
What’s New in Python
Release 3.2.6

A. M. Kuchling

October 12, 2014

Python Software Foundation
Email: docs@python.org

Contents

1 PEP 384: Defining a Stable ABI iii

2 PEP 389: Argparse Command Line Parsing Module iii

3 PEP 391: Dictionary Based Configuration for Logging iv

4 PEP 3148: The concurrent.futures module v

5 PEP 3147: PYC Repository Directories vi

6 PEP 3149: ABI Version Tagged .so Files vi

7 PEP 3333: Python Web Server Gateway Interface v1.0.1 vii

8 Other Language Changes vii

9 New, Improved, and Deprecated Modules x
9.1 email . xi
9.2 elementtree . xi
9.3 functools . xii
9.4 itertools . xiii
9.5 collections . xiii
9.6 threading . xiv
9.7 datetime and time . xv
9.8 math . xv
9.9 abc . xvi
9.10 io . xvi
9.11 reprlib . xvii
9.12 logging . xvii
9.13 csv . xviii
9.14 contextlib . xviii
9.15 decimal and fractions . xix
9.16 ftp . xix
9.17 popen . xx
9.18 select . xx
9.19 gzip and zipfile . xx
9.20 tarfile . xxi
9.21 hashlib . xxi
9.22 ast . xxi

9.23 os . xxii
9.24 shutil . xxii
9.25 sqlite3 . xxiii
9.26 html . xxiii
9.27 socket . xxiii
9.28 ssl . xxiii
9.29 nntp . xxiv
9.30 certificates . xxiv
9.31 imaplib . xxiv
9.32 http.client . xxiv
9.33 unittest . xxv
9.34 random . xxvi
9.35 poplib . xxvi
9.36 asyncore . xxvi
9.37 tempfile . xxvi
9.38 inspect . xxvi
9.39 pydoc . xxvii
9.40 dis . xxvii
9.41 dbm . xxviii
9.42 ctypes . xxviii
9.43 site . xxviii
9.44 sysconfig . xxix
9.45 pdb . xxx
9.46 configparser . xxx
9.47 urllib.parse . xxxi
9.48 mailbox . xxxii
9.49 turtledemo . xxxii

10 Multi-threading xxxiii

11 Optimizations xxxiii

12 Unicode xxxiv

13 Codecs xxxiv

14 Documentation xxxv

15 IDLE xxxv

16 Code Repository xxxv

17 Build and C API Changes xxxv

18 Porting to Python 3.2 xxxvi
Indexxxxix

Author Raymond Hettinger

This article explains the new features in Python 3.2 as compared to 3.1. It focuses on a few highlights and gives a
few examples. For full details, see the Misc/NEWS file.

See Also:

PEP 392 - Python 3.2 Release Schedule

http://hg.python.org/cpython/file/3.2/Misc/NEWS
http://www.python.org/dev/peps/pep-0392

1 PEP 384: Defining a Stable ABI

In the past, extension modules built for one Python version were often not usable with other Python versions. Par-
ticularly on Windows, every feature release of Python required rebuilding all extension modules that one wanted
to use. This requirement was the result of the free access to Python interpreter internals that extension modules
could use.

With Python 3.2, an alternative approach becomes available: extension modules which restrict themselves to a
limited API (by defining Py_LIMITED_API) cannot use many of the internals, but are constrained to a set of
API functions that are promised to be stable for several releases. As a consequence, extension modules built for
3.2 in that mode will also work with 3.3, 3.4, and so on. Extension modules that make use of details of memory
structures can still be built, but will need to be recompiled for every feature release.

See Also:

PEP 384 - Defining a Stable ABI PEP written by Martin von Löwis.

2 PEP 389: Argparse Command Line Parsing Module

A new module for command line parsing, argparse, was introduced to overcome the limitations of optparse
which did not provide support for positional arguments (not just options), subcommands, required options and
other common patterns of specifying and validating options.

This module has already had widespread success in the community as a third-party module. Being more fully
featured than its predecessor, the argparse module is now the preferred module for command-line processing.
The older module is still being kept available because of the substantial amount of legacy code that depends on it.

Here’s an annotated example parser showing features like limiting results to a set of choices, specifying a metavar
in the help screen, validating that one or more positional arguments is present, and making a required option:

import argparse
parser = argparse.ArgumentParser(

description = ’Manage servers’, # main description for help
epilog = ’Tested on Solaris and Linux’) # displayed after help

parser.add_argument(’action’, # argument name
choices = [’deploy’, ’start’, ’stop’], # three allowed values
help = ’action on each target’) # help msg

parser.add_argument(’targets’,
metavar = ’HOSTNAME’, # var name used in help msg
nargs = ’+’, # require one or more targets
help = ’url for target machines’) # help msg explanation

parser.add_argument(’-u’, ’--user’, # -u or --user option
required = True, # make it a required argument
help = ’login as user’)

Example of calling the parser on a command string:

>>> cmd = ’deploy sneezy.example.com sleepy.example.com -u skycaptain’
>>> result = parser.parse_args(cmd.split())
>>> result.action
’deploy’
>>> result.targets
[’sneezy.example.com’, ’sleepy.example.com’]
>>> result.user
’skycaptain’

Example of the parser’s automatically generated help:

>>> parser.parse_args(’-h’.split())

usage: manage_cloud.py [-h] -u USER

http://www.python.org/dev/peps/pep-0384

{deploy,start,stop} HOSTNAME [HOSTNAME ...]

Manage servers

positional arguments:
{deploy,start,stop} action on each target
HOSTNAME url for target machines

optional arguments:
-h, --help show this help message and exit
-u USER, --user USER login as user

Tested on Solaris and Linux

An especially nice argparse feature is the ability to define subparsers, each with their own argument patterns
and help displays:

import argparse
parser = argparse.ArgumentParser(prog=’HELM’)
subparsers = parser.add_subparsers()

parser_l = subparsers.add_parser(’launch’, help=’Launch Control’) # first subgroup
parser_l.add_argument(’-m’, ’--missiles’, action=’store_true’)
parser_l.add_argument(’-t’, ’--torpedos’, action=’store_true’)

parser_m = subparsers.add_parser(’move’, help=’Move Vessel’, # second subgroup
aliases=(’steer’, ’turn’)) # equivalent names

parser_m.add_argument(’-c’, ’--course’, type=int, required=True)
parser_m.add_argument(’-s’, ’--speed’, type=int, default=0)

$./helm.py --help # top level help (launch and move)
$./helm.py launch --help # help for launch options
$./helm.py launch --missiles # set missiles=True and torpedos=False
$./helm.py steer --course 180 --speed 5 # set movement parameters

See Also:

PEP 389 - New Command Line Parsing Module PEP written by Steven Bethard.

upgrading-optparse-code for details on the differences from optparse.

3 PEP 391: Dictionary Based Configuration for Logging

The logging module provided two kinds of configuration, one style with function calls for each option or
another style driven by an external file saved in a ConfigParser format. Those options did not provide the
flexibility to create configurations from JSON or YAML files, nor did they support incremental configuration,
which is needed for specifying logger options from a command line.

To support a more flexible style, the module now offers logging.config.dictConfig() for specifying
logging configuration with plain Python dictionaries. The configuration options include formatters, handlers,
filters, and loggers. Here’s a working example of a configuration dictionary:

{"version": 1,
"formatters": {"brief": {"format": "%(levelname)-8s: %(name)-15s: %(message)s"},

"full": {"format": "%(asctime)s %(name)-15s %(levelname)-8s %(message)s"}
},

"handlers": {"console": {
"class": "logging.StreamHandler",
"formatter": "brief",
"level": "INFO",

http://www.python.org/dev/peps/pep-0389

"stream": "ext://sys.stdout"},
"console_priority": {

"class": "logging.StreamHandler",
"formatter": "full",
"level": "ERROR",
"stream": "ext://sys.stderr"}

},
"root": {"level": "DEBUG", "handlers": ["console", "console_priority"]}}

If that dictionary is stored in a file called conf.json, it can be loaded and called with code like this:

>>> import json, logging.config
>>> with open(’conf.json’) as f:

conf = json.load(f)
>>> logging.config.dictConfig(conf)
>>> logging.info("Transaction completed normally")
INFO : root : Transaction completed normally
>>> logging.critical("Abnormal termination")
2011-02-17 11:14:36,694 root CRITICAL Abnormal termination

See Also:

PEP 391 - Dictionary Based Configuration for Logging PEP written by Vinay Sajip.

4 PEP 3148: The concurrent.futures module

Code for creating and managing concurrency is being collected in a new top-level namespace, concurrent. Its first
member is a futures package which provides a uniform high-level interface for managing threads and processes.

The design for concurrent.futures was inspired by the java.util.concurrent package. In that model, a run-
ning call and its result are represented by a Future object that abstracts features common to threads, processes,
and remote procedure calls. That object supports status checks (running or done), timeouts, cancellations, adding
callbacks, and access to results or exceptions.

The primary offering of the new module is a pair of executor classes for launching and managing calls. The goal
of the executors is to make it easier to use existing tools for making parallel calls. They save the effort needed
to setup a pool of resources, launch the calls, create a results queue, add time-out handling, and limit the total
number of threads, processes, or remote procedure calls.

Ideally, each application should share a single executor across multiple components so that process and thread
limits can be centrally managed. This solves the design challenge that arises when each component has its own
competing strategy for resource management.

Both classes share a common interface with three methods: submit() for scheduling a callable and returning
a Future object; map() for scheduling many asynchronous calls at a time, and shutdown() for freeing
resources. The class is a context manager and can be used in a with statement to assure that resources are
automatically released when currently pending futures are done executing.

