL, this function uses "???" as the filename.

int PyRun_SimpleString (const char *command)
This is a simplified interface to PyRun_SimpleStringFlags () below, leaving the PyCompilerFlags*
argument set to NULL.

13

The Python/C API, Release 3.2.6

int PyRun_SimpleStringFlags (const char *command, PyCompilerFlags *flags)
Executes the Python source code from command in the __main__ module according to the flags argument. If
__main__ does not already exist, it is created. Returns 0 on success or —1 if an exception was raised. If there
was an error, there is no way to get the exception information. For the meaning of flags, see below.

Note that if an otherwise unhandled SystemExit is raised, this function will not return —1, but exit the
process, as long as Py_InspectFlag is not set.

int PyRun_SimpleFile (FILE *fp, const char *filename)
This is a simplified interface to PyRun_SimpleFileExFlags () below, leaving closeit set to 0 and flags
set to NULL.

int PyRun_SimpleFileFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)
This is a simplified interface to PyRun_SimpleFileExFlags () below, leaving closeit set to 0.

int PyRun_SimpleFileEx (FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun_SimpleFileExFlags () below, leaving flags set to NULL.

int PyRun_SimpleFileExFlags (FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)
Similar to PyRun_SimpleStringFlags (), but the Python source code is read from fp instead of an
in-memory string. filename should be the name of the file, it is decoded from the filesystem encoding
(sys.getfilesystemencoding ()). If closeit is true, the file is closed before PyRun_SimpleFileExFlags
returns.

int PyRun_InteractiveOne (FILE *fp, const char *filename)
This is a simplified interface to PyRun_TInteractiveOneFlags () below, leaving flags set to NULL.

int PyRun_InteractiveOneFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)
Read and execute a single statement from a file associated with an interactive device according to the flags
argument. The user will be prompted using sys.psl and sys.ps?2. filename is decoded from the filesystem
encoding (sys.getfilesystemencoding ()).

Returns 0 when the input was executed successfully, —1 if there was an exception, or an error code from the
errcode. h include file distributed as part of Python if there was a parse error. (Note that errcode . h is not
included by Python. h, so must be included specifically if needed.)

int PyRun_InteractiveLoop (FILE *fp, const char *filename)
This is a simplified interface to PyRun_InteractiveLoopFlags () below, leaving flags set to NULL.

int PyRun_InteractiveLoopFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)
Read and execute statements from a file associated with an interactive device until EOF is reached. The
user will be prompted using sys.psl and sys.ps2. filename is decoded from the filesystem encoding
(sys.getfilesystemencoding ()). Returns 0 at EOF.

struct _node* PyParser_SimpleParseString (const char *str, int start)
This is a simplified interface to PyParser_SimpleParseStringFlagsFilename () below, leaving
filename set to NULL and flags set to 0.

struct _node* PyParser_SimpleParseStringFlags (const char *str, int start, int flags)
This is a simplified interface to PyParser_SimpleParseStringFlagsFilename () below, leaving
filename set to NULL.

struct _node* PyParser_SimpleParseStringFlagsFilename (const char *str, const char *filename,
int start, int flags)
Parse Python source code from str using the start token start according to the flags argument. The result can be
used to create a code object which can be evaluated efficiently. This is useful if a code fragment must be evalu-
ated many times. filename is decoded from the filesystem encoding (sys.getfilesystemencoding ()).

struct _node* PyParser_SimpleParseFile (FILE *fp, const char *filename, int start)
This is a simplified interface to PyParser_SimpleParseFileFlags () below, leaving flags set to 0

14 Chapter 2. The Very High Level Layer

The Python/C API, Release 3.2.6

struct _node* PyParser_SimpleParseFileFlags (FILE *fp, const char *filename, int start, int flags)
Similar to PyParser_SimpleParseStringFlagsFilename (), but the Python source code is read
from fp instead of an in-memory string.

PyObject* PyRun_String (const char *str, int start, PyObject *globals, PyObject *locals)
Return value: New reference.
This is a simplified interface to PyRun_StringFlags () below, leaving flags set to NULL.

PyObject* PyRun_StringFlags (const char *str, int start, PyObject *globals, PyObject *locals, Py-
CompilerFlags *flags)
Return value: New reference.
Execute Python source code from str in the context specified by the dictionaries globals and locals with the
compiler flags specified by flags. The parameter start specifies the start token that should be used to parse the
source code.

Returns the result of executing the code as a Python object, or NULL if an exception was raised.

PyObject* PyRun_File (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals)
Return value: New reference.
This is a simplified interface to PyRun_FileExFlags () below, leaving closeit set to 0 and flags set to
NULL.

PyObject* PyRun_FileEx (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals,

int closeit)
Return value: New reference.

This is a simplified interface to PyRun_FileExFlags () below, leaving flags set to NULL.

PyObject* PyRun_FileFlags (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *lo-
cals, PyCompilerFlags *flags)
Return value: New reference.
This is a simplified interface to PyRun_FileExFlags () below, leaving closeit set to O.

PyObject* PyRun_FileExFlags (FILE *fp, const char *filename, int start, PyObject *globals, PyOb-
ject *locals, int closeit, PyCompilerFlags *flags)
Return value: New reference.
Similar to PyRun_StringFlags (), but the Python source code is read from fp instead of an
in-memory string. filename should be the name of the file, it is decoded from the filesys-
tem encoding (sys.getfilesystemencoding()). If closeit is true, the file is closed before
PyRun_FileExFlags () returns.

PyObject* Py_CompileString (const char *str, const char *filename, int start)
Return value: New reference.
This is a simplified interface to Py_CompileStringFlags () below, leaving flags set to NULL.

PyObject* Py_CompileStringFlags (const char *str, const char *filename, int start, PyCompiler-
Flags *flags)
Return value: New reference.
This is a simplified interface to Py_CompileStringExFlags () below, with optimize setto —1.

PyObject* Py_CompileStringExFlags (const char *str, const char *filename, int start, PyCompiler-

Flags *flags, int optimize)
Parse and compile the Python source code in str, returning the resulting code object. The start token is given
by start; this can be used to constrain the code which can be compiled and should be Py_eval_input,
Py_file_input,or Py_single_input. The filename specified by filename is used to construct the code
object and may appear in tracebacks or SyntaxError exception messages, it is decoded from the filesys-
tem encoding (sys.getfilesystemencoding ()). This returns NULL if the code cannot be parsed or
compiled.

The integer optimize specifies the optimization level of the compiler; a value of —1 selects the optimization level
of the interpreter as given by —0O options. Explicit levels are 0 (no optimization; ___debug___is true), 1 (asserts

15

The Python/C API, Release 3.2.6

are removed, ___debug___is false) or 2 (docstrings are removed too). New in version 3.2.

PyObject* PyEval_EwvalCode (PyObject *co, PyObject *globals, PyObject *locals)
Return value: New reference.
This is a simplified interface to PyEval_EvalCodeEx (), with just the code object, and the dictionaries of
global and local variables. The other arguments are set to NULL.

PyObject* PyEval_EvalCodeEx (PyObject *co, PyObject *globals, PyObject *locals, PyObject **args,
int argcount, PyObject **kws, int kwcount, PyObject **defs, int defcount,
PyObject *closure)
Evaluate a precompiled code object, given a particular environment for its evaluation. This environment consists

of dictionaries of global and local variables, arrays of arguments, keywords and defaults, and a closure tuple of
cells.

PyObject* PyEval_EvalFrame (PyFrameObject *f)
Evaluate an execution frame. This is a simplified interface to PyEval_EvalFrameEXx, for backward compatibility.

PyObject* PyEval_EvalFrameEx (PyFrameObject *f, int throwflag)
This is the main, unvarnished function of Python interpretation. It is literally 2000 lines long. The code object
associated with the execution frame f is executed, interpreting bytecode and executing calls as needed. The
additional throwflag parameter can mostly be ignored - if true, then it causes an exception to immediately be
thrown; this is used for the throw () methods of generator objects.

int PyEval_ MergeCompilerFlags (PyCompilerFlags *cf)
This function changes the flags of the current evaluation frame, and returns true on success, false on failure.

int Py_eval_input
The start symbol from the Python grammar for isolated expressions; for use with Py_CompileString().

intPy_file_input
The start symbol from the Python grammar for sequences of statements as read from a file or other source; for
use with Py_CompileString (). This is the symbol to use when compiling arbitrarily long Python source
code.

int Py_single_input
The start symbol from the Python grammar for a single statement; for use with Py_CompileString (). This
is the symbol used for the interactive interpreter loop.

struct PyCompilerFlags
This is the structure used to hold compiler flags. In cases where code is only being compiled, it is passed as
int flags, and in cases where code is being executed, it is passed as PyCompilerFlags xflags. In
this case, from __ future_ import can modify flags.

Whenever PyCompilerFlags »flagsis NULL, cf_flags is treated as equal to 0, and any modification
dueto from _ future_ import is discarded.

struct PyCompilerFlags {
int cf_flags;
}

int CO_FUTURE_DIVISION
This bit can be set in flags to cause division operator / to be interpreted as “true division” according to PEP
238.

16 Chapter 2. The Very High Level Layer

http://www.python.org/dev/peps/pep-0238
http://www.python.org/dev/peps/pep-0238

CHAPTER
THREE

REFERENCE COUNTING

The macros in this section are used for managing reference counts of Python objects.

void Py_ INCREF (PyObject *0)
Increment the reference count for object o. The object must not be NULL; if you aren’t sure that it isn’t NULL,
use Py_XINCREF ().

void Py_XINCREF (PyObject *0)
Increment the reference count for object o. The object may be NULL, in which case the macro has no effect.

void Py_DECREF (PyObject *0)
Decrement the reference count for object 0. The object must not be NULL; if you aren’t sure that it isn’t NULL,
use Py_XDECREF (). If the reference count reaches zero, the object’s type’s deallocation function (which must
not be NULL) is invoked.

Warning: The deallocation function can cause arbitrary Python code to be invoked (e.g. when a class
instance witha ___del__ () method is deallocated). While exceptions in such code are not propagated, the
executed code has free access to all Python global variables. This means that any object that is reachable
from a global variable should be in a consistent state before Py_DECREF () is invoked. For example, code
to delete an object from a list should copy a reference to the deleted object in a temporary variable, update
the list data structure, and then call Py_DECREF () for the temporary variable.

void Py_XDECREF (PyObject *0)
Decrement the reference count for object 0. The object may be NULL, in which case the macro has no effect;
otherwise the effect is the same as for Py_DECREF (), and the same warning applies.

void Py_ CLEAR (PyObject *0)
Decrement the reference count for object 0. The object may be NULL, in which case the macro has no effect;
otherwise the effect is the same as for Py_DECREF (), except that the argument is also set to NULL. The
warning for Py_DECREF () does not apply with respect to the object passed because the macro carefully uses
a temporary variable and sets the argument to NULL before decrementing its reference count.

It is a good idea to use this macro whenever decrementing the value of a variable that might be traversed during
garbage collection.

The following functions are for runtime dynamic embedding of Python: Py_IncRef (PyObject =*o0),
Py_DecRef (PyObject =x0). They are simply exported function versions of Py_XINCREF () and
Py_XDECREF (), respectively.

The following functions or macros are only for use within the interpreter core: _Py Dealloc (),
_Py_ForgetReference (),_Py_NewReference (), as well as the global variable _Py_RefTotal.

17

The Python/C API, Release 3.2.6

18 Chapter 3. Reference Counting

CHAPTER
FOUR

EXCEPTION HANDLING

The functions described in this chapter will let you handle and raise Python exceptions. It is important to understand
some of the basics of Python exception handling. It works somewhat like the Unix errno variable: there is a global
indicator (per thread) of the last error that occurred. Most functions don’t clear this on success, but will set it to indicate
the cause of the error on failure. Most functions also return an error indicator, usually NULL if they are supposed to
return a pointer, or —1 if they return an integer (exception: the PyArg_» () functions return 1 for success and O for
failure).

When a function must fail because some function it called failed, it generally doesn’t set the error indicator; the
function it called already set it. It is responsible for either handling the error and clearing the exception or returning
after cleaning up any resources it holds (such as object references or memory allocations); it should not continue
normally if it is not prepared to handle the error. If returning due to an error, it is important to indicate to the caller
that an error has been set. If the error is not handled or carefully propagated, additional calls into the Python/C API
may not behave as intended and may fail in mysterious ways.

The error indicator consists of three Python objects corresponding to the result of sys.exc_info (). API functions
exist to interact with the error indicator in various ways. There is a separate error indicator for each thread.

void PyErr_PrintEx (int set_sys_last vars)
Print a standard traceback to sys . stderr and clear the error indicator. Call this function only when the error
indicator is set. (Otherwise it will cause a fatal error!)