A simple of example of ThreadPoolExecutor is a launch of four parallel threads for copying files:

import concurrent.futures, shutil
with concurrent.futures.ThreadPoolExecutor(max_workers=4) as e:

e.submit(shutil.copy, ’src1.txt’, ’dest1.txt’)
e.submit(shutil.copy, ’src2.txt’, ’dest2.txt’)
e.submit(shutil.copy, ’src3.txt’, ’dest3.txt’)
e.submit(shutil.copy, ’src4.txt’, ’dest4.txt’)

See Also:

PEP 3148 - Futures – Execute Computations Asynchronously PEP written by Brian Quinlan.

Code for Threaded Parallel URL reads, an example using threads to fetch multiple web pages in parallel.

http://www.python.org/dev/peps/pep-0391
http://www.python.org/dev/peps/pep-3148

Code for computing prime numbers in parallel, an example demonstrating ProcessPoolExecutor.

5 PEP 3147: PYC Repository Directories

Python’s scheme for caching bytecode in .pyc files did not work well in environments with multiple Python
interpreters. If one interpreter encountered a cached file created by another interpreter, it would recompile the
source and overwrite the cached file, thus losing the benefits of caching.

The issue of “pyc fights” has become more pronounced as it has become commonplace for Linux distributions
to ship with multiple versions of Python. These conflicts also arise with CPython alternatives such as Unladen
Swallow.

To solve this problem, Python’s import machinery has been extended to use distinct filenames for each interpreter.
Instead of Python 3.2 and Python 3.3 and Unladen Swallow each competing for a file called “mymodule.pyc”, they
will now look for “mymodule.cpython-32.pyc”, “mymodule.cpython-33.pyc”, and “mymodule.unladen10.pyc”.
And to prevent all of these new files from cluttering source directories, the pyc files are now collected in a “__py-
cache__” directory stored under the package directory.

Aside from the filenames and target directories, the new scheme has a few aspects that are visible to the program-
mer:

• Imported modules now have a __cached__ attribute which stores the name of the actual file that was
imported:

>>> import collections
>>> collections.__cached__
’c:/py32/lib/__pycache__/collections.cpython-32.pyc’

• The tag that is unique to each interpreter is accessible from the imp module:

>>> import imp
>>> imp.get_tag()
’cpython-32’

• Scripts that try to deduce source filename from the imported file now need to be smarter. It is no longer
sufficient to simply strip the “c” from a ”.pyc” filename. Instead, use the new functions in the imp module:

>>> imp.source_from_cache(’c:/py32/lib/__pycache__/collections.cpython-32.pyc’)
’c:/py32/lib/collections.py’
>>> imp.cache_from_source(’c:/py32/lib/collections.py’)
’c:/py32/lib/__pycache__/collections.cpython-32.pyc’

• The py_compile and compileall modules have been updated to reflect the new naming convention
and target directory. The command-line invocation of compileall has new options: -i for specifying a list
of files and directories to compile and -b which causes bytecode files to be written to their legacy location
rather than __pycache__.

• The importlib.abc module has been updated with new abstract base classes for loading bytecode files.
The obsolete ABCs, PyLoader and PyPycLoader, have been deprecated (instructions on how to stay
Python 3.1 compatible are included with the documentation).

See Also:

PEP 3147 - PYC Repository Directories PEP written by Barry Warsaw.

6 PEP 3149: ABI Version Tagged .so Files

The PYC repository directory allows multiple bytecode cache files to be co-located. This PEP implements a
similar mechanism for shared object files by giving them a common directory and distinct names for each version.

The common directory is “pyshared” and the file names are made distinct by identifying the Python implementa-
tion (such as CPython, PyPy, Jython, etc.), the major and minor version numbers, and optional build flags (such as

http://www.python.org/dev/peps/pep-3147

“d” for debug, “m” for pymalloc, “u” for wide-unicode). For an arbitrary package “foo”, you may see these files
when the distribution package is installed:

/usr/share/pyshared/foo.cpython-32m.so
/usr/share/pyshared/foo.cpython-33md.so

In Python itself, the tags are accessible from functions in the sysconfig module:

>>> import sysconfig
>>> sysconfig.get_config_var(’SOABI’) # find the version tag
’cpython-32mu’
>>> sysconfig.get_config_var(’EXT_SUFFIX’) # find the full filename extension
’.cpython-32mu.so’

See Also:

PEP 3149 - ABI Version Tagged .so Files PEP written by Barry Warsaw.

7 PEP 3333: Python Web Server Gateway Interface v1.0.1

This informational PEP clarifies how bytes/text issues are to be handled by the WSGI protocol. The challenge is
that string handling in Python 3 is most conveniently handled with the str type even though the HTTP protocol
is itself bytes oriented.

The PEP differentiates so-called native strings that are used for request/response headers and metadata versus byte
strings which are used for the bodies of requests and responses.

The native strings are always of type str but are restricted to code points between U+0000 through U+00FF
which are translatable to bytes using Latin-1 encoding. These strings are used for the keys and values in the
environment dictionary and for response headers and statuses in the start_response() function. They must
follow RFC 2616 with respect to encoding. That is, they must either be ISO-8859-1 characters or use

RFC 2047 MIME encoding.

For developers porting WSGI applications from Python 2, here are the salient points:

• If the app already used strings for headers in Python 2, no change is needed.

• If instead, the app encoded output headers or decoded input headers, then the headers
will need to be re-encoded to Latin-1. For example, an output header encoded in utf-
8 was using h.encode(’utf-8’) now needs to convert from bytes to native strings using
h.encode(’utf-8’).decode(’latin-1’).

• Values yielded by an application or sent using the write() method must be byte strings. The
start_response() function and environ must use native strings. The two cannot be mixed.

For server implementers writing CGI-to-WSGI pathways or other CGI-style protocols, the users must to be able
access the environment using native strings even though the underlying platform may have a different convention.
To bridge this gap, the wsgiref module has a new function, wsgiref.handlers.read_environ() for
transcoding CGI variables from os.environ into native strings and returning a new dictionary.

See Also:

PEP 3333 - Python Web Server Gateway Interface v1.0.1 PEP written by Phillip Eby.

8 Other Language Changes

Some smaller changes made to the core Python language are:

• String formatting for format() and str.format() gained new capabilities for the format character #.
Previously, for integers in binary, octal, or hexadecimal, it caused the output to be prefixed with ‘0b’, ‘0o’,
or ‘0x’ respectively. Now it can also handle floats, complex, and Decimal, causing the output to always have
a decimal point even when no digits follow it.

http://www.python.org/dev/peps/pep-3149
http://tools.ietf.org/html/rfc2616.html
http://tools.ietf.org/html/rfc2047.html
http://www.python.org/dev/peps/pep-3333

>>> format(20, ’#o’)
’0o24’
>>> format(12.34, ’#5.0f’)
’ 12.’

(Suggested by Mark Dickinson and implemented by Eric Smith in issue 7094.)

• There is also a new str.format_map() method that extends the capabilities of the existing
str.format() method by accepting arbitrary mapping objects. This new method makes it possible to
use string formatting with any of Python’s many dictionary-like objects such as defaultdict, Shelf,
ConfigParser, or dbm. It is also useful with custom dict subclasses that normalize keys before look-
up or that supply a __missing__() method for unknown keys:

>>> import shelve
>>> d = shelve.open(’tmp.shl’)
>>> ’The {project_name} status is {status} as of {date}’.format_map(d)
’The testing project status is green as of February 15, 2011’

>>> class LowerCasedDict(dict):
def __getitem__(self, key):

return dict.__getitem__(self, key.lower())
>>> lcd = LowerCasedDict(part=’widgets’, quantity=10)
>>> ’There are {QUANTITY} {Part} in stock’.format_map(lcd)
’There are 10 widgets in stock’

>>> class PlaceholderDict(dict):
def __missing__(self, key):

return ’<{}>’.format(key)
>>> ’Hello {name}, welcome to {location}’.format_map(PlaceholderDict())
’Hello <name>, welcome to <location>’

(Suggested by Raymond Hettinger and implemented by Eric Smith in issue 6081.)

• The interpreter can now be started with a quiet option, -q, to prevent the copyright and version informa-
tion from being displayed in the interactive mode. The option can be introspected using the sys.flags
attribute:

$ python -q
>>> sys.flags
sys.flags(debug=0, division_warning=0, inspect=0, interactive=0,
optimize=0, dont_write_bytecode=0, no_user_site=0, no_site=0,
ignore_environment=0, verbose=0, bytes_warning=0, quiet=1)

(Contributed by Marcin Wojdyr in issue 1772833).

• The hasattr() function works by calling getattr() and detecting whether an exception is
raised. This technique allows it to detect methods created dynamically by __getattr__() or
__getattribute__() which would otherwise be absent from the class dictionary. Formerly, hasattr
would catch any exception, possibly masking genuine errors. Now, hasattr has been tightened to only catch
AttributeError and let other exceptions pass through:

>>> class A:
@property
def f(self):

return 1 // 0

>>> a = A()
>>> hasattr(a, ’f’)
Traceback (most recent call last):

...
ZeroDivisionError: integer division or modulo by zero

(Discovered by Yury Selivanov and fixed by Benjamin Peterson; issue 9666.)

http://bugs.python.org/issue7094
http://bugs.python.org/issue6081
http://bugs.python.org/issue1772833
http://bugs.python.org/issue9666

• The str() of a float or complex number is now the same as its repr(). Previously, the str() form
was shorter but that just caused confusion and is no longer needed now that the shortest possible repr()
is displayed by default:

>>> import math
>>> repr(math.pi)
’3.141592653589793’
>>> str(math.pi)
’3.141592653589793’

(Proposed and implemented by Mark Dickinson; issue 9337.)

• memoryview objects now have a release() method and they also now support the context manager
protocol. This allows timely release of any resources that were acquired when requesting a buffer from the
original object.

>>> with memoryview(b’abcdefgh’) as v:
print(v.tolist())

[97, 98, 99, 100, 101, 102, 103, 104]

(Added by Antoine Pitrou; issue 9757.)

• Previously it was illegal to delete a name from the local namespace if it occurs as a free variable in a nested
block:

def outer(x):
def inner():

return x
inner()
del x

This is now allowed. Remember that the target of an except clause is cleared, so this code which used to
work with Python 2.6, raised a SyntaxError with Python 3.1 and now works again:

def f():
def print_error():

print(e)
try:

something
except Exception as e:

print_error()
implicit "del e" here

(See issue 4617.)

• The internal structsequence tool now creates subclasses of tuple. This means that C structures like
those returned by os.stat(), time.gmtime(), and sys.version_info now work like a named
tuple and now work with functions and methods that expect a tuple as an argument. This is a big step
forward in making the C structures as flexible as their pure Python counterparts:

>>> isinstance(sys.version_info, tuple)
True
>>> ’Version %d.%d.%d %s(%d)’ % sys.version_info
’Version 3.2.0 final(0)’

(Suggested by Arfrever Frehtes Taifersar Arahesis and implemented by Benjamin Peterson in issue 8413.)

• Warnings are now easier to control using the PYTHONWARNINGS environment variable as an alternative to
using -W at the command line:

$ export PYTHONWARNINGS=’ignore::RuntimeWarning::,once::UnicodeWarning::’

(Suggested by Barry Warsaw and implemented by Philip Jenvey in issue 7301.)

• A new warning category, ResourceWarning, has been added. It is emitted when potential issues with
resource consumption or cleanup are detected. It is silenced by default in normal release builds but can be
enabled through the means provided by the warnings module, or on the command line.

http://bugs.python.org/issue9337
http://bugs.python.org/issue9757
http://bugs.python.org/issue4617
http://bugs.python.org/issue8413
http://bugs.python.org/issue7301

A ResourceWarning is issued at interpreter shutdown if the gc.garbage list isn’t empty, and if
gc.DEBUG_UNCOLLECTABLE is set, all uncollectable objects are printed. This is meant to make the
programmer aware that their code contains object finalization issues.

A ResourceWarning is also issued when a file object is destroyed without having been explicitly closed.
While the deallocator for such object ensures it closes the underlying operating system resource (usually, a
file descriptor), the delay in deallocating the object could produce various issues, especially under Windows.
Here is an example of enabling the warning from the command line:

$ python -q -Wdefault
>>> f = open("foo", "wb")
>>> del f
__main__:1: ResourceWarning: unclosed file <_io.BufferedWriter name=’foo’>

(Added by Antoine Pitrou and Georg Brandl in issue 10093 and issue 477863.)

• range objects now support index and count methods. This is part of an effort to make more objects fully
implement the collections.Sequence abstract base class. As a result, the language will have a more
uniform API. In addition, range objects now support slicing and negative indices, even with values larger
than sys.maxsize. This makes range more interoperable with lists:

>>> range(0, 100, 2).count(10)
1
>>> range(0, 100, 2).index(10)
5
>>> range(0, 100, 2)[5]
10
>>> range(0, 100, 2)[0:5]
range(0, 10, 2)

(Contributed by Daniel Stutzbach in issue 9213, by Alexander Belopolsky in issue 2690, and by Nick
Coghlan in issue 10889.)

• The callable() builtin function from Py2.x was resurrected. It provides a concise, readable alternative
to using an abstract base class in an expression like isinstance(x, collections.Callable):

>>> callable(max)
True
>>> callable(20)
False

(See issue 10518.)

• Python’s import mechanism can now load modules installed in directories with non-ASCII characters in the
path name. This solved an aggravating problem with home directories for users with non-ASCII characters
in their usernames.

(Required extensive work by Victor Stinner in issue 9425.)

9 New, Improved, and Deprecated Modules

Python’s standard library has undergone significant maintenance efforts and quality improvements.

The biggest news for Python 3.2 is that the email package, mailbox module, and nntplib modules now
work correctly with the bytes/text model in Python 3. For the first time, there is correct handling of messages with
mixed encodings.

Throughout the standard library, there has been more careful attention to encodings and text versus bytes issues.
In particular, interactions with the operating system are now better able to exchange non-ASCII data using the
Windows MBCS encoding, locale-aware encodings, or UTF-8.

Another significant win is the addition of substantially better support for SSL connections and security certificates.

http://bugs.python.org/issue10093
http://bugs.python.org/issue477863
http://bugs.python.org/issue9213
http://bugs.python.org/issue2690
http://bugs.python.org/issue10889
http://bugs.python.org/issue10518
http://bugs.python.org/issue9425

In addition, more classes now implement a context manager to support convenient and reliable resource clean-up
using a with statement.

9.1 email

The usability of the email package in Python 3 has been mostly fixed by the extensive efforts of R. David Murray.
The problem was that emails are typically read and stored in the form of bytes rather than str text, and they
may contain multiple encodings within a single email. So, the email package had to be extended to parse and
generate email messages in bytes format.

• New functions message_from_bytes() and message_from_binary_file(), and new classes
BytesFeedParser and BytesParser allow binary message data to be parsed into model objects.

• Given bytes input to the model, get_payload() will by default decode a message body that has a
Content-Transfer-Encoding of 8bit using the charset specified in the MIME headers and return
the resulting string.

• Given bytes input to the model, Generator will convert message bodies that have a
Content-Transfer-Encoding of 8bit to instead have a 7bit Content-Transfer-Encoding.

Headers with unencoded non-ASCII bytes are deemed to be RFC 2047-encoded using the unknown-8bit
character set.

• A new class BytesGenerator produces bytes as output, preserving any unchanged non-ASCII
data that was present in the input used to build the model, including message bodies with a
Content-Transfer-Encoding of 8bit.

• The smtplib SMTP class now accepts a byte string for the msg argument to the sendmail() method,
and a new method, send_message() accepts a Message object and can optionally obtain the from_addr
and to_addrs addresses directly from the object.

(Proposed and implemented by R. David Murray, issue 4661 and issue 10321.)

9.2 elementtree

The xml.etree.ElementTree package and its xml.etree.cElementTree counterpart have been up-
dated to version 1.3.

Several new and useful functions and methods have been added:

• xml.etree.ElementTree.fromstringlist() which builds an XML document from a sequence
of fragments

• xml.etree.ElementTree.register_namespace() for registering a global namespace prefix

• xml.etree.ElementTree.tostringlist() for string representation including all sublists

• xml.etree.ElementTree.Element.extend() for appending a sequence of zero or more ele-
ments

• xml.etree.ElementTree.Element.iterfind() searches an element and subelements

• xml.etree.ElementTree.Element.itertext() creates a text iterator over an element and its
subelements

• xml.etree.ElementTree.TreeBuilder.end() closes the current element

• xml.etree.ElementTree.TreeBuilder.doctype() handles a doctype declaration

Two methods have been deprecated:

• xml.etree.ElementTree.getchildren() use list(elem) instead.

• xml.etree.ElementTree.getiterator() use Element.iter instead.

http://tools.ietf.org/html/rfc2047.html
http://bugs.python.org/issue4661
http://bugs.python.org/issue10321

For details of the update, see Introducing ElementTree on Fredrik Lundh’s website.

(Contributed by Florent Xicluna and Fredrik Lundh, issue 6472.)

9.3 functools

• The functools module includes a new decorator for caching function calls.
functools.lru_cache() can save repeated queries to an external resource whenever the results are
expected to be the same.

For example, adding a caching decorator to a database query function can save database accesses for popular
searches:

>>> import functools
>>> @functools.lru_cache(maxsize=300)
>>> def get_phone_number(name):

c = conn.cursor()
c.execute(’SELECT phonenumber FROM phonelist WHERE name=?’, (name,))
return c.fetchone()[0]

>>> for name in user_requests:
get_phone_number(name) # cached lookup

To help with choosing an effective cache size, the wrapped function is instrumented for tracking cache
statistics:

>>> get_phone_number.cache_info()
CacheInfo(hits=4805, misses=980, maxsize=300, currsize=300)

If the phonelist table gets updated, the outdated contents of the cache can be cleared with:

>>> get_phone_number.cache_clear()

(Contributed by Raymond Hettinger and incorporating design ideas from Jim Baker, Miki Tebeka, and Nick
Coghlan; see recipe 498245, recipe 577479, issue 10586, and issue 10593.)

• The functools.wraps() decorator now adds a __wrapped__ attribute pointing to the original
callable function. This allows wrapped functions to be introspected. It also copies __annotations__
if defined. And now it also gracefully skips over missing attributes such as __doc__ which might not be
defined for the wrapped callable.

In the above example, the cache can be removed by recovering the original function:

>>> get_phone_number = get_phone_number.__wrapped__ # uncached function

(By Nick Coghlan and Terrence Cole; issue 9567, issue 3445, and issue 8814.)

• To help write classes with rich comparison methods, a new decorator functools.total_ordering()
will use a existing equality and inequality methods to fill in the remaining methods.