If set_sys_last vars is nonzero, the variables sys.last_type, sys.last_value and
sys.last_traceback will be set to the type, value and traceback of the printed exception, respec-
tively.

void PyErr_Print ()
Alias for PyErr_PrintEx (1).

PyObject* PyErr_ Occurred ()
Return value: Borrowed reference.
Test whether the error indicator is set. If set, return the exception fype (the first argument to the last call to
one of the PyErr_Set* () functions orto PyErr_Restore ()). If not set, return NULL. You do not own a
reference to the return value, so you do not need to Py_DECREF () it.

Note: Do not compare the return value to a specific exception; use PyErr_ExceptionMatches () instead,
shown below. (The comparison could easily fail since the exception may be an instance instead of a class, in the
case of a class exception, or it may the a subclass of the expected exception.)

int PyErr_ ExceptionMatches (PyObject *exc)
Equivalent to PyErr_GivenExceptionMatches (PyErr_Occurred (), exc). This should only be
called when an exception is actually set; a memory access violation will occur if no exception has been raised.

19

The Python/C API, Release 3.2.6

int PyErr_GivenExceptionMatches (PyObject *given, PyObject *exc)
Return true if the given exception matches the exception in exc. If exc is a class object, this also returns true
when given is an instance of a subclass. If exc is a tuple, all exceptions in the tuple (and recursively in subtuples)
are searched for a match.

void PyErr_NormalizeException (PyObject**exc, PyObject**val, PyObject**tb)
Under certain circumstances, the values returned by PyErr_Fetch () below can be “unnormalized”, meaning
that »exc is a class object but »val is not an instance of the same class. This function can be used to instantiate
the class in that case. If the values are already normalized, nothing happens. The delayed normalization is
implemented to improve performance.

void PyErr_Clear ()
Clear the error indicator. If the error indicator is not set, there is no effect.

void PyErr_Fetch (PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)
Retrieve the error indicator into three variables whose addresses are passed. If the error indicator is not set, set
all three variables to NULL. If it is set, it will be cleared and you own a reference to each object retrieved. The
value and traceback object may be NULL even when the type object is not.

Note: This function is normally only used by code that needs to handle exceptions or by code that needs to
save and restore the error indicator temporarily.

void PyErr_Restore (PyObject *type, PyObject *value, PyObject *traceback)
Set the error indicator from the three objects. If the error indicator is already set, it is cleared first. If the objects
are NULL, the error indicator is cleared. Do not pass a NULL type and non-NULL value or traceback. The
exception type should be a class. Do not pass an invalid exception type or value. (Violating these rules will
cause subtle problems later.) This call takes away a reference to each object: you must own a reference to each
object before the call and after the call you no longer own these references. (If you don’t understand this, don’t
use this function. I warned you.)

Note: This function is normally only used by code that needs to save and restore the error indicator temporarily;
use PyErr_Fetch () to save the current exception state.

void PyErr_SetString (PyObject *fype, const char *message)
This is the most common way to set the error indicator. The first argument specifies the exception type; it is
normally one of the standard exceptions, e.g. PyExc_RuntimeError. You need not increment its reference
count. The second argument is an error message; it is decoded from " ut £-8°.

void PyErr_SetObject (PyObject *fype, PyObject *value)
This function is similar to PyErr_SetString () but lets you specify an arbitrary Python object for the
“value” of the exception.

PyObject* PyErr_ Format (PyObject *exception, const char *format, ...)
Return value: Always NULL.
This function sets the error indicator and returns NULL. exception should be a Python exception class. The
format and subsequent parameters help format the error message; they have the same meaning and values as in
PyUnicode_FromFormat (). formatis an ASCII-encoded string.

void PyErr_SetNone (PyObject *type)
This is a shorthand for PyErr_SetObject (type, Py_None).

int PyErr_ BadArgument ()
This is a shorthand for PyErr_SetString (PyExc_TypeError, message), where message indicates
that a built-in operation was invoked with an illegal argument. It is mostly for internal use.

PyObject* PyErr_NoMemory ()
Return value: Always NULL.

20 Chapter 4. Exception Handling

The Python/C API, Release 3.2.6

This is a shorthand for PyErr_SetNone (PyExc_MemoryError) ; it returns NULL so an object allocation
function can write return PyErr_NoMemory () ; when it runs out of memory.

PyObject* PyErr_SetFromErrno (PyObject *fype)

Return value: Always NULL.

This is a convenience function to raise an exception when a C library function has returned an error and set the C
variable errno. It constructs a tuple object whose first item is the integer e rrno value and whose second item
is the corresponding error message (gotten from strerror ()), and then calls PyErr_SetObject (type,
object). On Unix, when the errno value is EINTR, indicating an interrupted system call, this calls
PyErr_CheckSignals (), and if that set the error indicator, leaves it set to that. The function always returns
NULL, so a wrapper function around a system call can write return PyErr_SetFromErrno (type) ;
when the system call returns an error.

PyObject* PyErr_SetFromErrnoWithFilename (PyObject *type, const char *filename)
Return value: Always NULL.
Similar to PyErr_SetFromErrno (), with the additional behavior that if filename is not NULL, it is passed
to the constructor of fype as a third parameter. In the case of exceptions such as IOError and OSError, this
is used to define the £ilename attribute of the exception instance. filename is decoded from the filesystem
encoding (sys.getfilesystemencoding ()).

PyObject* PyErr_ SetFromWindowsErr (int ierr)

Return value: Always NULL.

This is a convenience function to raise WindowsError. If called with ierr of 0, the error code returned by
a call to GetLastError () is used instead. It calls the Win32 function FormatMessage () to retrieve
the Windows description of error code given by ierr or GetLastError (), then it constructs a tuple object
whose first item is the ierr value and whose second item is the corresponding error message (gotten from
FormatMessage ()), and then calls PyErr_SetObject (PyExc_WindowsError, object). This
function always returns NULL. Availability: Windows.

PyObject* PyErr_ SetExcFromWindowsErr (PyObject *fype, int ierr)
Return value: Always NULL.
Similar to PyErr_SetFromWindowsErr (), with an additional parameter specifying the exception type to
be raised. Availability: Windows.

PyObject* PyErr SetFromWindowsErrWithFilename (int ierr, const char *filename)
Return value: Always NULL.
Similar to PyErr_SetFromWindowsErr (), with the additional behavior that if filename is not NULL, it
is passed to the constructor of WindowsError as a third parameter. filename is decoded from the filesystem
encoding (sys.getfilesystemencoding ()). Availability: Windows.

PyObject* PyErr_ SetExcFromWindowsErrWithFilename (PyObject *type, int ierr, char *filename)
Return value: Always NULL.
Similar to PyErr_SetFromWindowsErrWithFilename (), with an additional parameter specifying the
exception type to be raised. Availability: Windows.

void PyErr_SyntaxLocationEx (char *filename, int lineno, int col_offset)
Set file, line, and offset information for the current exception. If the current exception is not a SyntaxError,
then it sets additional attributes, which make the exception printing subsystem think the exception is a
SyntaxError. filename is decoded from the filesystem encoding (sys.getfilesystemencoding()).

New in version 3.2.

void PyErr_SyntaxLocation (char *filename, int lineno)
Like PyErr_SyntaxLocationExc (), but the col_offset parameter is omitted.

void PyErr_BadInternalCall ()
This is a shorthand for PyErr_SetString (PyExc_SystemError, message), where message indi-
cates that an internal operation (e.g. a Python/C API function) was invoked with an illegal argument. It is
mostly for internal use.

21

The Python/C API, Release 3.2.6

int PyErr_ WarnEx (PyObject *category, char *message, int stack_level)
Issue a warning message. The category argument is a warning category (see below) or NULL; the message
argument is an UTF-8 encoded string. stack_level is a positive number giving a number of stack frames; the
warning will be issued from the currently executing line of code in that stack frame. A stack_level of 1 is the
function calling PyErr_WarnEx (), 2 is the function above that, and so forth.

This function normally prints a warning message to sys.stderr; however, it is also possible that the user has
specified that warnings are to be turned into errors, and in that case this will raise an exception. It is also possible
that the function raises an exception because of a problem with the warning machinery (the implementation
imports the warnings module to do the heavy lifting). The return value is 0 if no exception is raised, or -1
if an exception is raised. (It is not possible to determine whether a warning message is actually printed, nor
what the reason is for the exception; this is intentional.) If an exception is raised, the caller should do its normal
exception handling (for example, Py_DECREF () owned references and return an error value).

Warning categories must be subclasses of Warning; the default warning category is Runt imeWarning.
The standard Python warning categories are available as global variables whose names are PyExc_
followed by the Python exception name. These have the type PyObjects; they are all class ob-
jects. Their names are PyExc_Warning, PyExc_UserWarning, PyExc_UnicodeWarning,
PyExc_DeprecationWarning, PyExc_SyntaxWarning, PyExc_RuntimeWarning, and
PyExc_FutureWarning. PyExc_Warning is a subclass of PyExc_Exception; the other warn-
ing categories are subclasses of PyExc_Warning.

For information about warning control, see the documentation for the warnings module and the - option in
the command line documentation. There is no C API for warning control.

int PyErr_ WarnExplicit (PyObject *category, const char *message, const char *filename, int lineno, const
char *module, PyObject *registry)
Issue a warning message with explicit control over all warning attributes. This is a straightforward
wrapper around the Python function warnings.warn_explicit (), see there for more informa-
tion. The module and registry arguments may be set to NULL to get the default effect described
there. message and module are UTF-8 encoded strings, filename is decoded from the filesystem encoding
(sys.getfilesystemencoding()).

int PyErr WarnFormat (PyObject *category, Py_ssize_t stack_level, const char *format, ...)
Function similar to PyErr_WarnEx (), but use PyUnicode_FromFormat () to format the warning mes-
sage. format is an ASCII-encoded string. New in version 3.2.

int PyErr CheckSignals ()

This function interacts with Python’s signal handling. It checks whether a signal has been sent to the processes
and if so, invokes the corresponding signal handler. If the signal module is supported, this can invoke a signal
handler written in Python. In all cases, the default effect for SIGINT is to raise the KeyboardInterrupt
exception. If an exception is raised the error indicator is set and the function returns —1; otherwise the function
returns 0. The error indicator may or may not be cleared if it was previously set.

void PyErr_SetInterrupt ()
This function simulates the effect of a STGINT signal arriving — the next time PyErr_CheckSignals ()
is called, KeyboardInterrupt will be raised. It may be called without holding the interpreter lock.

int PySignal_SetWakeupFd (int fd)
This utility function specifies a file descriptor to whicha ” \0” byte will be written whenever a signal is received.
It returns the previous such file descriptor. The value —1 disables the feature; this is the initial state. This is
equivalent to signal.set_wakeup_£fd () in Python, but without any error checking. fd should be a valid
file descriptor. The function should only be called from the main thread.

PyObject* PyErr_ NewException (char *name, PyObject *base, PyObject *dict)
Return value: New reference.
This utility function creates and returns a new exception class. The name argument must be the name of the new
exception, a C string of the form module.classname. The base and dict arguments are normally NULL.
This creates a class object derived from Exception (accessible in C as PyExc_Exception).

22 Chapter 4. Exception Handling

The Python/C API, Release 3.2.6

The __module___ attribute of the new class is set to the first part (up to the last dot) of the name argument,
and the class name is set to the last part (after the last dot). The base argument can be used to specify alternate
base classes; it can either be only one class or a tuple of classes. The dict argument can be used to specify a
dictionary of class variables and methods.

PyObject* PyErr_ NewExceptionWithDoc (char *name, char *doc, PyObject *base, PyObject *dict)
Return value: New reference.
Same as PyErr_NewException (), except that the new exception class can easily be given a docstring: If
doc is non-NULL, it will be used as the docstring for the exception class. New in version 3.2.

void PyErr_WriteUnraisable (PyObject *obj)
This utility function prints a warning message to sys . stderr when an exception has been set but it is impos-
sible for the interpreter to actually raise the exception. It is used, for example, when an exception occurs in an
__del__ () method.

The function is called with a single argument obj that identifies the context in which the unraisable exception
occurred. The repr of obj will be printed in the warning message.

4.1 Exception Objects

PyObject* PyException_GetTraceback (PyObject *ex)
Return value: New reference.
Return the traceback associated with the exception as a new reference, as accessible from Python through
___traceback__. If there is no traceback associated, this returns NULL.

int PyException_SetTraceback (PyObject *ex, PyObject *tb)
Set the traceback associated with the exception to th. Use Py_None to clear it.

PyObject* PyException_GetContext (PyObject *ex)
Return the context (another exception instance during whose handling ex was raised) associated with the excep-
tion as a new reference, as accessible from Python through __context__. If there is no context associated,
this returns NULL.

void PyException_SetContext (PyObject *ex, PyObject *ctx)
Set the context associated with the exception to ctx. Use NULL to clear it. There is no type check to make sure
that czx is an exception instance. This steals a reference to ctx.

PyObject* PyException_GetCause (PyObject *ex)

Return the cause (another exception instance set by raise ... from ...) associated with the exception
as a new reference, as accessible from Python through ___cause__. If there is no cause associated, this returns
NULL.

void PyException_SetCause (PyObject *ex, PyObject *ctx)
Set the cause associated with the exception to ctx. Use NULL to clear it. There is no type check to make sure
that czx is an exception instance. This steals a reference to ctx.

4.2 Unicode Exception Objects

The following functions are used to create and modify Unicode exceptions from C.

PyObject* PyUnicodeDecodeError_Create (const char *encoding, const char *object,
Py_ssize_t length, Py_ssize_t start, Py_ssize_t end,

) _const char *reason)
Create a UnicodeDecodeError object with the attributes encoding, object, length, start, end and reason.

encoding and reason are UTF-8 encoded strings.

4.1. Exception Objects 23

The Python/C API, Release 3.2.6

PyObject* PyUnicodeEncodeError_Create (const char *encoding, const Py_UNICODE *object,
Py_ssize_t length, Py_ssize_t start, Py_ssize_t end, const

) _char *reason)
Create a UnicodeEncodeError object with the attributes encoding, object, length, start, end and reason.

encoding and reason are UTF-8 encoded strings.

PyObject* PyUnicodeTranslateError_Create (const Py UNICODE *object, Py_ssize_t length,

Py_ssize_t start, Py_ssize_t end, const char *reason)
Create a UnicodeTranslateError object with the attributes object, length, start, end and reason. reason

is an UTF-8 encoded string.

PyObject* PyUnicodeDecodeError_GetEncoding (PyObject *exc)
PyObject* PyUnicodeEncodeError_GetEncoding (PyObject *exc)
Return the encoding attribute of the given exception object.

PyObject* PyUnicodeDecodeError_GetObject (PyObject *exc)

PyObject* PyUnicodeEncodeError_GetObject (PyObject *exc)

PyObject* PyUnicodeTranslateError_GetObject (PyObject *exc)
Return the object attribute of the given exception object.

int PyUnicodeDecodeError_GetStart (PyObject *exc, Py_ssize_t *start)

int PyUnicodeEncodeError_GetStart (PyObject *exc, Py_ssize_t *start)

int PyUnicodeTranslateError_GetStart (PyObject *exc, Py_ssize_t *start)
Get the start attribute of the given exception object and place it into *start. start must not be NULL. Return 0
on success, —1 on failure.

int PyUnicodeDecodeError_SetStart (PyObject *exc, Py_ssize_t start)
int PyUnicodeEncodeError_SetStart (PyObject *exc, Py_ssize_t start)
int PyUnicodeTranslateError_SetStart (PyObject *exc, Py_ssize_t start)
Set the start attribute of the given exception object to start. Return 0 on success, —1 on failure.

int PyUnicodeDecodeError_GetEnd (PyObject *exc, Py_ssize_t *end)

int PyUnicodeEncodeError_GetEnd (PyObject *exc, Py_ssize_t *end)

int PyUnicodeTranslateError_GetEnd (PyObject *exc, Py_ssize_t *end)
Get the end attribute of the given exception object and place it into *end. end must not be NULL. Return 0 on
success, —1 on failure.

int PyUnicodeDecodeError_SetEnd (PyObject *exc, Py_ssize_t end)
int PyUnicodeEncodeError_SetEnd (PyObject *exc, Py_ssize_t end)
int PyUnicodeTranslateError_SetEnd (PyObject *exc, Py_ssize_t end)
Set the end attribute of the given exception object to end. Return 0 on success, —1 on failure.

PyObject* PyUnicodeDecodeError_GetReason (PyObject *exc)

PyObject* PyUnicodeEncodeError_GetReason (PyObject *exc)

PyObject* PyUnicodeTranslateError_GetReason (PyObject *exc)
Return the reason attribute of the given exception object.

int PyUnicodeDecodeError_SetReason (PyObject *exc, const char *reason)
int PyUnicodeEncodeError_SetReason (PyObject *exc, const char *reason)
int PyUnicodeTranslateError_SetReason (PyObject *exc, const char *reason)
Set the reason attribute of the given exception object to reason. Return 0 on success, —1 on failure.

4.3 Recursion Control

These two functions provide a way to perform safe recursive calls at the C level, both in the core and in extension
modules. They are needed if the recursive code does not necessarily invoke Python code (which tracks its recursion
depth automatically).

24 Chapter 4. Exception Handling

The Python/C API, Release 3.2.6

int Py_EnterRecursiveCall (char *where)
Marks a point where a recursive C-level call is about to be performed.

If USE_STACKCHECK is defined, this function checks if the the OS stack overflowed using
PyOS_CheckStack (). In this is the case, it sets a MemoryError and returns a nonzero value.

The function then checks if the recursion limit is reached. If this is the case, a RuntimeError is set and a
nonzero value is returned. Otherwise, zero is returned.

where should be a string such as " in instance check" to be concatenated to the RuntimeError
message caused by the recursion depth limit.

void Py_LeaveRecursiveCall ()
Ends a Py_EnterRecursiveCall (). Must be called once for each successful invocation of
Py_EnterRecursiveCall ().

Properly implementing t p_ repr for container types requires special recursion handling. In addition to protecting the
stack, tp_repr also needs to track objects to prevent cycles. The following two functions facilitate this functionality.
Effectively, these are the C equivalent to reprlib.recursive_repr ().

int Py_ReprEnter (PyObject *object)
Called at the beginning of the tp_ repr implementation to detect cycles.

If the object has already been processed, the function returns a positive integer. In that case the tp_repr
implementation should return a string object indicating a cycle. As examples, dict objects return { . ..} and
list objectsreturn [...].

The function will return a negative integer if the recursion limit is reached. In that case the tp_repr imple-
mentation should typically return NULL.

Otherwise, the function returns zero and the tp_ repr implementation can continue normally.

void Py_ReprLeave (PyObject *object)
Ends aPy_ReprEnter (). Must be called once for each invocation of Py_ReprEnter () that returns zero.

4.4 Standard Exceptions

All standard Python exceptions are available as global variables whose names are PyExc__ followed by the Python
exception name. These have the type PyObject x; they are all class objects. For completeness, here are all the
variables:

4.4. Standard Exceptions 25

The Python/C API, Release 3.2.6

C Name Python Name Notes
PyExc_BaseException BaseException @)
PyExc_Exception Exception Q)
PyExc_ArithmeticError ArithmeticError (D)
PyExc_LookupError LookupError (1)
PyExc_AssertionError AssertionError
PyExc_AttributeError AttributeError
PyExc_EOFError EOFError

PyExc_EnvironmentError
PyExc_FloatingPointError
PyExc_IOError
PyExc_ImportError
PyExc_IndexError
PyExc_KeyError
PyExc_KeyboardInterrupt
PyExc_MemoryError
PyExc_NameError
PyExc_NotImplementedError
PyExc_OSError
PyExc_OverflowError
PyExc_ReferenceError
PyExc_RuntimeError
PyExc_SyntaxError
PyExc_SystemError
PyExc_SystemExit
PyExc_TypeError
PyExc_ValueError
PyExc_WindowsError
PyExc_ZeroDivisionError

EnvironmentError
FloatingPointError
IOError
ImportError
IndexError
KeyError
KeyboardInterrupt
MemoryError
NameError
NotImplementedError
OSError
OverflowError
ReferenceError
RuntimeError
SyntaxError
SystemError
SystemExit
TypeError
ValueError
WindowsError
ZeroDivisionError

ey

2

3

Notes:

1. This is a base class for other standard exceptions.

2. This is the same as weakref .ReferenceError.

3. Only defined on Windows; protect code that uses this by testing that the preprocessor macro MS_WINDOWS is

defined.

26

Chapter 4. Exception Handling

CHAPTER
FIVE

UTILITIES

The functions in this chapter perform various utility tasks, ranging from helping C code be more portable across
platforms, using Python modules from C, and parsing function arguments and constructing Python values from C
values.

5.1 Operating System Utilities

int Py_FdIsInteractive (FILE *fp, const char *filename)
Return true (nonzero) if the standard I/O file fp with name filename is deemed interactive. This is the case for files
for which isatty (fileno (fp)) is true. If the global flag Py_InteractiveFlag is true, this function

also returns true if the filename pointer is NULL or if the name is equal to one of the strings ’ <stdin>’ or
5o

void PyOS_AfterFork ()
Function to update some internal state after a process fork; this should be called in the new process if the Python
interpreter will continue to be used. If a new executable is loaded into the new process, this function does not
need to be called.

int PyOS_CheckStack ()
Return true when the interpreter runs out of stack space. This is a reliable check, but is only available
when USE_STACKCHECK is defined (currently on Windows using the Microsoft Visual C++ compiler).
USE_STACKCHECK will be defined automatically; you should never change the definition in your own code.

PyOS_sighandler_t PyOS_getsig (int i)
Return the current signal handler for signal i. This is a thin wrapper around either sigaction () or
signal (). Do not call those functions directly! PyOS_sighandler_t is a typedef alias for void
() (int).

PyOS_sighandler_t PyOS_setsig (int i, PyOS_sighandler_t /)
Set the signal handler for signal i to be &; return the old signal handler. This is a thin wrapper around either
sigaction () or signal (). Do not call those functions directly! PyOS_sighandler_t is a typedef
alias for void (*) (int).

5.2 System Functions

These are utility functions that make functionality from the sys module accessible to C code. They all work with the
current interpreter thread’s sy s module’s dict, which is contained in the internal thread state structure.

27

The Python/C API, Release 3.2.6

PyObject *PySys_GetObject (char *name)
Return value: Borrowed reference.
Return the object name from the sy s module or NULL if it does not exist, without setting an exception.

int PySys_SetObject (char *name, PyObject *v)
Set name in the sy s module to v unless v is NULL, in which case name is deleted from the sys module. Returns
0 on success, —1 on error.

void PySys_ResetWarnOptions ()
Reset sys.warnoptions to an empty list.

void PySys_AddWarnOption (wchar_t *s)
Append s to sys .warnoptions.

void PySys_AddWarnOptionUnicode (PyObject *unicode)
Append unicode to sys .warnoptions.

void PySys_SetPath (wchar_t *path)
Set sy s .path to alist object of paths found in path which should be a list of paths separated with the platform’s
search path delimiter (: on Unix, ; on Windows).

void PySys_WriteStdout (const char *format, ...)
Write the output string described by format to sys.stdout. No exceptions are raised, even if truncation
occurs (see below).

format should limit the total size of the formatted output string to 1000 bytes or less — after 1000 bytes, the
output string is truncated. In particular, this means that no unrestricted “%s” formats should occur; these should
be limited using “%.<N>s” where <N> is a decimal number calculated so that <N> plus the maximum size of
other formatted text does not exceed 1000 bytes. Also watch out for “%f”, which can print hundreds of digits
for very large numbers.

If a problem occurs, or sys . stdout is unset, the formatted message is written to the real (C level) stdout.

void PySys_WriteStderr (const char *format, ...)
AsPySys_WriteStdout (), but write to sys.stderr or stderr instead.

void PySys_FormatStdout (const char *format, ...)
Function similar to PySys_WriteStdout() but format the message using PyUnicode_FromFormatV () and
don’t truncate the message to an arbitrary length. New in version 3.2.

void PySys_FormatStderr (const char *format, ...)
As PySys_FormatStdout (), but write to sys.stderr or stderr instead. New in version 3.2.

void PySys_AddXOption (const wchar_t *s)
Parse s as a set of —X options and add them to the current options mapping as returned by
PySys_GetXOptions (). New in version 3.2.

PyObject *PySys_GetXOptions ()
Return value: Borrowed reference.
Return the current dictionary of —X options, similarly to sys._xoptions. On error, NULL is returned and
an exception is set. New in version 3.2.

5.3 Process Control

void Py_FatalError (const char *message)
Print a fatal error message and kill the process. No cleanup is performed. This function should only be invoked
when a condition is detected that would make it dangerous to continue using the Python interpreter; e.g., when
the object administration appears to be corrupted. On Unix, the standard C library function abort () is called
which will attempt to produce a core file.