For example, supplying __eq__ and __lt__ will enable total_ordering() to fill-in __le__, __gt__ and
__ge__:

@total_ordering
class Student:

def __eq__(self, other):
return ((self.lastname.lower(), self.firstname.lower()) ==

(other.lastname.lower(), other.firstname.lower()))
def __lt__(self, other):

return ((self.lastname.lower(), self.firstname.lower()) <
(other.lastname.lower(), other.firstname.lower()))

With the total_ordering decorator, the remaining comparison methods are filled in automatically.

(Contributed by Raymond Hettinger.)

http://effbot.org/zone/elementtree-13-intro.htm
http://bugs.python.org/issue6472
http://code.activestate.com/recipes/498245
http://code.activestate.com/recipes/577479
http://bugs.python.org/issue10586
http://bugs.python.org/issue10593
http://bugs.python.org/issue9567
http://bugs.python.org/issue3445
http://bugs.python.org/issue8814

• To aid in porting programs from Python 2, the functools.cmp_to_key() function converts an old-
style comparison function to modern key function:

>>> # locale-aware sort order
>>> sorted(iterable, key=cmp_to_key(locale.strcoll))

For sorting examples and a brief sorting tutorial, see the Sorting HowTo tutorial.

(Contributed by Raymond Hettinger.)

9.4 itertools

• The itertools module has a new accumulate() function modeled on APL’s scan operator and
Numpy’s accumulate function:

>>> from itertools import accumulate
>>> list(accumulate([8, 2, 50]))
[8, 10, 60]

>>> prob_dist = [0.1, 0.4, 0.2, 0.3]
>>> list(accumulate(prob_dist)) # cumulative probability distribution
[0.1, 0.5, 0.7, 1.0]

For an example using accumulate(), see the examples for the random module.

(Contributed by Raymond Hettinger and incorporating design suggestions from Mark Dickinson.)

9.5 collections

• The collections.Counter class now has two forms of in-place subtraction, the existing -= operator
for saturating subtraction and the new subtract() method for regular subtraction. The former is suitable
for multisets which only have positive counts, and the latter is more suitable for use cases that allow negative
counts:

>>> tally = Counter(dogs=5, cat=3)
>>> tally -= Counter(dogs=2, cats=8) # saturating subtraction
>>> tally
Counter({’dogs’: 3})

>>> tally = Counter(dogs=5, cats=3)
>>> tally.subtract(dogs=2, cats=8) # regular subtraction
>>> tally
Counter({’dogs’: 3, ’cats’: -5})

(Contributed by Raymond Hettinger.)

• The collections.OrderedDict class has a new method move_to_end() which takes an existing
key and moves it to either the first or last position in the ordered sequence.

The default is to move an item to the last position. This is equivalent of renewing an entry with od[k] =
od.pop(k).

A fast move-to-end operation is useful for resequencing entries. For example, an ordered dictionary can be
used to track order of access by aging entries from the oldest to the most recently accessed.

>>> d = OrderedDict.fromkeys([’a’, ’b’, ’X’, ’d’, ’e’])
>>> list(d)
[’a’, ’b’, ’X’, ’d’, ’e’]
>>> d.move_to_end(’X’)
>>> list(d)
[’a’, ’b’, ’d’, ’e’, ’X’]

(Contributed by Raymond Hettinger.)

http://wiki.python.org/moin/HowTo/Sorting/
http://en.wikipedia.org/wiki/Saturation_arithmetic
http://en.wikipedia.org/wiki/Multiset

• The collections.deque class grew two new methods count() and reverse() that make them
more substitutable for list objects:

>>> d = deque(’simsalabim’)
>>> d.count(’s’)
2
>>> d.reverse()
>>> d
deque([’m’, ’i’, ’b’, ’a’, ’l’, ’a’, ’s’, ’m’, ’i’, ’s’])

(Contributed by Raymond Hettinger.)

9.6 threading

The threading module has a new Barrier synchronization class for making multiple threads wait until all
of them have reached a common barrier point. Barriers are useful for making sure that a task with multiple
preconditions does not run until all of the predecessor tasks are complete.

Barriers can work with an arbitrary number of threads. This is a generalization of a Rendezvous which is defined
for only two threads.

Implemented as a two-phase cyclic barrier, Barrier objects are suitable for use in loops. The separate filling and
draining phases assure that all threads get released (drained) before any one of them can loop back and re-enter
the barrier. The barrier fully resets after each cycle.

Example of using barriers:

from threading import Barrier, Thread

def get_votes(site):
ballots = conduct_election(site)
all_polls_closed.wait() # do not count until all polls are closed
totals = summarize(ballots)
publish(site, totals)

all_polls_closed = Barrier(len(sites))
for site in sites:

Thread(target=get_votes, args=(site,)).start()

In this example, the barrier enforces a rule that votes cannot be counted at any polling site until all polls are closed.
Notice how a solution with a barrier is similar to one with threading.Thread.join(), but the threads stay
alive and continue to do work (summarizing ballots) after the barrier point is crossed.

If any of the predecessor tasks can hang or be delayed, a barrier can be created with an optional timeout parameter.
Then if the timeout period elapses before all the predecessor tasks reach the barrier point, all waiting threads are
released and a BrokenBarrierError exception is raised:

def get_votes(site):
ballots = conduct_election(site)
try:

all_polls_closed.wait(timeout = midnight - time.now())
except BrokenBarrierError:

lockbox = seal_ballots(ballots)
queue.put(lockbox)

else:
totals = summarize(ballots)
publish(site, totals)

In this example, the barrier enforces a more robust rule. If some election sites do not finish before midnight, the
barrier times-out and the ballots are sealed and deposited in a queue for later handling.

See Barrier Synchronization Patterns for more examples of how barriers can be used in parallel computing. Also,
there is a simple but thorough explanation of barriers in The Little Book of Semaphores, section 3.6.

http://en.wikipedia.org/wiki/Synchronous_rendezvous
http://parlab.eecs.berkeley.edu/wiki/_media/patterns/paraplop_g1_3.pdf
http://greenteapress.com/semaphores/downey08semaphores.pdf

(Contributed by Kristján Valur Jónsson with an API review by Jeffrey Yasskin in issue 8777.)

9.7 datetime and time

• The datetime module has a new type timezone that implements the tzinfo interface by returning a
fixed UTC offset and timezone name. This makes it easier to create timezone-aware datetime objects:

>>> from datetime import datetime, timezone

>>> datetime.now(timezone.utc)
datetime.datetime(2010, 12, 8, 21, 4, 2, 923754, tzinfo=datetime.timezone.utc)

>>> datetime.strptime("01/01/2000 12:00 +0000", "%m/%d/%Y %H:%M %z")
datetime.datetime(2000, 1, 1, 12, 0, tzinfo=datetime.timezone.utc)

• Also, timedelta objects can now be multiplied by float and divided by float and int objects. And
timedelta objects can now divide one another.

• The datetime.date.strftime() method is no longer restricted to years after 1900. The new sup-
ported year range is from 1000 to 9999 inclusive.

• Whenever a two-digit year is used in a time tuple, the interpretation has been governed by
time.accept2dyear. The default is True which means that for a two-digit year, the century is guessed
according to the POSIX rules governing the %y strptime format.

Starting with Py3.2, use of the century guessing heuristic will emit a DeprecationWarning. Instead, it
is recommended that time.accept2dyear be set to False so that large date ranges can be used without
guesswork:

>>> import time, warnings
>>> warnings.resetwarnings() # remove the default warning filters

>>> time.accept2dyear = True # guess whether 11 means 11 or 2011
>>> time.asctime((11, 1, 1, 12, 34, 56, 4, 1, 0))
Warning (from warnings module):

...
DeprecationWarning: Century info guessed for a 2-digit year.
’Fri Jan 1 12:34:56 2011’

>>> time.accept2dyear = False # use the full range of allowable dates
>>> time.asctime((11, 1, 1, 12, 34, 56, 4, 1, 0))
’Fri Jan 1 12:34:56 11’

Several functions now have significantly expanded date ranges. When time.accept2dyear is false,
the time.asctime() function will accept any year that fits in a C int, while the time.mktime() and
time.strftime() functions will accept the full range supported by the corresponding operating system
functions.

(Contributed by Alexander Belopolsky and Victor Stinner in issue 1289118, issue 5094, issue 6641, issue 2706,
issue 1777412, issue 8013, and issue 10827.)

9.8 math

The math module has been updated with six new functions inspired by the C99 standard.

The isfinite() function provides a reliable and fast way to detect special values. It returns True for regular
numbers and False for Nan or Infinity:

>>> [isfinite(x) for x in (123, 4.56, float(’Nan’), float(’Inf’))]
[True, True, False, False]

http://bugs.python.org/issue8777
http://bugs.python.org/issue1289118
http://bugs.python.org/issue5094
http://bugs.python.org/issue6641
http://bugs.python.org/issue2706
http://bugs.python.org/issue1777412
http://bugs.python.org/issue8013
http://bugs.python.org/issue10827

The expm1() function computes e**x-1 for small values of x without incurring the loss of precision that
usually accompanies the subtraction of nearly equal quantities:

>>> expm1(0.013671875) # more accurate way to compute e**x-1 for a small x
0.013765762467652909

The erf() function computes a probability integral or Gaussian error function. The complementary error func-
tion, erfc(), is 1 - erf(x):

>>> erf(1.0/sqrt(2.0)) # portion of normal distribution within 1 standard deviation
0.682689492137086
>>> erfc(1.0/sqrt(2.0)) # portion of normal distribution outside 1 standard deviation
0.31731050786291404
>>> erf(1.0/sqrt(2.0)) + erfc(1.0/sqrt(2.0))
1.0

The gamma() function is a continuous extension of the factorial function. See
http://en.wikipedia.org/wiki/Gamma_function for details. Because the function is related to factorials, it
grows large even for small values of x, so there is also a lgamma() function for computing the natural logarithm
of the gamma function:

>>> gamma(7.0) # six factorial
720.0
>>> lgamma(801.0) # log(800 factorial)
4551.950730698041

(Contributed by Mark Dickinson.)