28 Chapter 5. Utilities

The Python/C API, Release 3.2.6

void Py_Exit (int status)
Exit the current process. This calls Py_Finalize () and then calls the standard C library function
exit (status).

int Py AtExit (void (*func) ())

Register a cleanup function to be called by Py_Finalize (). The cleanup function will be called with no
arguments and should return no value. At most 32 cleanup functions can be registered. When the registration
is successful, Py_AtExit () returns O; on failure, it returns —1. The cleanup function registered last is called
first. Each cleanup function will be called at most once. Since Python’s internal finalization will have completed
before the cleanup function, no Python APIs should be called by func.

5.4 Importing Modules

PyObject* PyImport_ImportModule (const char *name)
Return value: New reference.

This is a simplified interface to PyImport_ImportModuleEx () below, leaving the globals and locals
arguments set to NULL and level set to 0. When the name argument contains a dot (when it specifies a submodule
of a package), the fromlist argument is set to the list [” =’] so that the return value is the named module rather
than the top-level package containing it as would otherwise be the case. (Unfortunately, this has an additional
side effect when name in fact specifies a subpackage instead of a submodule: the submodules specified in the
package’s __all__ variable are loaded.) Return a new reference to the imported module, or NULL with an
exception set on failure. A failing import of a module doesn’t leave the module in sys .modules.

This function always uses absolute imports.

PyObject* PyImport_ImportModuleNoBlock (const char *name)
This version of PyImport_ImportModule () does not block. It’s intended to be used in C functions that
import other modules to execute a function. The import may block if another thread holds the import lock.
The function Py Import_ImportModuleNoBlock () never blocks. It first tries to fetch the module from
sys.modules and falls back to Py Import_ImportModule () unless the lock is held, in which case the func-
tion will raise an ImportError.

PyObject* PyImport_ImportModuleEx (char *name, PyObject *globals, PyObject *locals, PyOb-
ject *fromlist)
Return value: New reference.
Import a module. This is best described by referring to the built-in Python function __import__ (), as the
standard __import__ () function calls this function directly.

The return value is a new reference to the imported module or top-level package, or NULL with an exception
set on failure. Like for __import__ (), the return value when a submodule of a package was requested is
normally the top-level package, unless a non-empty fromlist was given.

Failing imports remove incomplete module objects, like with Py Import_ImportModule ().

PyObject* PyImport_ImportModuleLevel (char *name, PyObject *globals, PyObject *locals, PyOb-
ject *fromlist, int level)
Return value: New reference.

Import a module. This is best described by referring to the built-in Python function __import__ (), as the
standard __import__ () function calls this function directly.

The return value is a new reference to the imported module or top-level package, or NULL with an exception
set on failure. Like for __import__ (), the return value when a submodule of a package was requested is
normally the top-level package, unless a non-empty fromlist was given.

PyObject* PyImport_Import (PyObject *name)
Return value: New reference.
This is a higher-level interface that calls the current “import hook function” (with an explicit level of 0, meaning

5.4. Importing Modules 29

The Python/C API, Release 3.2.6

absolute import). It invokes the ___import__ () function from the _ _builtins___ of the current globals.
This means that the import is done using whatever import hooks are installed in the current environment.

This function always uses absolute imports.

PyObject* PyImport_ReloadModule (PyObject *m)
Return value: New reference.
Reload a module. Return a new reference to the reloaded module, or NULL with an exception set on failure (the
module still exists in this case).

PyObject* PyImport_AddModule (const char *name)
Return value: Borrowed reference.
Return the module object corresponding to a module name. The name argument may be of the form
package.module. First check the modules dictionary if there’s one there, and if not, create a new one
and insert it in the modules dictionary. Return NULL with an exception set on failure.

Note: This function does not load or import the module; if the module wasn’t already loaded, you will get an
empty module object. Use Py Import_TImportModule () or one of its variants to import a module. Package
structures implied by a dotted name for name are not created if not already present.

PyObject* PyImport_ExecCodeModule (char *name, PyObject *co)
Return value: New reference.

Given a module name (possibly of the form package.module) and a code object read from a Python
bytecode file or obtained from the built-in function compile (), load the module. Return a new reference to
the module object, or NULL with an exception set if an error occurred. name is removed from sys.modules
in error cases, even if name was already in sys.modules on entry to PyImport_ExecCodeModule ().
Leaving incompletely initialized modules in sy s .modules is dangerous, as imports of such modules have no
way to know that the module object is an unknown (and probably damaged with respect to the module author’s
intents) state.

The module’s ___file_ _attribute will be set to the code object’s co__filename.

This function will reload the module if it was already imported. See Py Import_ReloadModule () for the
intended way to reload a module.

If name points to a dotted name of the form package.module, any package structures not already created
will still not be created.

SeealsoPyImport_ExecCodeModuleEx () and PyImport_ExecCodeModuleWithPathnames ().

PyObject* PyImport_ExecCodeModuleEx (char *name, PyObject *co, char *pathname)
Return value: New reference.
Like PyImport_ExecCodeModule (),butthe ___file_ attribute of the module object is set to pathname
if it is non-NULL.

See also PyImport_ExecCodeModuleWithPathnames ().

PyObject* PyImport_ExecCodeModuleWithPathnames (char *name, PyObject *co, char *pathname,

char *cpathname)
Like PyImport_ExecCodeModuleEx (), but the __cached___ attribute of the module object is set to

cpathname if it is non-NULL. Of the three functions, this is the preferred one to use. New in version 3.2.

long PyImport_GetMagicNumber ()
Return the magic number for Python bytecode files (a.k.a. . pyc and . pyo files). The magic number should be
present in the first four bytes of the bytecode file, in little-endian byte order.

const char * PyImport_GetMagicTag ()
Return the magic tag string for PEP 3147 format Python bytecode file names. New in version 3.2.

30 Chapter 5. Utilities

http://www.python.org/dev/peps/pep-3147

The Python/C API, Release 3.2.6

PyObject* PyImport_GetModuleDict ()
Return value: Borrowed reference.
Return the dictionary used for the module administration (a.k.a. sys.modules). Note that this is a per-
interpreter variable.

PyObject* PyImport_GetImporter (PyObject *path)
Return an importer object for a sys.path/pkg.__path__ item path, possibly by fetching it from the
sys.path_importer_cache dict. If it wasn’t yet cached, traverse sys.path_hooks until a hook is
found that can handle the path item. Return None if no hook could; this tells our caller it should fall back to
the built-in import mechanism. Cache the result in sys.path_importer_cache. Return a new reference
to the importer object.

void _PyImport_Init ()
Initialize the import mechanism. For internal use only.

void PyImport_Cleanup ()
Empty the module table. For internal use only.

void _PyImport_Fini ()
Finalize the import mechanism. For internal use only.

PyObject* _PyImport_FindExtension (char *, char *)
For internal use only.

PyObject* _PyImport_FixupExtension (char * char *)
For internal use only.

int PyImport_ ImportFrozenModule (char *name)
Load a frozen module named name. Return 1 for success, 0 if the module is not found, and —1 with
an exception set if the initialization failed. To access the imported module on a successful load, use
PyImport_ImportModule (). (Note the misnomer — this function would reload the module if it was
already imported.)

struct _frozen
This is the structure type definition for frozen module descriptors, as generated by the freeze utility (see
Tools/freeze/ in the Python source distribution). Its definition, found in Include/import .h, is:

struct _frozen {
char +name;
unsigned char xcode;
int size;

i

struct _frozen* PyImport_FrozenModules
This pointer is initialized to point to an array of st ruct _frozen records, terminated by one whose members
are all NULL or zero. When a frozen module is imported, it is searched in this table. Third-party code could
play tricks with this to provide a dynamically created collection of frozen modules.

int PyImport_AppendInittab (const char *name, PyObject™ (*initfunc)(void))
Add a single module to the existing table of built-in modules. This is a convenience wrapper around
PyImport_ExtendInittab (), returning —1 if the table could not be extended. The new module can
be imported by the name name, and uses the function initfunc as the initialization function called on the first
attempted import. This should be called before Py_TInitialize ().

struct _inittab
Structure describing a single entry in the list of built-in modules. Each of these structures gives the name and
initialization function for a module built into the interpreter. Programs which embed Python may use an array of
these structures in conjunction with Py Import_ExtendInittab () to provide additional built-in modules.
The structure is defined in Include/import .h as:

5.4. Importing Modules 31

The Python/C API, Release 3.2.6

struct _inittab {

char +name;

PyObject* (*initfunc) (void);
bi

int PyImport_ExtendInittab (struct _inittab *newrab)
Add a collection of modules to the table of built-in modules. The newtab array must end with a sentinel entry
which contains NULL for the name field; failure to provide the sentinel value can result in a memory fault.
Returns O on success or -1 if insufficient memory could be allocated to extend the internal table. In the event
of failure, no modules are added to the internal table. This should be called before Py_Initialize ().

5.5 Data marshalling support

These routines allow C code to work with serialized objects using the same data format as the marshal module.
There are functions to write data into the serialization format, and additional functions that can be used to read the
data back. Files used to store marshalled data must be opened in binary mode.

Numeric values are stored with the least significant byte first.

The module supports two versions of the data format: version O is the historical version, version 1 shares in-
terned strings in the file, and upon unmarshalling. Version 2 uses a binary format for floating point numbers.
Py_MARSHAL_VERSION indicates the current file format (currently 2).

void PyMarshal_ WriteLongToFile (long value, FILE *file, int version)
Marshal a 1ong integer, value, to file. This will only write the least-significant 32 bits of value; regardless of
the size of the native 1ong type. version indicates the file format.

void PyMarshal_ WriteObjectToFile (PyObject *value, FILE *file, int version)
Marshal a Python object, value, to file. version indicates the file format.

PyObject* PyMarshal WriteObjectToString (PyObject *value, int version)
Return value: New reference.
Return a string object containing the marshalled representation of value. version indicates the file format.

The following functions allow marshalled values to be read back in.

XXX What about error detection? It appears that reading past the end of the file will always result in a negative
numeric value (where that’s relevant), but it’s not clear that negative values won’t be handled properly when there’s no
error. What’s the right way to tell? Should only non-negative values be written using these routines?

long PyMarshal_ReadLongFromFile (FILE *file)
Return a C 1ong from the data stream in a FILE « opened for reading. Only a 32-bit value can be read in using
this function, regardless of the native size of long.

int PyMarshal_ ReadShortFromFile (FILE *file)
Return a C short from the data stream in a FILE* opened for reading. Only a 16-bit value can be read in
using this function, regardless of the native size of short.

PyObject* PyMarshal ReadObjectFromFile (FILE *file)
Return value: New reference.
Return a Python object from the data stream in a FILE* opened for reading. On error, sets the appropriate
exception (EOFError or TypeError) and returns NULL.

PyObject* PyMarshal_ReadLastObjectFromFile (FILE *file)
Return value: New reference.
Return a Python object from the data stream in a FILE+ opened for reading. Unlike
PyMarshal_ReadObjectFromFile (), this function assumes that no further objects will be read
from the file, allowing it to aggressively load file data into memory so that the de-serialization can operate from

32 Chapter 5. Utilities

The Python/C API, Release 3.2.6

data in memory rather than reading a byte at a time from the file. Only use these variant if you are certain
that you won’t be reading anything else from the file. On error, sets the appropriate exception (EOFError or
TypeError) and returns NULL.

PyObject* PyMarshal_ReadObjectFromString (char *string, Py_ssize_t len)
Return value: New reference.
Return a Python object from the data stream in a character buffer containing len bytes pointed to by string. On
error, sets the appropriate exception (EOFError or TypeError) and returns NULL.

5.6 Parsing arguments and building values

These functions are useful when creating your own extensions functions and methods. Additional information and
examples are available in extending-index.

The first three of these functions described, PyArg_ParseTuple (), PyArg_ParseTupleAndKeywords (),
and PyArg_Parse (), all use format strings which are used to tell the function about the expected arguments. The
format strings use the same syntax for each of these functions.

5.6.1 Parsing arguments

A format string consists of zero or more “format units.” A format unit describes one Python object; it is usually a single
character or a parenthesized sequence of format units. With a few exceptions, a format unit that is not a parenthesized
sequence normally corresponds to a single address argument to these functions. In the following description, the
quoted form is the format unit; the entry in (round) parentheses is the Python object type that matches the format unit;
and the entry in [square] brackets is the type of the C variable(s) whose address should be passed.

Strings and buffers

These formats allow to access an object as a contiguous chunk of memory. You don’t have to provide raw storage for
the returned unicode or bytes area. Also, you won’t have to release any memory yourself, except with the es, es#,
et and et # formats.

However, when a Py_buf fer structure gets filled, the underlying buffer is locked so that the caller can subsequently
use the buffer even inside a Py_ BEGIN_ALLOW_THREADS block without the risk of mutable data being resized or
destroyed. As a result, you have to call PyBuffer Release () after you have finished processing the data (or in
any early abort case).

Unless otherwise stated, buffers are not NUL-terminated.

Note: For all # variants of formats (s#, y#, etc.), the type of the length argument (int or Py_ssize_t)is controlled
by defining the macro PY_SSIZE_T_CLEAN before including Python.h. If the macro was defined, length is a
Py_ssize_t rather than an int. This behavior will change in a future Python version to only support Py_ssize t
and drop int support. It is best to always define PY_SSIZE_T_CLEAN.

s (str) [const char *] Convert a Unicode object to a C pointer to a character string. A pointer to an existing string
is stored in the character pointer variable whose address you pass. The C string is NUL-terminated. The Python
string must not contain embedded NUL bytes; if it does, a TypeError exception is raised. Unicode objects
are converted to C strings using ut £-8 encoding. If this conversion fails, a UnicodeError is raised.

Note: This format does not accept bytes-like objects. If you want to accept filesystem paths and convert them
to C character strings, it is preferable to use the O& format with PyUnicode_FSConverter () as converter.

5.6. Parsing arguments and building values 33

The Python/C API, Release 3.2.6

s (str,bytes, bytearray or buffer compatible object) [Py_buffer] This format accepts Unicode objects as
well as objects supporting the buffer protocol. It fills a Py_buf fer structure provided by the caller. In this
case the resulting C string may contain embedded NUL bytes. Unicode objects are converted to C strings using
"ut£-8’ encoding.

s# (str, bytes or read-only buffer compatible object) [const char *, int or Py_ssize_t] Like s*, except
that it doesn’t accept mutable buffer-like objects such as bytearray. The result is stored into two C vari-
ables, the first one a pointer to a C string, the second one its length. The string may contain embedded null
bytes. Unicode objects are converted to C strings using ' ut £-8’ encoding.

z (str or None) [const char *] Like s, but the Python object may also be None, in which case the C pointer is set
to NULL.

z* (str, bytes, bytearray, buffer compatible object or None) [Py_buffer] Like s+, but the Python object
may also be None, in which case the buf member of the Py_buf fer structure is set to NULL.

z# (str, bytes, read-only buffer compatible object or None) [const char *, int] Like s#, but the Python object
may also be None, in which case the C pointer is set to NULL.

y (bytes) [const char *] This format converts a bytes-like object to a C pointer to a character string; it does not
accept Unicode objects. The bytes buffer must not contain embedded NUL bytes; if it does, a TypeError
exception is raised.

y* (bytes, bytearray or buffer compatible object) [Py_buffer] This variant on s+ doesn’t accept Unicode ob-
jects, only objects supporting the buffer protocol. This is the recommended way to accept binary data.

y# (bytes) [const char *, int] This variant on s# doesn’t accept Unicode objects, only bytes-like objects.

S (bytes) [PyBytesObject *] Requires that the Python object is a bytes object, without attempting any con-
version. Raises TypeError if the object is not a bytes object. The C variable may also be declared as
PyObject *.

Y (bytearray) [PyByteArrayObject *] Requires that the Python object is a byt earray object, without attempt-
ing any conversion. Raises TypeError if the object is not a bytearray object. The C variable may also be
declared as PyOb ject *.

u (str) [Py_UNICODE *] Convert a Python Unicode object to a C pointer to a NUL-terminated buffer of Unicode
characters. You must pass the address of a Py_UNICODE pointer variable, which will be filled with the pointer
to an existing Unicode buffer. Please note that the width of a Py_ UNICODE character depends on compilation
options (it is either 16 or 32 bits). The Python string must not contain embedded NUL characters; if it does, a
TypeError exception is raised.

Note: Since u doesn’t give you back the length of the string, and it may contain embedded NUL characters, it
is recommended to use u# or U instead.

u# (str) [Py_UNICODE #, int] This variant on u stores into two C variables, the first one a pointer to a Unicode
data buffer, the second one its length.

Z (str or None) [Py_UNICODE *] Like u, but the Python object may also be None, in which case the
Py_UNICODE pointer is set to NULL.

Z# (str or None) [Py_UNICODE *, int] Like u#, but the Python object may also be None, in which case the
Py_UNICODE pointer is set to NULL.

U (str) [PyUnicodeObject *] Requires that the Python object is a Unicode object, without attempting any con-
version. Raises TypeError if the object is not a Unicode object. The C variable may also be declared as
PyObject *.

w* (bytearray or read-write byte-oriented buffer) [Py_buffer] This format accepts any object which imple-
ments the read-write buffer interface. It fills a Py_buf fer structure provided by the caller. The buffer may

34 Chapter 5. Utilities

The Python/C API, Release 3.2.6

contain embedded null bytes. The caller have to call PyBuffer_ Release () when itis done with the buffer.

es (str) [const char *encoding, char **buffer] This variant on s is used for encoding Unicode into a character
buffer. It only works for encoded data without embedded NUL bytes.

This format requires two arguments. The first is only used as input, and must be a const char* which points
to the name of an encoding as a NUL-terminated string, or NULL, in which case ’ ut £-8’ encoding is used.
An exception is raised if the named encoding is not known to Python. The second argument must be a char* «;
the value of the pointer it references will be set to a buffer with the contents of the argument text. The text will
be encoded in the encoding specified by the first argument.

PyArg_ParseTuple () will allocate a buffer of the needed size, copy the encoded data into this buffer and
adjust *buffer to reference the newly allocated storage. The caller is responsible for calling PyMem_Free ()
to free the allocated buffer after use.

et (str,bytes or bytearray) [const char *encoding, char **buffer] Same as es except that byte string ob-
jects are passed through without recoding them. Instead, the implementation assumes that the byte string object
uses the encoding passed in as parameter.

es# (str) [const char *encoding, char **buffer, int *buffer_length] This variant on s# is used for encoding Uni-
code into a character buffer. Unlike the e s format, this variant allows input data which contains NUL characters.

It requires three arguments. The first is only used as input, and must be a const charx which points to the
name of an encoding as a NUL-terminated string, or NULL, in which case ' ut -8’ encoding is used. An
exception is raised if the named encoding is not known to Python. The second argument must be a char*x;
the value of the pointer it references will be set to a buffer with the contents of the argument text. The text will
be encoded in the encoding specified by the first argument. The third argument must be a pointer to an integer;
the referenced integer will be set to the number of bytes in the output buffer.

There are two modes of operation:

If *buffer points a NULL pointer, the function will allocate a buffer of the needed size, copy the encoded data
into this buffer and set *buffer to reference the newly allocated storage. The caller is responsible for calling
PyMem_Free () to free the allocated buffer after usage.

If *buffer points to a non-NULL pointer (an already allocated buffer), PyArg_ParseTuple () will use this
location as the buffer and interpret the initial value of *buffer_length as the buffer size. It will then copy the
encoded data into the buffer and NUL-terminate it. If the buffer is not large enough, a ValueError will be
set.

In both cases, *buffer_length is set to the length of the encoded data without the trailing NUL byte.

et# (str,bytes or bytearray) [const char *encoding, char **buffer, int *buffer_length] Same as es# ex-
cept that byte string objects are passed through without recoding them. Instead, the implementation assumes
that the byte string object uses the encoding passed in as parameter.

Numbers
b (int) [unsigned char] Convert a nonnegative Python integer to an unsigned tiny int, stored in a C unsigned
char.

B (int) [unsigned char] Convert a Python integer to a tiny int without overflow checking, stored in a C unsigned
char.

h (int) [short int] Convert a Python integer to a C short int.
H (int) [unsigned short int] Convert a Python integer toa C unsigned short int, withoutoverflow checking.
i (int) [int] Convert a Python integer to a plain C int.

I (int) [unsigned int] Convert a Python integer to a C unsigned int, without overflow checking.

5.6. Parsing arguments and building values 35

The Python/C API, Release 3.2.6

1 (int) [long int] Convert a Python integer toa C long int.
k (int) [unsigned long] Convert a Python integer to a C unsigned long without overflow checking.

L (int) [PY_LONG_LONG] Convert a Python integer to a C 1long long. This format is only available on plat-
forms that support long long (or _int 64 on Windows).

K (int) [unsigned PY_LONG_LONG] Convert a Python integer to a C unsigned long long without over-
flow checking. This format is only available on platforms that support unsigned long long (or
unsigned _int64 on Windows).

n (int) [Py_ssize_t] Convert a Python integertoa C Py_ssize_t.

c (bytes of length 1) [char] Convert a Python byte, represented as a bytes object of length 1, to a C char.
C (str of length 1) [int] Convert a Python character, represented as a st r object of length 1, to a C int.

f (float) [float] Convert a Python floating point number to a C float.

d (float) [double] Convert a Python floating point number to a C double.

D (complex) [Py_complex] Convert a Python complex number to a C Py_complex structure.

Other objects

O (object) [PyObject *] Store a Python object (without any conversion) in a C object pointer. The C program thus
receives the actual object that was passed. The object’s reference count is not increased. The pointer stored is
not NULL.

0! (object) [typeobject, PyObject *] Store a Python object in a C object pointer. This is similar to O, but takes two
C arguments: the first is the address of a Python type object, the second is the address of the C variable (of
type PyOb ject «) into which the object pointer is stored. If the Python object does not have the required type,
TypeError is raised.

0& (object) [converter, anything] Convert a Python object to a C variable through a converter function. This takes
two arguments: the first is a function, the second is the address of a C variable (of arbitrary type), converted to
void =. The converter function in turn is called as follows:

status = converter (object, address);

where object is the Python object to be converted and address is the void* argument that was passed to
the PyArg_Parsex () function. The returned starus should be 1 for a successful conversion and 0O if the
conversion has failed. When the conversion fails, the converter function should raise an exception and leave the
content of address unmodified.

If the converter returns Py_CLEANUP_SUPPORTED, it may get called a second time if the argument parsing
eventually fails, giving the converter a chance to release any memory that it had already allocated. In this second
call, the object parameter will be NULL; address will have the same value as in the original call. Changed in
version 3.1: Py_CLEANUP_SUPPORTED was added.

(items) (tuple) [matching-items] The object must be a Python sequence whose length is the number of format
units in items. The C arguments must correspond to the individual format units in items. Format units for
sequences may be nested.

It is possible to pass “long” integers (integers whose value exceeds the platform’s LONG_MAX) however no proper
range checking is done — the most significant bits are silently truncated when the receiving field is too small to
receive the value (actually, the semantics are inherited from downcasts in C — your mileage may vary).

A few other characters have a meaning in a format string. These may not occur inside nested parentheses. They are:

36 Chapter 5. Utilities

The Python/C API, Release 3.2.6

| Indicates that the remaining arguments in the Python argument list are optional. The C variables corresponding to
optional arguments should be initialized to their default value — when an optional argument is not specified,
PyArg_ParseTuple () does not touch the contents of the corresponding C variable(s).

: The list of format units ends here; the string after the colon is used as the function name in error messages (the
“associated value” of the exception that PyArg_ParseTuple () raises).

; The list of format units ends here; the string after the semicolon is used as the error message instead of the default
error message. : and ; mutually exclude each other.

Note that any Python object references which are provided to the caller are borrowed references; do not decrement
their reference count!

Additional arguments passed to these functions must be addresses of variables whose type is determined by the format
string; these are used to store values from the input tuple. There are a few cases, as described in the list of format units
above, where these parameters are used as input values; they should match what is specified for the corresponding
format unit in that case.

For the conversion to succeed, the arg object must match the format and the format must be exhausted. On success, the
PyArg_Parsex () functions return true, otherwise they return false and raise an appropriate exception. When the
PyArg_Parsex () functions fail due to conversion failure in one of the format units, the variables at the addresses
corresponding to that and the following format units are left untouched.