9.9 abc

The abc module now supports abstractclassmethod() and abstractstaticmethod().

These tools make it possible to define an abstract base class that requires a particular classmethod() or
staticmethod() to be implemented:

class Temperature(metaclass=abc.ABCMeta):
@abc.abstractclassmethod
def from_fahrenheit(cls, t):

...
@abc.abstractclassmethod
def from_celsius(cls, t):

...

(Patch submitted by Daniel Urban; issue 5867.)

9.10 io

The io.BytesIO has a new method, getbuffer(), which provides functionality similar to
memoryview(). It creates an editable view of the data without making a copy. The buffer’s random access
and support for slice notation are well-suited to in-place editing:

>>> REC_LEN, LOC_START, LOC_LEN = 34, 7, 11

>>> def change_location(buffer, record_number, location):
start = record_number * REC_LEN + LOC_START
buffer[start: start+LOC_LEN] = location

>>> import io

>>> byte_stream = io.BytesIO(
b’G3805 storeroom Main chassis ’

http://en.wikipedia.org/wiki/Error_function
http://en.wikipedia.org/wiki/Gamma_function
http://bugs.python.org/issue5867

b’X7899 shipping Reserve cog ’
b’L6988 receiving Primary sprocket’

)
>>> buffer = byte_stream.getbuffer()
>>> change_location(buffer, 1, b’warehouse ’)
>>> change_location(buffer, 0, b’showroom ’)
>>> print(byte_stream.getvalue())
b’G3805 showroom Main chassis ’
b’X7899 warehouse Reserve cog ’
b’L6988 receiving Primary sprocket’

(Contributed by Antoine Pitrou in issue 5506.)

9.11 reprlib

When writing a __repr__() method for a custom container, it is easy to forget to handle the case where a
member refers back to the container itself. Python’s builtin objects such as list and set handle self-reference
by displaying ”...” in the recursive part of the representation string.

To help write such __repr__() methods, the reprlib module has a new decorator, recursive_repr(),
for detecting recursive calls to __repr__() and substituting a placeholder string instead:

>>> class MyList(list):
@recursive_repr()
def __repr__(self):

return ’<’ + ’|’.join(map(repr, self)) + ’>’

>>> m = MyList(’abc’)
>>> m.append(m)
>>> m.append(’x’)
>>> print(m)
<’a’|’b’|’c’|...|’x’>

(Contributed by Raymond Hettinger in issue 9826 and issue 9840.)

9.12 logging

In addition to dictionary-based configuration described above, the logging package has many other improve-
ments.

The logging documentation has been augmented by a basic tutorial, an advanced tutorial, and a cookbook of
logging recipes. These documents are the fastest way to learn about logging.

The logging.basicConfig() set-up function gained a style argument to support three different types of
string formatting. It defaults to “%” for traditional %-formatting, can be set to “{” for the new str.format()
style, or can be set to “$” for the shell-style formatting provided by string.Template. The following three
configurations are equivalent:

>>> from logging import basicConfig
>>> basicConfig(style=’%’, format="%(name)s -> %(levelname)s: %(message)s")
>>> basicConfig(style=’{’, format="{name} -> {levelname} {message}")
>>> basicConfig(style=’$’, format="$name -> $levelname: $message")

If no configuration is set-up before a logging event occurs, there is now a default configuration using a
StreamHandler directed to sys.stderr for events of WARNING level or higher. Formerly, an event oc-
curring before a configuration was set-up would either raise an exception or silently drop the event depending on
the value of logging.raiseExceptions. The new default handler is stored in logging.lastResort.

The use of filters has been simplified. Instead of creating a Filter object, the predicate can be any Python
callable that returns True or False.

http://bugs.python.org/issue5506
http://bugs.python.org/issue9826
http://bugs.python.org/issue9840

There were a number of other improvements that add flexibility and simplify configuration. See the module
documentation for a full listing of changes in Python 3.2.

9.13 csv

The csv module now supports a new dialect, unix_dialect, which applies quoting for all fields and a tradi-
tional Unix style with ’\n’ as the line terminator. The registered dialect name is unix.

The csv.DictWriter has a new method, writeheader() for writing-out an initial row to document the
field names:

>>> import csv, sys
>>> w = csv.DictWriter(sys.stdout, [’name’, ’dept’], dialect=’unix’)
>>> w.writeheader()
"name","dept"
>>> w.writerows([

{’name’: ’tom’, ’dept’: ’accounting’},
{’name’: ’susan’, ’dept’: ’Salesl’}])

"tom","accounting"
"susan","sales"

(New dialect suggested by Jay Talbot in issue 5975, and the new method suggested by Ed Abraham in issue
1537721.)

9.14 contextlib

There is a new and slightly mind-blowing tool ContextDecorator that is helpful for creating a context man-
ager that does double duty as a function decorator.

As a convenience, this new functionality is used by contextmanager() so that no extra effort is needed to
support both roles.

The basic idea is that both context managers and function decorators can be used for pre-action and post-action
wrappers. Context managers wrap a group of statements using a with statement, and function decorators wrap
a group of statements enclosed in a function. So, occasionally there is a need to write a pre-action or post-action
wrapper that can be used in either role.

For example, it is sometimes useful to wrap functions or groups of statements with a logger that can track the time
of entry and time of exit. Rather than writing both a function decorator and a context manager for the task, the
contextmanager() provides both capabilities in a single definition:

from contextlib import contextmanager
import logging

logging.basicConfig(level=logging.INFO)

@contextmanager
def track_entry_and_exit(name):

logging.info(’Entering: {}’.format(name))
yield
logging.info(’Exiting: {}’.format(name))

Formerly, this would have only been usable as a context manager:

with track_entry_and_exit(’widget loader’):
print(’Some time consuming activity goes here’)
load_widget()

Now, it can be used as a decorator as well:

@track_entry_and_exit(’widget loader’)
def activity():

http://bugs.python.org/issue5975
http://bugs.python.org/issue1537721
http://bugs.python.org/issue1537721

print(’Some time consuming activity goes here’)
load_widget()

Trying to fulfill two roles at once places some limitations on the technique. Context managers normally have the
flexibility to return an argument usable by a with statement, but there is no parallel for function decorators.

In the above example, there is not a clean way for the track_entry_and_exit context manager to return a logging
instance for use in the body of enclosed statements.

(Contributed by Michael Foord in issue 9110.)

9.15 decimal and fractions

Mark Dickinson crafted an elegant and efficient scheme for assuring that different numeric datatypes will have the
same hash value whenever their actual values are equal (issue 8188):

assert hash(Fraction(3, 2)) == hash(1.5) == \
hash(Decimal("1.5")) == hash(complex(1.5, 0))

Some of the hashing details are exposed through a new attribute, sys.hash_info, which describes the bit
width of the hash value, the prime modulus, the hash values for infinity and nan, and the multiplier used for the
imaginary part of a number:

>>> sys.hash_info
sys.hash_info(width=64, modulus=2305843009213693951, inf=314159, nan=0, imag=1000003)

An early decision to limit the inter-operability of various numeric types has been relaxed. It is still un-
supported (and ill-advised) to have implicit mixing in arithmetic expressions such as Decimal(’1.1’) +
float(’1.1’) because the latter loses information in the process of constructing the binary float. However,
since existing floating point value can be converted losslessly to either a decimal or rational representation, it
makes sense to add them to the constructor and to support mixed-type comparisons.

• The decimal.Decimal constructor now accepts float objects directly so there in no longer a need to
use the from_float() method (issue 8257).

• Mixed type comparisons are now fully supported so that Decimal objects can be directly compared with
float and fractions.Fraction (issue 2531 and issue 8188).

Similar changes were made to fractions.Fraction so that the from_float() and from_decimal()
methods are no longer needed (issue 8294):

>>> Decimal(1.1)
Decimal(’1.100000000000000088817841970012523233890533447265625’)
>>> Fraction(1.1)
Fraction(2476979795053773, 2251799813685248)

Another useful change for the decimal module is that the Context.clamp attribute is now public. This is
useful in creating contexts that correspond to the decimal interchange formats specified in IEEE 754 (see issue
8540).

(Contributed by Mark Dickinson and Raymond Hettinger.)

9.16 ftp

The ftplib.FTP class now supports the context manager protocol to unconditionally consume
socket.error exceptions and to close the FTP connection when done:

>>> from ftplib import FTP
>>> with FTP("ftp1.at.proftpd.org") as ftp:

ftp.login()
ftp.dir()

’230 Anonymous login ok, restrictions apply.’

http://bugs.python.org/issue9110
http://bugs.python.org/issue8188
http://bugs.python.org/issue8257
http://bugs.python.org/issue2531
http://bugs.python.org/issue8188
http://bugs.python.org/issue8294
http://bugs.python.org/issue8540
http://bugs.python.org/issue8540

dr-xr-xr-x 9 ftp ftp 154 May 6 10:43 .
dr-xr-xr-x 9 ftp ftp 154 May 6 10:43 ..
dr-xr-xr-x 5 ftp ftp 4096 May 6 10:43 CentOS
dr-xr-xr-x 3 ftp ftp 18 Jul 10 2008 Fedora

Other file-like objects such as mmap.mmap and fileinput.input() also grew auto-closing context man-
agers:

with fileinput.input(files=(’log1.txt’, ’log2.txt’)) as f:
for line in f:

process(line)

(Contributed by Tarek Ziadé and Giampaolo Rodolà in issue 4972, and by Georg Brandl in issue 8046 and issue
1286.)

The FTP_TLS class now accepts a context parameter, which is a ssl.SSLContext object allowing bundling
SSL configuration options, certificates and private keys into a single (potentially long-lived) structure.

(Contributed by Giampaolo Rodolà; issue 8806.)

9.17 popen

The os.popen() and subprocess.Popen() functions now support with statements for auto-closing of
the file descriptors.

(Contributed by Antoine Pitrou and Brian Curtin in issue 7461 and issue 10554.)

9.18 select

The select module now exposes a new, constant attribute, PIPE_BUF, which gives the minimum number of
bytes which are guaranteed not to block when select.select() says a pipe is ready for writing.

>>> import select
>>> select.PIPE_BUF
512

(Available on Unix systems. Patch by Sébastien Sablé in issue 9862)

9.19 gzip and zipfile

gzip.GzipFile now implements the io.BufferedIOBase abstract base class (except for truncate()).
It also has a peek() method and supports unseekable as well as zero-padded file objects.

The gzip module also gains the compress() and decompress() functions for easier in-memory com-
pression and decompression. Keep in mind that text needs to be encoded as bytes before compressing and
decompressing:

>>> s = ’Three shall be the number thou shalt count, ’
>>> s += ’and the number of the counting shall be three’
>>> b = s.encode() # convert to utf-8
>>> len(b)
89
>>> c = gzip.compress(b)
>>> len(c)
77
>>> gzip.decompress(c).decode()[:42] # decompress and convert to text
’Three shall be the number thou shalt count,’

(Contributed by Anand B. Pillai in issue 3488; and by Antoine Pitrou, Nir Aides and Brian Curtin in issue 9962,
issue 1675951, issue 7471 and issue 2846.)

http://bugs.python.org/issue4972
http://bugs.python.org/issue8046
http://bugs.python.org/issue1286
http://bugs.python.org/issue1286
http://bugs.python.org/issue8806
http://bugs.python.org/issue7461
http://bugs.python.org/issue10554
http://bugs.python.org/issue9862
http://bugs.python.org/issue3488
http://bugs.python.org/issue9962
http://bugs.python.org/issue1675951
http://bugs.python.org/issue7471
http://bugs.python.org/issue2846

Also, the zipfile.ZipExtFile class was reworked internally to represent files stored inside an archive. The
new implementation is significantly faster and can be wrapped in a io.BufferedReader object for more
speedups. It also solves an issue where interleaved calls to read and readline gave the wrong results.

(Patch submitted by Nir Aides in issue 7610.)

9.20 tarfile

The TarFile class can now be used as a context manager. In addition, its add() method has a new option,
filter, that controls which files are added to the archive and allows the file metadata to be edited.

The new filter option replaces the older, less flexible exclude parameter which is now deprecated. If specified, the
optional filter parameter needs to be a keyword argument. The user-supplied filter function accepts a TarInfo
object and returns an updated TarInfo object, or if it wants the file to be excluded, the function can return None:

>>> import tarfile, glob

>>> def myfilter(tarinfo):
if tarinfo.isfile(): # only save real files

tarinfo.uname = ’monty’ # redact the user name
return tarinfo

>>> with tarfile.open(name=’myarchive.tar.gz’, mode=’w:gz’) as tf:
for filename in glob.glob(’*.txt’):

tf.add(filename, filter=myfilter)
tf.list()

-rw-r--r-- monty/501 902 2011-01-26 17:59:11 annotations.txt
-rw-r--r-- monty/501 123 2011-01-26 17:59:11 general_questions.txt
-rw-r--r-- monty/501 3514 2011-01-26 17:59:11 prion.txt
-rw-r--r-- monty/501 124 2011-01-26 17:59:11 py_todo.txt
-rw-r--r-- monty/501 1399 2011-01-26 17:59:11 semaphore_notes.txt

(Proposed by Tarek Ziadé and implemented by Lars Gustäbel in issue 6856.)

9.21 hashlib

The hashlib module has two new constant attributes listing the hashing algorithms guaranteed to be present in
all implementations and those available on the current implementation:

>>> import hashlib

>>> hashlib.algorithms_guaranteed
{’sha1’, ’sha224’, ’sha384’, ’sha256’, ’sha512’, ’md5’}

>>> hashlib.algorithms_available
{’md2’, ’SHA256’, ’SHA512’, ’dsaWithSHA’, ’mdc2’, ’SHA224’, ’MD4’, ’sha256’,
’sha512’, ’ripemd160’, ’SHA1’, ’MDC2’, ’SHA’, ’SHA384’, ’MD2’,
’ecdsa-with-SHA1’,’md4’, ’md5’, ’sha1’, ’DSA-SHA’, ’sha224’,
’dsaEncryption’, ’DSA’, ’RIPEMD160’, ’sha’, ’MD5’, ’sha384’}

(Suggested by Carl Chenet in issue 7418.)

9.22 ast

The ast module has a wonderful a general-purpose tool for safely evaluating expression strings using the Python
literal syntax. The ast.literal_eval() function serves as a secure alternative to the builtin eval() func-
tion which is easily abused. Python 3.2 adds bytes and set literals to the list of supported types: strings, bytes,
numbers, tuples, lists, dicts, sets, booleans, and None.

http://bugs.python.org/issue7610
http://bugs.python.org/issue6856
http://bugs.python.org/issue7418

>>> from ast import literal_eval

>>> request = "{’req’: 3, ’func’: ’pow’, ’args’: (2, 0.5)}"
>>> literal_eval(request)
{’args’: (2, 0.5), ’req’: 3, ’func’: ’pow’}

>>> request = "os.system(’do something harmful’)"
>>> literal_eval(request)
Traceback (most recent call last):

...
ValueError: malformed node or string: <_ast.Call object at 0x101739a10>

(Implemented by Benjamin Peterson and Georg Brandl.)

9.23 os

Different operating systems use various encodings for filenames and environment variables. The os module
provides two new functions, fsencode() and fsdecode(), for encoding and decoding filenames:

>>> filename = ’Sehenswürdigkeiten’
>>> os.fsencode(filename)
b’Sehensw\xc3\xbcrdigkeiten’

Some operating systems allow direct access to encoded bytes in the environment. If so, the
os.supports_bytes_environ constant will be true.

For direct access to encoded environment variables (if available), use the new os.getenvb() function or use
os.environb which is a bytes version of os.environ.

(Contributed by Victor Stinner.)

9.24 shutil

The shutil.copytree() function has two new options:

• ignore_dangling_symlinks: when symlinks=False so that the function copies a file pointed to by a
symlink, not the symlink itself. This option will silence the error raised if the file doesn’t exist.

• copy_function: is a callable that will be used to copy files. shutil.copy2() is used by default.

(Contributed by Tarek Ziadé.)

In addition, the shutil module now supports archiving operations for zipfiles, uncompressed tarfiles, gzipped
tarfiles, and bzipped tarfiles. And there are functions for registering additional archiving file formats (such as xz
compressed tarfiles or custom formats).

The principal functions are make_archive() and unpack_archive(). By default, both operate on the
current directory (which can be set by os.chdir()) and on any sub-directories. The archive filename needs to
be specified with a full pathname. The archiving step is non-destructive (the original files are left unchanged).

>>> import shutil, pprint

>>> os.chdir(’mydata’) # change to the source directory
>>> f = shutil.make_archive(’/var/backup/mydata’,

’zip’) # archive the current directory
>>> f # show the name of archive
’/var/backup/mydata.zip’
>>> os.chdir(’tmp’) # change to an unpacking
>>> shutil.unpack_archive(’/var/backup/mydata.zip’) # recover the data

>>> pprint.pprint(shutil.get_archive_formats()) # display known formats
[(’bztar’, "bzip2’ed tar-file"),

(’gztar’, "gzip’ed tar-file"),
(’tar’, ’uncompressed tar file’),
(’zip’, ’ZIP file’)]

>>> shutil.register_archive_format(# register a new archive format
name = ’xz’,
function = xz.compress, # callable archiving function
extra_args = [(’level’, 8)], # arguments to the function
description = ’xz compression’

)

(Contributed by Tarek Ziadé.)

9.25 sqlite3

The sqlite3 module was updated to pysqlite version 2.6.0. It has two new capabilities.

• The sqlite3.Connection.in_transit attribute is true if there is an active transaction for uncom-
mitted changes.

• The sqlite3.Connection.enable_load_extension() and
sqlite3.Connection.load_extension() methods allows you to load SQLite extensions
from ”.so” files. One well-known extension is the fulltext-search extension distributed with SQLite.

(Contributed by R. David Murray and Shashwat Anand; issue 8845.)

9.26 html

A new html module was introduced with only a single function, escape(), which is used for escaping reserved
characters from HTML markup:

>>> import html
>>> html.escape(’x > 2 && x < 7’)
’x > 2 && x < 7’

9.27 socket

The socket module has two new improvements.

• Socket objects now have a detach() method which puts the socket into closed state without actually
closing the underlying file descriptor. The latter can then be reused for other purposes. (Added by Antoine
Pitrou; issue 8524.)

• socket.create_connection() now supports the context manager protocol to unconditionally con-
sume socket.error exceptions and to close the socket when done. (Contributed by Giampaolo Rodolà;
issue 9794.)