API Functions

int PyArg_ParseTuple (PyObject *args, const char *format, ...)
Parse the parameters of a function that takes only positional parameters into local variables. Returns true on
success; on failure, it returns false and raises the appropriate exception.

int PyArg_VaParse (PyObject *args, const char *format, va_list vargs)
Identical to PyArg_ParseTuple (), except that it accepts a va_list rather than a variable number of argu-
ments.

int PyArg ParseTupleAndKeywords (PyObject *args, PyObject *kw, const char *format, char *key-

words[], ...)
Parse the parameters of a function that takes both positional and keyword parameters into local variables. Re-

turns true on success; on failure, it returns false and raises the appropriate exception.

int PyArg VaParseTupleAndKeywords (PyObject *args, PyObject *kw, const char *format, char *key-

words[], va_list vargs)
Identical to PyArg_ParseTupleAndKeywords (), except that it accepts a va_list rather than a variable

number of arguments.

int PyArg ValidateKeywordArguments (PyObject *)
Ensure that the keys in the keywords argument dictionary are strings. This is only needed if
PyArg_ParseTupleAndKeywords () is not used, since the latter already does this check. New in ver-
sion 3.2.

int PyArg_Parse (PyObject *args, const char *format, ...)
Function used to deconstruct the argument lists of “old-style” functions — these are functions which use the
METH_OLDARGS parameter parsing method. This is not recommended for use in parameter parsing in new
code, and most code in the standard interpreter has been modified to no longer use this for that purpose. It does
remain a convenient way to decompose other tuples, however, and may continue to be used for that purpose.

int PyArg_UnpackTuple (PyObject *args, const char *name, Py_ssize_t min, Py_ssize_t max, ...)
A simpler form of parameter retrieval which does not use a format string to specify the types of the arguments.
Functions which use this method to retrieve their parameters should be declared as METH_ VARARGS in function
or method tables. The tuple containing the actual parameters should be passed as args; it must actually be
a tuple. The length of the tuple must be at least min and no more than max; min and max may be equal.

5.6. Parsing arguments and building values 37

The Python/C API, Release 3.2.6

Additional arguments must be passed to the function, each of which should be a pointer to a PyOb ject
variable; these will be filled in with the values from args; they will contain borrowed references. The variables
which correspond to optional parameters not given by args will not be filled in; these should be initialized by
the caller. This function returns true on success and false if args is not a tuple or contains the wrong number of
elements; an exception will be set if there was a failure.

This is an example of the use of this function, taken from the sources for the _weakref helper module for
weak references:

static PyObject =
weakref_ref (PyObject xself, PyObject =xargs)
{

PyObject xobject;

PyObject xcallback = NULL;

PyObject xresult = NULL;

if (PyArg_UnpackTuple (args, "ref", 1, 2, &object, &callback)) {
result = PyWeakref_NewRef (object, callback);
}

return result;

The call to PyArg UnpackTuple () in this example is entirely equivalent to this call to
PyArg_ParseTuple():

PyArg_ParseTuple (args, "O|O:ref", &object, &callback)

5.6.2 Building values

PyObject* Py_BuildValue (const char *format, ...)

Return value: New reference.

Create a new value based on a format string similar to those accepted by the PyArg_Parsex () family of
functions and a sequence of values. Returns the value or NULL in the case of an error; an exception will be
raised if NULL is returned.

Py_BuildvValue () does not always build a tuple. It builds a tuple only if its format string contains two or
more format units. If the format string is empty, it returns None; if it contains exactly one format unit, it returns
whatever object is described by that format unit. To force it to return a tuple of size 0 or one, parenthesize the
format string.

When memory buffers are passed as parameters to supply data to build objects, as for the s and s# for-
mats, the required data is copied. Buffers provided by the caller are never referenced by the objects cre-
ated by Py_BuildValue (). In other words, if your code invokes malloc () and passes the allo-
cated memory to Py_BuildValue (), your code is responsible for calling free () for that memory once
Py_BuildValue () returns.

In the following description, the quoted form is the format unit; the entry in (round) parentheses is the Python
object type that the format unit will return; and the entry in [square] brackets is the type of the C value(s) to be
passed.

The characters space, tab, colon and comma are ignored in format strings (but not within format units such as
s#). This can be used to make long format strings a tad more readable.

s (str or None) [char *] Convert a null-terminated C string to a Python st r object using ' ut £-8’ encod-
ing. If the C string pointer is NULL, None is used.

38

Chapter 5. Utilities

The Python/C API, Release 3.2.6

s# (str or None) [char #, int] Convert a C string and its length to a Python str object using " ut£-8’
encoding. If the C string pointer is NULL, the length is ignored and None is returned.

y (bytes) [char *] This converts a C string to a Python bytes () object. If the C string pointer is NULL,
None is returned.

y# (bytes) [char *, int] This converts a C string and its lengths to a Python object. If the C string pointer is
NULL, None is returned.

z (str or None) [char *] Same as s.
z# (str or None) [char *, int] Same as s#.

u (str) [Py_UNICODE *] Convert a null-terminated buffer of Unicode (UCS-2 or UCS-4) data to a Python
Unicode object. If the Unicode buffer pointer is NULL, None is returned.

u# (str) [Py_UNICODE #, int] Convert a Unicode (UCS-2 or UCS-4) data buffer and its length to a Python
Unicode object. If the Unicode buffer pointer is NULL, the length is ignored and None is returned.

U (str or None) [char *] Same as s.

U# (str or None) [char *, int] Same as s#.

i (int) [int] Convert a plain C int to a Python integer object.

b (int) [char] Convert a plain C char to a Python integer object.

h (int) [short int] Convert a plain C short int to a Python integer object.

1 (int) [long int] Converta C 1long int to a Python integer object.

B (int) [unsigned char] Converta C unsigned char to a Python integer object.

H (int) [unsigned short int] Convert a C unsigned short int to a Python integer object.
I (int) [unsigned int] Convert a C unsigned int to a Python integer object.

k (int) [unsigned long] Convert a C unsigned long to a Python integer object.

L (int) [PY_LONG_LONG] Convert a C long long to a Python integer object. Only available on plat-
forms that support long long (or _int 64 on Windows).

K (int) [unsigned PY_LONG_LONG] Convert a C unsigned long long to a Python integer object.
Only available on platforms that support unsigned long long (or unsigned _int64 on Win-
dows).

n (int) [Py_ssize_t] Converta C Py_ssize_t to a Python integer.

c (bytes of length 1) [char] Convert a C int representing a byte to a Python bytes object of length 1.
C (str of length 1) [int] Convert a C int representing a character to Python st r object of length 1.

d (float) [double] Converta C double to a Python floating point number.

f (float) [float] Convert a C f1loat to a Python floating point number.

D (complex) [Py_complex *] Converta C Py_complex structure to a Python complex number.

O (object) [PyObject *] Pass a Python object untouched (except for its reference count, which is incremented
by one). If the object passed in is a NULL pointer, it is assumed that this was caused because the call
producing the argument found an error and set an exception. Therefore, Py_Buildvalue () will return
NULL but won’t raise an exception. If no exception has been raised yet, SystemError is set.

S (object) [PyObject *] Same as O.

N (object) [PyObject *] Same as O, except it doesn’t increment the reference count on the object. Useful when
the object is created by a call to an object constructor in the argument list.

5.6. Parsing arguments and building values 39

The Python/C API, Release 3.2.6

O& (object) [converter, anything] Convert anything to a Python object through a converter function. The func-
tion is called with anything (which should be compatible with void) as its argument and should return
a “new” Python object, or NULL if an error occurred.

(items) (tuple) [matching-items] Convert a sequence of C values to a Python tuple with the same number
of items.

[items] (1ist) [matching-items] Convert a sequence of C values to a Python list with the same number of
items.

{items} (dict) [matching-items] Convert a sequence of C values to a Python dictionary. Each pair of con-
secutive C values adds one item to the dictionary, serving as key and value, respectively.

If there is an error in the format string, the SystemError exception is set and NULL returned.

PyObject* Py_VaBuildValue (const char *format, va_list vargs)
Identical to Py_BuildvValue (), except that it accepts a va_list rather than a variable number of arguments.

5.7 String conversion and formatting

Functions for number conversion and formatted string output.

int PyOS_snprint £ (char *str, size_t size, const char *format, ...)
Output not more than size bytes to str according to the format string format and the extra arguments. See the
Unix man page snprintf (2).

int PyOS_vsnprint£ (char *str, size_t size, const char *format, va_list va)
Output not more than size bytes to str according to the format string format and the variable argument list va.
Unix man page vsnprintf (2).

PyOS_snprintf () and PyOS_vsnprintf () wrap the Standard C library functions snprintf () and
vsnprintf (). Their purpose is to guarantee consistent behavior in corner cases, which the Standard C functions
do not.

The wrappers ensure that str*[*size-1] is always ’ \ 0’ upon return. They never write more than size bytes (including
the trailing * \ 0) into str. Both functions require that str != NULL, size > 0Oand format != NULL.

If the platform doesn’t have vsnprintf () and the buffer size needed to avoid truncation exceeds size by more than
512 bytes, Python aborts with a Py_FatalError.

The return value (rv) for these functions should be interpreted as follows:

e When 0 <= rv < size, the output conversion was successful and rv characters were written to str (exclud-
ing the trailing * \ 0’ byte at str*[*rv]).

* When rv >= size, the output conversion was truncated and a buffer with rv + 1 bytes would have been
needed to succeed. str¥[*size-1]is \ 0’ in this case.

e When rv < 0, “something bad happened.” str*[*size-1] is \0’ in this case too, but the rest of str is unde-
fined. The exact cause of the error depends on the underlying platform.

The following functions provide locale-independent string to number conversions.

double PyOS_string to_double (const char *s, char **endptr, PyObject *overflow_exception)
Convert a string s to a double, raising a Python exception on failure. The set of accepted strings corresponds
to the set of strings accepted by Python’s f1oat () constructor, except that s must not have leading or trailing
whitespace. The conversion is independent of the current locale.

If endptr is NULL, convert the whole string. Raise ValueError and return -1 . 0 if the string is not a valid
representation of a floating-point number.

40 Chapter 5. Utilities

The Python/C API, Release 3.2.6

If endptr is not NULL, convert as much of the string as possible and set xendpt r to point to the first unconverted
character. If no initial segment of the string is the valid representation of a floating-point number, set xendptr
to point to the beginning of the string, raise ValueError, and return -1 . 0.

If s represents a value that is too large to store in a float (for example, "1e500" is such a string on many
platforms) then if overflow_exception is NULL return Py_HUGE_VAL (with an appropriate sign) and
don’t set any exception. Otherwise, overflow_exception must point to a Python exception object; raise
that exception and return —1 . 0. In both cases, set xendptr to point to the first character after the converted
value.

If any other error occurs during the conversion (for example an out-of-memory error), set the appropriate Python
exception and return -1 . 0. New in version 3.1.

char* PyOS_double_to_string (double val, char format_code, int precision, int flags, int *ptype)
Convert a double val to a string using supplied format_code, precision, and flags.

format_code mustbe oneof "e’,"E’, " £/, 'F',"g’,’G" or " r'. For ' r’, the supplied precision must be
0 and is ignored. The ’ r’ format code specifies the standard repr () format.

flags can be zero or more of the values Py_DTSF_SIGN, Py_DTSF_ADD_DOT_0, or Py_DTSF_ALT, or-ed
together:

*Py_DTSF_SIGN means to always precede the returned string with a sign character, even if val is non-
negative.

*Py_DTSF_ADD_DOT_0 means to ensure that the returned string will not look like an integer.

*Py_DTSF_ALT means to apply “alternate” formatting rules. See the documentation for the
PyOS_snprintf () ’#’ specifier for details.

If ptype is non-NULL, then the value it points to will be set to one of Py_DTST_FINITE, Py_DTST_INFINITE,
or Py_DTST_NAN, signifying that val is a finite number, an infinite number, or not a number, respectively.

The return value is a pointer to buffer with the converted string or NULL if the conversion failed. The caller is
responsible for freeing the returned string by calling PyMem_Free (). New in version 3.1.

char* PyOS_stricmp (char *s/, char *s2)
Case insensitive comparison of strings. The function works almost identically to strcmp () except that it
ignores the case.

char* PyOS_strnicmp (char *s/, char *s2, Py_ssize_t size)
Case insensitive comparison of strings. The function works almost identically to strncmp () except that it
ignores the case.

5.8 Reflection

PyObject* PyEval_GetBuiltins ()
Return value: Borrowed reference.
Return a dictionary of the builtins in the current execution frame, or the interpreter of the thread state if no frame
is currently executing.

PyObject* PyEval_GetLocals ()
Return value: Borrowed reference.
Return a dictionary of the local variables in the current execution frame, or NULL if no frame is currently
executing.

PyObject* PyEval_GetGlobals ()
Return value: Borrowed reference.

5.8. Reflection 41

The Python/C API, Release 3.2.6

Return a dictionary of the global variables in the current execution frame, or NULL if no frame is currently
executing.