9.28 ssl

The sslmodule added a number of features to satisfy common requirements for secure (encrypted, authenticated)
internet connections:

• A new class, SSLContext, serves as a container for persistent SSL data, such as protocol settings, certifi-
cates, private keys, and various other options. It includes a wrap_socket() for creating an SSL socket
from an SSL context.

• A new function, ssl.match_hostname(), supports server identity verification for higher-level proto-
cols by implementing the rules of HTTPS (from RFC 2818) which are also suitable for other protocols.

http://bugs.python.org/issue8845
http://bugs.python.org/issue8524
http://bugs.python.org/issue9794
http://tools.ietf.org/html/rfc2818.html

• The ssl.wrap_socket() constructor function now takes a ciphers argument. The ciphers string lists
the allowed encryption algorithms using the format described in the OpenSSL documentation.

• When linked against recent versions of OpenSSL, the sslmodule now supports the Server Name Indication
extension to the TLS protocol, allowing multiple “virtual hosts” using different certificates on a single IP
port. This extension is only supported in client mode, and is activated by passing the server_hostname
argument to ssl.SSLContext.wrap_socket().

• Various options have been added to the ssl module, such as OP_NO_SSLv2 which disables the insecure
and obsolete SSLv2 protocol.

• The extension now loads all the OpenSSL ciphers and digest algorithms. If some SSL certificates cannot be
verified, they are reported as an “unknown algorithm” error.

• The version of OpenSSL being used is now accessible using the module attributes
ssl.OPENSSL_VERSION (a string), ssl.OPENSSL_VERSION_INFO (a 5-tuple), and
ssl.OPENSSL_VERSION_NUMBER (an integer).

(Contributed by Antoine Pitrou in issue 8850, issue 1589, issue 8322, issue 5639, issue 4870, issue 8484, and
issue 8321.)

9.29 nntp

The nntplib module has a revamped implementation with better bytes and text semantics as well as more
practical APIs. These improvements break compatibility with the nntplib version in Python 3.1, which was partly
dysfunctional in itself.

Support for secure connections through both implicit (using nntplib.NNTP_SSL) and explicit (using
nntplib.NNTP.starttls()) TLS has also been added.

(Contributed by Antoine Pitrou in issue 9360 and Andrew Vant in issue 1926.)

9.30 certificates

http.client.HTTPSConnection, urllib.request.HTTPSHandler and
urllib.request.urlopen() now take optional arguments to allow for server certificate checking
against a set of Certificate Authorities, as recommended in public uses of HTTPS.

(Added by Antoine Pitrou, issue 9003.)

9.31 imaplib

Support for explicit TLS on standard IMAP4 connections has been added through the new
imaplib.IMAP4.starttls method.

(Contributed by Lorenzo M. Catucci and Antoine Pitrou, issue 4471.)

9.32 http.client

There were a number of small API improvements in the http.client module. The old-style HTTP 0.9 simple
responses are no longer supported and the strict parameter is deprecated in all classes.

The HTTPConnection and HTTPSConnection classes now have a source_address parameter for a (host,
port) tuple indicating where the HTTP connection is made from.

Support for certificate checking and HTTPS virtual hosts were added to HTTPSConnection.

The request() method on connection objects allowed an optional body argument so that a file object could be
used to supply the content of the request. Conveniently, the body argument now also accepts an iterable object
so long as it includes an explicit Content-Length header. This extended interface is much more flexible than
before.

http://www.openssl.org/docs/apps/ciphers.html#CIPHER_LIST_FORMAT
http://bugs.python.org/issue8850
http://bugs.python.org/issue1589
http://bugs.python.org/issue8322
http://bugs.python.org/issue5639
http://bugs.python.org/issue4870
http://bugs.python.org/issue8484
http://bugs.python.org/issue8321
http://bugs.python.org/issue9360
http://bugs.python.org/issue1926
http://bugs.python.org/issue9003
http://bugs.python.org/issue4471

To establish an HTTPS connection through a proxy server, there is a new set_tunnel() method that sets the
host and port for HTTP Connect tunneling.

To match the behavior of http.server, the HTTP client library now also encodes headers with ISO-8859-1
(Latin-1) encoding. It was already doing that for incoming headers, so now the behavior is consistent for both
incoming and outgoing traffic. (See work by Armin Ronacher in issue 10980.)

9.33 unittest

The unittest module has a number of improvements supporting test discovery for packages, easier experimentation
at the interactive prompt, new testcase methods, improved diagnostic messages for test failures, and better method
names.

• The command-line call python -m unittest can now accept file paths instead of module names for
running specific tests (issue 10620). The new test discovery can find tests within packages, locating any test
importable from the top-level directory. The top-level directory can be specified with the -t option, a pattern
for matching files with -p, and a directory to start discovery with -s:

$ python -m unittest discover -s my_proj_dir -p _test.py

(Contributed by Michael Foord.)

• Experimentation at the interactive prompt is now easier because the unittest.case.TestCase class
can now be instantiated without arguments:

>>> TestCase().assertEqual(pow(2, 3), 8)

(Contributed by Michael Foord.)

• The unittestmodule has two new methods, assertWarns() and assertWarnsRegex() to verify
that a given warning type is triggered by the code under test:

with self.assertWarns(DeprecationWarning):
legacy_function(’XYZ’)

(Contributed by Antoine Pitrou, issue 9754.)

Another new method, assertCountEqual() is used to compare two iterables to determine if their
element counts are equal (whether the same elements are present with the same number of occurrences
regardless of order):

def test_anagram(self):
self.assertCountEqual(’algorithm’, ’logarithm’)

(Contributed by Raymond Hettinger.)

• A principal feature of the unittest module is an effort to produce meaningful diagnostics when a test fails.
When possible, the failure is recorded along with a diff of the output. This is especially helpful for analyzing
log files of failed test runs. However, since diffs can sometime be voluminous, there is a new maxDiff
attribute that sets maximum length of diffs displayed.

• In addition, the method names in the module have undergone a number of clean-ups.

For example, assertRegex() is the new name for assertRegexpMatches() which was misnamed
because the test uses re.search(), not re.match(). Other methods using regular expressions are now
named using short form “Regex” in preference to “Regexp” – this matches the names used in other unittest
implementations, matches Python’s old name for the re module, and it has unambiguous camel-casing.

(Contributed by Raymond Hettinger and implemented by Ezio Melotti.)

• To improve consistency, some long-standing method aliases are being deprecated in favor of the preferred
names:

http://bugs.python.org/issue10980
http://bugs.python.org/issue10620
http://bugs.python.org/issue9754

Old Name Preferred Name
assert_() assertTrue()
assertEquals() assertEqual()
assertNotEquals() assertNotEqual()
assertAlmostEquals() assertAlmostEqual()
assertNotAlmostEquals() assertNotAlmostEqual()

Likewise, the TestCase.fail* methods deprecated in Python 3.1 are expected to be removed in Python
3.3. Also see the deprecated-aliases section in the unittest documentation.

(Contributed by Ezio Melotti; issue 9424.)

• The assertDictContainsSubset() method was deprecated because it was misimplemented with
the arguments in the wrong order. This created hard-to-debug optical illusions where tests like
TestCase().assertDictContainsSubset({’a’:1, ’b’:2}, {’a’:1}) would fail.

(Contributed by Raymond Hettinger.)

9.34 random

The integer methods in the random module now do a better job of producing uniform distributions. Previously,
they computed selections with int(n*random()) which had a slight bias whenever n was not a power of two.
Now, multiple selections are made from a range up to the next power of two and a selection is kept only when
it falls within the range 0 <= x < n. The functions and methods affected are randrange(), randint(),
choice(), shuffle() and sample().

(Contributed by Raymond Hettinger; issue 9025.)

9.35 poplib

POP3_SSL class now accepts a context parameter, which is a ssl.SSLContext object allowing bundling SSL
configuration options, certificates and private keys into a single (potentially long-lived) structure.

(Contributed by Giampaolo Rodolà; issue 8807.)

9.36 asyncore

asyncore.dispatcher now provides a handle_accepted() method returning a (sock, addr) pair which
is called when a connection has actually been established with a new remote endpoint. This is supposed to be used
as a replacement for old handle_accept() and avoids the user to call accept() directly.

(Contributed by Giampaolo Rodolà; issue 6706.)

9.37 tempfile

The tempfile module has a new context manager, TemporaryDirectory which provides easy determinis-
tic cleanup of temporary directories:

with tempfile.TemporaryDirectory() as tmpdirname:
print(’created temporary dir:’, tmpdirname)

(Contributed by Neil Schemenauer and Nick Coghlan; issue 5178.)

9.38 inspect

• The inspect module has a new function getgeneratorstate() to easily identify the current state
of a generator-iterator:

http://bugs.python.org/issue9424
http://bugs.python.org/issue9025
http://bugs.python.org/issue8807
http://bugs.python.org/issue6706
http://bugs.python.org/issue5178

>>> from inspect import getgeneratorstate
>>> def gen():

yield ’demo’
>>> g = gen()
>>> getgeneratorstate(g)
’GEN_CREATED’
>>> next(g)
’demo’
>>> getgeneratorstate(g)
’GEN_SUSPENDED’
>>> next(g, None)
>>> getgeneratorstate(g)
’GEN_CLOSED’

(Contributed by Rodolpho Eckhardt and Nick Coghlan, issue 10220.)

• To support lookups without the possibility of activating a dynamic attribute, the inspect module has a
new function, getattr_static(). Unlike hasattr(), this is a true read-only search, guaranteed not
to change state while it is searching:

>>> class A:
@property
def f(self):

print(’Running’)
return 10

>>> a = A()
>>> getattr(a, ’f’)
Running
10
>>> inspect.getattr_static(a, ’f’)
<property object at 0x1022bd788>

(Contributed by Michael Foord.)