PyFrameObject* PyEval_GetFrame ()
Return value: Borrowed reference.
Return the current thread state’s frame, which is NULL if no frame is currently executing.

int PyFrame_GetLineNumber (PyFrameObject *frame)
Return the line number that frame is currently executing.

const char* PyEval_GetFuncName (PyObject *func)
Return the name of func if it is a function, class or instance object, else the name of funcs type.

const char* PyEval_GetFuncDesc (PyObject *func)
Return a description string, depending on the type of func. Return values include “()” for functions and methods,

” constructor”, ” instance”, and ” object”. Concatenated with the result of PyEval_GetFuncName (), the
result will be a description of func.

5.9 Codec registry and support functions

int PyCodec_Register (PyObject *search_function)
Register a new codec search function.

As side effect, this tries to load the encodings package, if not yet done, to make sure that it is always first in
the list of search functions.

int PyCodec_KnownEncoding (const char *encoding)
Return 1 or 0 depending on whether there is a registered codec for the given encoding.

PyObject* PyCodec_Encode (PyObject *object, const char *encoding, const char *errors)
Generic codec based encoding API.

object is passed through the encoder function found for the given encoding using the error handling method de-
fined by errors. errors may be NULL to use the default method defined for the codec. Raises a LookupError
if no encoder can be found.

PyObject* PyCodec_Decode (PyObject *object, const char *encoding, const char *errors)
Generic codec based decoding API.

object is passed through the decoder function found for the given encoding using the error handling method de-
fined by errors. errors may be NULL to use the default method defined for the codec. Raises a LookupError
if no encoder can be found.

5.9.1 Codec lookup API

In the following functions, the encoding string is looked up converted to all lower-case characters, which makes
encodings looked up through this mechanism effectively case-insensitive. If no codec is found, a KeyError is set
and NULL returned.

PyObject* PyCodec_Encoder (const char *encoding)
Get an encoder function for the given encoding.

PyObject* PyCodec_Decoder (const char *encoding)
Get a decoder function for the given encoding.

PyObject* PyCodec_IncrementalEncoder (const char *encoding, const char *errors)
Getan IncrementalEncoder object for the given encoding.

42 Chapter 5. Utilities

The Python/C API, Release 3.2.6

PyObject* PyCodec_IncrementalDecoder (const char *encoding, const char *errors)
Getan IncrementalDecoder object for the given encoding.

PyObject* PyCodec_StreamReader (const char *encoding, PyObject *stream, const char *errors)
Get a St reamReader factory function for the given encoding.

PyObject* PyCodec_StreamWriter (const char *encoding, PyObject *stream, const char *errors)
Geta StreamWriter factory function for the given encoding.

5.9.2 Registry API for Unicode encoding error handlers

int PyCodec_RegisterError (const char *name, PyObject *error)
Register the error handling callback function error under the given name. This callback function will be called
by a codec when it encounters unencodable characters/undecodable bytes and name is specified as the error
parameter in the call to the encode/decode function.

The callback gets a single argument, an instance of UnicodeEncodeError, UnicodeDecodeError or
UnicodeTranslateError that holds information about the problematic sequence of characters or bytes
and their offset in the original string (see Unicode Exception Objects for functions to extract this information).
The callback must either raise the given exception, or return a two-item tuple containing the replacement for the
problematic sequence, and an integer giving the offset in the original string at which encoding/decoding should
be resumed.

Return 0 on success, —1 on error.

PyObject* PyCodec_LookupError (const char *name)
Lookup the error handling callback function registered under name. As a special case NULL can be passed, in
which case the error handling callback for “strict” will be returned.

PyObject* PyCodec_StrictErrors (PyObject *exc)
Raise exc as an exception.

PyObject* PyCodec_IgnoreErrors (PyObject *exc)
Ignore the unicode error, skipping the faulty input.

PyObject* PyCodec_ReplaceErrors (PyObject *exc)
Replace the unicode encode error with ? or U+FFFED.

PyObject* PyCodec_XMLCharRefReplaceErrors (PyObject *exc)
Replace the unicode encode error with XML character references.

PyObject* PyCodec_BackslashReplaceErrors (PyObject *exc)
Replace the unicode encode error with backslash escapes (\x, \u and \U).

5.9. Codec registry and support functions 43

The Python/C API, Release 3.2.6

44 Chapter 5. Utilities

CHAPTER
SIX

ABSTRACT OBJECTS LAYER

The functions in this chapter interact with Python objects regardless of their type, or with wide classes of object types
(e.g. all numerical types, or all sequence types). When used on object types for which they do not apply, they will
raise a Python exception.

It is not possible to use these functions on objects that are not properly initialized, such as a list object that has been
created by PyList_New (), but whose items have not been set to some non-NULL value yet.

6.1 Object Protocol

int PyObject_Print (PyObject *o, FILE *fp, int flags)
Print an object o, on file fp. Returns -1 on error. The flags argument is used to enable certain printing options.
The only option currently supported is Py_PRINT_RAW; if given, the st r () of the object is written instead of
the repr ().

int PyObject_HasAttr (PyObject *o, PyObject *attr_name)
Returns 1 if o has the attribute attr_name, and 0 otherwise. This is equivalent to the Python expression
hasattr (o, attr_name). This function always succeeds.

int PyObject_HasAttrString (PyObject *o, const char *attr_name)
Returns 1 if o has the attribute attr_name, and 0 otherwise. This is equivalent to the Python expression
hasattr (o, attr_name). This function always succeeds.

PyObject* PyObject_GetAttr (PyObject *o, PyObject *attr_name)
Return value: New reference.
Retrieve an attribute named attr_name from object o. Returns the attribute value on success, or NULL on failure.
This is the equivalent of the Python expression o.attr_name.

PyObject* PyObject_GetAttrString (PyObject *o, const char *attr_name)
Return value: New reference.
Retrieve an attribute named attr_name from object o. Returns the attribute value on success, or NULL on failure.
This is the equivalent of the Python expression o.attr_name.

PyObject* PyObject_GenericGetAttr (PyObject *o, PyObject *name)
Generic attribute getter function that is meant to be put into a type object’s tp_getattro slot. It looks for
a descriptor in the dictionary of classes in the object’s MRO as well as an attribute in the object’s __dict___
(if present). As outlined in descriptors, data descriptors take preference over instance attributes, while non-data
descriptors don’t. Otherwise, an AttributeError is raised.

int PyObject_SetAttr (PyObject *o, PyObject *attr_name, PyObject *v)
Set the value of the attribute named attr_name, for object o, to the value v. Returns —1 on failure. This is the
equivalent of the Python statement 0. attr_name = wv.

45

The Python/C API, Release 3.2.6

int PyObject_SetAttrString (PyObject *o, const char *attr_name, PyObject *v)
Set the value of the attribute named attr_name, for object o, to the value v. Returns —1 on failure. This is the
equivalent of the Python statement 0. attr_name = wv.

int PyObject_ GenericSetAttr (PyObject *o, PyObject *name, PyObject *value)
Generic attribute setter function that is meant to be put into a type object’s tp_setattro slot. It looks for
a data descriptor in the dictionary of classes in the object’s MRO, and if found it takes preference over setting
the attribute in the instance dictionary. Otherwise, the attribute is set in the object’s __dict___ (if present).
Otherwise, an AttributeError is raised and —1 is returned.

int PyObject_DelAttr (PyObject *o, PyObject *attr_name)
Delete attribute named attr_name, for object 0. Returns —1 on failure. This is the equivalent of the Python
statement del o.attr_name.

int PyObject_DelAttrString (PyObject *o, const char *attr_name)
Delete attribute named attr_name, for object 0. Returns —1 on failure. This is the equivalent of the Python
statement del o.attr_name.

PyObject* PyObject_RichCompare (PyObject *ol, PyObject *02, int opid)
Return value: New reference.
Compare the values of 0/ and 02 using the operation specified by opid, which must be one of Py_LT, Py_LE,
Py_EQ, Py_NE, Py_GT, or Py_GE, corresponding to <, <=, ==, ! = >, or >= respectively. This is the equiv-
alent of the Python expression o1 op 02, where op is the operator corresponding to opid. Returns the value
of the comparison on success, or NULL on failure.

int PyObject_RichCompareBool (PyObject *ol, PyObject *02, int opid)
Compare the values of 0/ and 02 using the operation specified by opid, which must be one of Py_LT, Py_LE,
Py_EQ, Py_NE, Py_GT, or Py_GE, corresponding to <, <=, ==, !=, >, or >= respectively. Returns —1 on
error, O if the result is false, 1 otherwise. This is the equivalent of the Python expression o1 op 02, where op
is the operator corresponding to opid.

Note: If 0] and 02 are the same object, PyObject_RichCompareBool () will always return 1 for Py_EQ and
0 for Py_NE.

PyObject* PyObject_Repr (PyObject *0)
Return value: New reference.
Compute a string representation of object 0. Returns the string representation on success, NULL on failure.
This is the equivalent of the Python expression repr (o). Called by the repr () built-in function.

PyObject* PyObject_ASCII (PyObject *0)
As PyObject_Repr (), compute a string representation of object o, but escape the non-ASCII characters in
the string returned by PyOb ject_Repr () with \x, \u or \U escapes. This generates a string similar to that
returned by PyObject_Repr () in Python 2. Called by the ascii () built-in function.

PyObject* PyObject_Str (PyObject *o)
Return value: New reference.
Compute a string representation of object o. Returns the string representation on success, NULL on failure.
This is the equivalent of the Python expression str (o). Called by the st r () built-in function and, therefore,
by the print () function.

PyObject* PyObject_Bytes (PyObject *0)
Compute a bytes representation of object 0. NULL is returned on failure and a bytes object on success. This is
equivalent to the Python expression bytes (o), when o is not an integer. Unlike bytes (o), a TypeError is
raised when o is an integer instead of a zero-initialized bytes object.

int PyObject_IsInstance (PyObject *inst, PyObject *cls)
Returns 1 if inst is an instance of the class cls or a subclass of cls, or 0 if not. On error, returns —1 and sets an
exception. If cls is a type object rather than a class object, PyObject_IsInstance () returns 1 if inst is of

46 Chapter 6. Abstract Objects Layer

The Python/C API, Release 3.2.6

type cls. If cls is a tuple, the check will be done against every entry in cls. The result will be 1 when at least one
of the checks returns 1, otherwise it will be 0. If inst is not a class instance and cls is neither a type object, nor
a class object, nor a tuple, inst must have a ___class___ attribute — the class relationship of the value of that
attribute with cls will be used to determine the result of this function.

Subclass determination is done in a fairly straightforward way, but includes a wrinkle that implementors of extensions
to the class system may want to be aware of. If A and B are class objects, B is a subclass of A if it inherits from A
either directly or indirectly. If either is not a class object, a more general mechanism is used to determine the class
relationship of the two objects. When testing if B is a subclass of A, if A is B, PyObject_IsSubclass () returns
true. If A and B are different objects, B‘s __ _bases___ attribute is searched in a depth-first fashion for A — the
presence of the __bases___ attribute is considered sufficient for this determination.

int PyObject_IsSubclass (PyObject *derived, PyObject *cls)
Returns 1 if the class derived is identical to or derived from the class cls, otherwise returns 0. In case of an
error, returns —1. If cls is a tuple, the check will be done against every entry in cls. The result will be 1 when at
least one of the checks returns 1, otherwise it will be 0. If either derived or cls is not an actual class object (or
tuple), this function uses the generic algorithm described above.

int PyCallable_Check (PyObject *0)
Determine if the object o is callable. Return 1 if the object is callable and O otherwise. This function always
succeeds.

PyObject* PyObject_Call (PyObject *callable_object, PyObject *args, PyObject *kw)
Return value: New reference.
Call a callable Python object callable_object, with arguments given by the tuple args, and named arguments
given by the dictionary kw. If no named arguments are needed, kw may be NULL. args must not be NULL, use
an empty tuple if no arguments are needed. Returns the result of the call on success, or NULL on failure. This
is the equivalent of the Python expression callable_object (xargs, *xkw).

PyObject* PyObject_CallObiject (PyObject *callable_object, PyObject *args)
Return value: New reference.
Call a callable Python object callable_object, with arguments given by the tuple args. If no arguments are
needed, then args may be NULL. Returns the result of the call on success, or NULL on failure. This is the
equivalent of the Python expression callable_object (xargs).

PyObject* PyObject_CallFunction (PyObject *callable, char *format, ...)
Return value: New reference.
Call a callable Python object callable, with a variable number of C arguments. The C arguments are de-
scribed using a Py_BuildValue () style format string. The format may be NULL, indicating that no ar-
guments are provided. Returns the result of the call on success, or NULL on failure. This is the equiv-
alent of the Python expression callable (xrargs). Note that if you only pass PyObject =« args,
PyObject_CallFunctionObjArgs () is a faster alternative.

PyObject* PyObject_CallMethod (PyObject *o, char *method, char *format, ...)
Return value: New reference.
Call the method named method of object o with a variable number of C arguments. The C arguments are
described by a Py_Buildvalue () format string that should produce a tuple. The format may be NULL,
indicating that no arguments are provided. Returns the result of the call on success, or NULL on failure. This
is the equivalent of the Python expression o .method (args) . Note that if you only pass PyOb ject « args,
PyObject_CallMethodObjArgs () is a faster alternative.

PyObject* PyObject_CallFunctionObjArgs (PyObject *callable, ..., NULL)
Return value: New reference.
Call a callable Python object callable, with a variable number of PyOb ject « arguments. The arguments are
provided as a variable number of parameters followed by NULL. Returns the result of the call on success, or
NULL on failure.

PyObject* PyObject_CallMethodObjArgs (PyObject *o, PyObject *name, ..., NULL)

6.1. Object Protocol 47

The Python/C API, Release 3.2.6

Return value: New reference.

Calls a method of the object o, where the name of the method is given as a Python string object in name. It is
called with a variable number of PyOb ject » arguments. The arguments are provided as a variable number of
parameters followed by NULL. Returns the result of the call on success, or NULL on failure.

Py_hash_t PyObject_Hash (PyObject *0)
Compute and return the hash value of an object 0. On failure, return —1. This is the equivalent of the Python
expression hash (o). Changed in version 3.2: The return type is now Py_hash_t. This is a signed integer the
same size as Py_ssize_t.

Py_hash_t PyObject_HashNotImplemented (PyObject *o)
Set a TypeError indicating that type (o) is not hashable and return —1. This function receives special

treatment when stored in a tp_hash slot, allowing a type to explicitly indicate to the interpreter that it is not
hashable.

int PyObject_IsTrue (PyObject *o)
Returns 1 if the object o is considered to be true, and O otherwise. This is equivalent to the Python expression
not not o. On failure, return —1.

int PyObject_Not (PyObject *0)
Returns 0 if the object o is considered to be true, and 1 otherwise. This is equivalent to the Python expression
not o. On failure, return —1.

PyObject* PyObject_Type (PyObject *0)
Return value: New reference.

When o is non-NULL, returns a type object corresponding to the object type of object 0. On failure, raises
SystemError and returns NULL. This is equivalent to the Python expression t ype (o) . This function incre-
ments the reference count of the return value. There’s really no reason to use this function instead of the common
expression o—>ob_type, which returns a pointer of type PyTypeOb ject «, except when the incremented
reference count is needed.

int PyObject_TypeCheck (PyObject *o, PyTypeObject *type)
Return true if the object o is of type type or a subtype of type. Both parameters must be non-NULL.

Py_ssize_t PyObject_Length (PyObject *0)

Py_ssize_t PyObject_Size (PyObject *0)
Return the length of object o. If the object o provides either the sequence and mapping protocols, the sequence
length is returned. On error, —1 is returned. This is the equivalent to the Python expression len (o).

PyObject* PyObject_GetItem (PyObject *o, PyObject *key)
Return value: New reference.
Return element of o corresponding to the object key or NULL on failure. This is the equivalent of the Python
expression o [key].

int PyObject_SetItem (PyObject *o, PyObject *key, PyObject *v)
Map the object key to the value v. Returns —1 on failure. This is the equivalent of the Python statement o [key]
= V.

int PyObject_DelItem (PyObject *o, PyObject *key)
Delete the mapping for key from o. Returns —1 on failure. This is the equivalent of the Python statement de 1
olkeyl].

PyObject* PyObject_Dir (PyObject *o)
Return value: New reference.
This is equivalent to the Python expression dir (o), returning a (possibly empty) list of strings appropriate for
the object argument, or NULL if there was an error. If the argument is NULL, this is like the Python dir (),
returning the names of the current locals; in this case, if no execution frame is active then NULL is returned but
PyErr_Occurred () will return false.

48 Chapter 6. Abstract Objects Layer

The Python/C API, Release 3.2.6

PyObject* PyObject_GetIter (PyObject *0)
Return value: New reference.
This is equivalent to the Python expression iter (o). It returns a new iterator for the object argument, or the
object itself if the object is already an iterator. Raises TypeError and returns NULL if the object cannot be
iterated.

6.2 Number Protocol

int PyNumber_Check (PyObject *0)
Returns 1 if the object o provides numeric protocols, and false otherwise. This function always succeeds.

PyObject* PyNumber_Add (PyObject *ol, PyObject *02)
Return value: New reference.
Returns the result of adding o/ and 02, or NULL on failure. This is the equivalent of the Python expression o1
+ o2.

PyObject* PyNumber_Subtract (PyObject *ol, PyObject *02)
Return value: New reference.
Returns the result of subtracting 02 from o1, or NULL on failure. This is the equivalent of the Python expression
ol - o2.

PyObject* PyNumber_ Multiply (PyObject *ol, PyObject *02)
Return value: New reference.
Returns the result of multiplying o/ and 02, or NULL on failure. This is the equivalent of the Python expression
ol x o2.

PyObject* PyNumber_FloorDivide (PyObject *ol, PyObject *02)
Return value: New reference.
Return the floor of o/ divided by 02, or NULL on failure. This is equivalent to the “classic” division of integers.

PyObject* PyNumber_TrueDivide (PyObject *ol, PyObject *02)
Return value: New reference.
Return a reasonable approximation for the mathematical value of o/ divided by 02, or NULL on failure. The
return value is “approximate” because binary floating point numbers are approximate; it is not possible to
represent all real numbers in base two. This function can return a floating point value when passed two integers.

PyObject* PyNumber_Remainder (PyObject *ol, PyObject *02)
Return value: New reference.
Returns the remainder of dividing o/ by 02, or NULL on failure. This is the equivalent of the Python expression

o

ol % o02.

PyObject* PyNumber_Divmod (PyObject *ol, PyObject *02)
Return value: New reference.
See the built-in function divmod () . Returns NULL on failure. This is the equivalent of the Python expression
divmod (ol, o02).

PyObject* PyNumber_ Power (PyObject *ol, PyObject *02, PyObject *03)
Return value: New reference.
See the built-in function pow (). Returns NULL on failure. This is the equivalent of the Python expression
pow (ol, 02, 03), where o3 is optional. If 03 is to be ignored, pass Py_None in its place (passing NULL
for 03 would cause an illegal memory access).

PyObject* PyNumber_Negative (PyObject *o)
Return value: New reference.
Returns the negation of o on success, or NULL on failure. This is the equivalent of the Python expression —o.

6.2. Number Protocol 49

The Python/C API, Release 3.2.6

PyObject* PyNumber_Positive (PyObject *o)
Return value: New reference.
Returns o on success, or NULL on failure. This is the equivalent of the Python expression +o.

PyObject* PyNumber_Absolute (PyObject *o)
Return value: New reference.
Returns the absolute value of o, or NULL on failure. This is the equivalent of the Python expression abs (o).

PyObject* PyNumber_Invert (PyObject *o)
Return value: New reference.
Returns the bitwise negation of o on success, or NULL on failure. This is the equivalent of the Python expression
~0.

PyObject* PyNumber_ Lshift (PyObject *ol, PyObject *02)
Return value: New reference.
Returns the result of left shifting o/ by 02 on success, or NULL on failure. This is the equivalent of the Python
expression ol << 02.

PyObject* PyNumber_ Rshift (PyObject *ol, PyObject *02)
Return value: New reference.
Returns the result of right shifting o/ by 02 on success, or NULL on failure. This is the equivalent of the Python
expression ol >> 02.

PyObject* PyNumber_And (PyObject *ol, PyObject *02)
Return value: New reference.
Returns the “bitwise and” of o/ and 02 on success and NULL on failure. This is the equivalent of the Python
expression ol & 02.

PyObject* PyNumber_Xor (PyObject *ol, PyObject *02)
Return value: New reference.
Returns the “bitwise exclusive or” of o/ by 02 on success, or NULL on failure. This is the equivalent of the
Python expression o1 ~ o2.

PyObject* PyNumber_Or (PyObject *ol, PyObject *02)
Return value: New reference.
Returns the “bitwise or” of o/ and 02 on success, or NULL on failure. This is the equivalent of the Python
expression ol | o2.

PyObject* PyNumber_InPlaceAdd (PyObject *ol, PyObject *02)
Return value: New reference.
Returns the result of adding o/ and 02, or NULL on failure. The operation is done in-place when ol supports it.
This is the equivalent of the Python statement 01 += o2.

PyObject* PyNumber_InPlaceSubtract (PyObject *ol, PyObject *02)
Return value: New reference.
Returns the result of subtracting 02 from o/, or NULL on failure. The operation is done in-place when ol
supports it. This is the equivalent of the Python statement 01 —= 02.

PyObject* PyNumber_InPlaceMultiply (PyObject *ol, PyObject *02)
Return value: New reference.
Returns the result of multiplying o/ and o2, or NULL on failure. The operation is done in-place when ol
supports it. This is the equivalent of the Python statement 01 *= o2.

PyObject* PyNumber_ InPlaceFloorDivide (PyObject *ol, PyObject *02)
Return value: New reference.
Returns the mathematical floor of dividing o/ by 02, or NULL on failure. The operation is done in-place when
ol supports it. This is the equivalent of the Python statement 01 //= o2.

PyObject* PyNumber_InPlaceTrueDivide (PyObject *ol, PyObject *02)
Return value: New reference.

50 Chapter 6. Abstract Objects Layer

The Python/C API, Release 3.2.6

Return a reasonable approximation for the mathematical value of o/ divided by 02, or NULL on failure. The
return value is “approximate” because binary floating point numbers are approximate; it is not possible to
represent all real numbers in base two. This function can return a floating point value when passed two integers.
The operation is done in-place when ol supports it.

PyObject* PyNumber_InPlaceRemainder (PyObject *ol, PyObject *02)
Return value: New reference.
Returns the remainder of dividing o/ by 02, or NULL on failure. The operation is done in-place when ol
supports it. This is the equivalent of the Python statement 01 %= 02.

PyObject* PyNumber_InPlacePower (PyObject *ol, PyObject *02, PyObject *03)
Return value: New reference.
See the built-in function pow () . Returns NULL on failure. The operation is done in-place when ol supports
it. This is the equivalent of the Python statement o1 **= 02 when 03 is Py_None, or an in-place variant
of pow (0l, 02, 03) otherwise. If 03 is to be ignored, pass Py_None in its place (passing NULL for o3
would cause an illegal memory access).

PyObject* PyNumber_InPlaceLshift (PyObject *ol, PyObject *02)
Return value: New reference.
Returns the result of left shifting 0/ by 02 on success, or NULL on failure. The operation is done in-place when
ol supports it. This is the equivalent of the Python statement o1 <<= o02.

PyObject* PyNumber_InPlaceRshift (PyObject *ol, PyObject *02)
Return value: New reference.
Returns the result of right shifting o/ by 02 on success, or NULL on failure. The operation is done in-place
when o/ supports it. This is the equivalent of the Python statement 01 >>= o02.

PyObject* PyNumber_InPlaceAnd (PyObject *ol, PyObject *02)
Return value: New reference.
Returns the “bitwise and” of o/ and 02 on success and NULL on failure. The operation is done in-place when
ol supports it. This is the equivalent of the Python statement o1 &= o2.

PyObject* PyNumber_InPlaceXor (PyObject *ol, PyObject *02)
Return value: New reference.
Returns the “bitwise exclusive or” of o/ by 02 on success, or NULL on failure. The operation is done in-place
when o/ supports it. This is the equivalent of the Python statement 01 ~= o02.

PyObject* PyNumber_InPlaceOr (PyObject *ol, PyObject *02)
Return value: New reference.
Returns the “bitwise or” of 0o/ and 02 on success, or NULL on failure. The operation is done in-place when ol
supports it. This is the equivalent of the Python statement 01 |= o02.

PyObject* PyNumber_Long (PyObject *0)
Return value: New reference.
Returns the o converted to an integer object on success, or NULL on failure. This is the equivalent of the Python
expression int (o).

PyObject* PyNumber_ Float (PyObject *0)
Return value: New reference.
Returns the o converted to a float object on success, or NULL on failure. This is the equivalent of the Python
expression float (o).

PyObject* PyNumber_Index (PyObject *0)
Returns the o converted to a Python int on success or NULL with a TypeError exception raised on failure.

PyObject* PyNumber_ToBase (PyObject *n, int base)
Returns the integer n converted to base base as a string. The base argument must be one of 2, 8, 10, or 16. For
base 2, 8, or 16, the returned string is prefixed with a base marker of 0b’, " 0o’ , or ’ 0x’, respectively. If