9.39 pydoc

The pydoc module now provides a much-improved Web server interface, as well as a new command-line option
-b to automatically open a browser window to display that server:

$ pydoc3.2 -b

(Contributed by Ron Adam; issue 2001.)

9.40 dis

The dis module gained two new functions for inspecting code, code_info() and show_code(). Both
provide detailed code object information for the supplied function, method, source code string or code object. The
former returns a string and the latter prints it:

>>> import dis, random
>>> dis.show_code(random.choice)
Name: choice
Filename: /Library/Frameworks/Python.framework/Versions/3.2/lib/python3.2/random.py
Argument count: 2
Kw-only arguments: 0
Number of locals: 3
Stack size: 11
Flags: OPTIMIZED, NEWLOCALS, NOFREE
Constants:

http://bugs.python.org/issue10220
http://bugs.python.org/issue2001

0: ’Choose a random element from a non-empty sequence.’
1: ’Cannot choose from an empty sequence’

Names:
0: _randbelow
1: len
2: ValueError
3: IndexError

Variable names:
0: self
1: seq
2: i

In addition, the dis() function now accepts string arguments so that the common idiom dis(compile(s,
”, ’eval’)) can be shortened to dis(s):

>>> dis(’3*x+1 if x%2==1 else x//2’)
1 0 LOAD_NAME 0 (x)

3 LOAD_CONST 0 (2)
6 BINARY_MODULO
7 LOAD_CONST 1 (1)
10 COMPARE_OP 2 (==)
13 POP_JUMP_IF_FALSE 28
16 LOAD_CONST 2 (3)
19 LOAD_NAME 0 (x)
22 BINARY_MULTIPLY
23 LOAD_CONST 1 (1)
26 BINARY_ADD
27 RETURN_VALUE

>> 28 LOAD_NAME 0 (x)
31 LOAD_CONST 0 (2)
34 BINARY_FLOOR_DIVIDE
35 RETURN_VALUE

Taken together, these improvements make it easier to explore how CPython is implemented and to see for yourself
what the language syntax does under-the-hood.

(Contributed by Nick Coghlan in issue 9147.)

9.41 dbm

All database modules now support the get() and setdefault() methods.

(Suggested by Ray Allen in issue 9523.)

9.42 ctypes

A new type, ctypes.c_ssize_t represents the C ssize_t datatype.

9.43 site

The site module has three new functions useful for reporting on the details of a given Python installation.

• getsitepackages() lists all global site-packages directories.

• getuserbase() reports on the user’s base directory where data can be stored.

• getusersitepackages() reveals the user-specific site-packages directory path.

http://bugs.python.org/issue9147
http://bugs.python.org/issue9523

>>> import site
>>> site.getsitepackages()
[’/Library/Frameworks/Python.framework/Versions/3.2/lib/python3.2/site-packages’,
’/Library/Frameworks/Python.framework/Versions/3.2/lib/site-python’,
’/Library/Python/3.2/site-packages’]

>>> site.getuserbase()
’/Users/raymondhettinger/Library/Python/3.2’
>>> site.getusersitepackages()
’/Users/raymondhettinger/Library/Python/3.2/lib/python/site-packages’

Conveniently, some of site’s functionality is accessible directly from the command-line:

$ python -m site --user-base
/Users/raymondhettinger/.local
$ python -m site --user-site
/Users/raymondhettinger/.local/lib/python3.2/site-packages

(Contributed by Tarek Ziadé in issue 6693.)

9.44 sysconfig

The new sysconfig module makes it straightforward to discover installation paths and configuration variables
that vary across platforms and installations.

The module offers access simple access functions for platform and version information:

• get_platform() returning values like linux-i586 or macosx-10.6-ppc.

• get_python_version() returns a Python version string such as “3.2”.

It also provides access to the paths and variables corresponding to one of seven named schemes used by
distutils. Those include posix_prefix, posix_home, posix_user, nt, nt_user, os2, os2_home:

• get_paths() makes a dictionary containing installation paths for the current installation scheme.

• get_config_vars() returns a dictionary of platform specific variables.

There is also a convenient command-line interface:

C:\Python32>python -m sysconfig
Platform: "win32"
Python version: "3.2"
Current installation scheme: "nt"

Paths:
data = "C:\Python32"
include = "C:\Python32\Include"
platinclude = "C:\Python32\Include"
platlib = "C:\Python32\Lib\site-packages"
platstdlib = "C:\Python32\Lib"
purelib = "C:\Python32\Lib\site-packages"
scripts = "C:\Python32\Scripts"
stdlib = "C:\Python32\Lib"

Variables:
BINDIR = "C:\Python32"
BINLIBDEST = "C:\Python32\Lib"
EXE = ".exe"
INCLUDEPY = "C:\Python32\Include"
LIBDEST = "C:\Python32\Lib"
SO = ".pyd"
VERSION = "32"
abiflags = ""

http://bugs.python.org/issue6693

base = "C:\Python32"
exec_prefix = "C:\Python32"
platbase = "C:\Python32"
prefix = "C:\Python32"
projectbase = "C:\Python32"
py_version = "3.2"
py_version_nodot = "32"
py_version_short = "3.2"
srcdir = "C:\Python32"
userbase = "C:\Documents and Settings\Raymond\Application Data\Python"

(Moved out of Distutils by Tarek Ziadé.)

9.45 pdb

The pdb debugger module gained a number of usability improvements:

• pdb.py now has a -c option that executes commands as given in a .pdbrc script file.

• A .pdbrc script file can contain continue and next commands that continue debugging.

• The Pdb class constructor now accepts a nosigint argument.

• New commands: l(list), ll(long list) and source for listing source code.

• New commands: display and undisplay for showing or hiding the value of an expression if it has
changed.

• New command: interact for starting an interactive interpreter containing the global and local names
found in the current scope.

• Breakpoints can be cleared by breakpoint number.

(Contributed by Georg Brandl, Antonio Cuni and Ilya Sandler.)

9.46 configparser

The configparser module was modified to improve usability and predictability of the default parser and its
supported INI syntax. The old ConfigParser class was removed in favor of SafeConfigParser which has
in turn been renamed to ConfigParser. Support for inline comments is now turned off by default and section
or option duplicates are not allowed in a single configuration source.

Config parsers gained a new API based on the mapping protocol:

>>> parser = ConfigParser()
>>> parser.read_string("""
[DEFAULT]
location = upper left
visible = yes
editable = no
color = blue

[main]
title = Main Menu
color = green

[options]
title = Options
""")
>>> parser[’main’][’color’]
’green’
>>> parser[’main’][’editable’]

’no’
>>> section = parser[’options’]
>>> section[’title’]
’Options’
>>> section[’title’] = ’Options (editable: %(editable)s)’
>>> section[’title’]
’Options (editable: no)’

The new API is implemented on top of the classical API, so custom parser subclasses should be able to use it
without modifications.

The INI file structure accepted by config parsers can now be customized. Users can specify alternative option/value
delimiters and comment prefixes, change the name of the DEFAULT section or switch the interpolation syntax.

There is support for pluggable interpolation including an additional interpolation handler
ExtendedInterpolation:

>>> parser = ConfigParser(interpolation=ExtendedInterpolation())
>>> parser.read_dict({’buildout’: {’directory’: ’/home/ambv/zope9’},

’custom’: {’prefix’: ’/usr/local’}})
>>> parser.read_string("""

[buildout]
parts =

zope9
instance

find-links =
${buildout:directory}/downloads/dist

[zope9]
recipe = plone.recipe.zope9install
location = /opt/zope

[instance]
recipe = plone.recipe.zope9instance
zope9-location = ${zope9:location}
zope-conf = ${custom:prefix}/etc/zope.conf
""")

>>> parser[’buildout’][’find-links’]
’\n/home/ambv/zope9/downloads/dist’
>>> parser[’instance’][’zope-conf’]
’/usr/local/etc/zope.conf’
>>> instance = parser[’instance’]
>>> instance[’zope-conf’]
’/usr/local/etc/zope.conf’
>>> instance[’zope9-location’]
’/opt/zope’

A number of smaller features were also introduced, like support for specifying encoding in read operations, spec-
ifying fallback values for get-functions, or reading directly from dictionaries and strings.

(All changes contributed by Łukasz Langa.)

9.47 urllib.parse

A number of usability improvements were made for the urllib.parse module.

The urlparse() function now supports IPv6 addresses as described in RFC 2732:

>>> import urllib.parse
>>> urllib.parse.urlparse(’http://[dead:beef:cafe:5417:affe:8FA3:deaf:feed]/foo/’)
ParseResult(scheme=’http’,

http://en.wikipedia.org/wiki/IPv6
http://tools.ietf.org/html/rfc2732.html

netloc=’[dead:beef:cafe:5417:affe:8FA3:deaf:feed]’,
path=’/foo/’,
params=’’,
query=’’,
fragment=’’)

The urldefrag() function now returns a named tuple:

>>> r = urllib.parse.urldefrag(’http://python.org/about/#target’)
>>> r
DefragResult(url=’http://python.org/about/’, fragment=’target’)
>>> r[0]
’http://python.org/about/’
>>> r.fragment
’target’

And, the urlencode() function is now much more flexible, accepting either a string or bytes type for the query
argument. If it is a string, then the safe, encoding, and error parameters are sent to quote_plus() for encoding:

>>> urllib.parse.urlencode([
(’type’, ’telenovela’),
(’name’, ’¿Dónde Está Elisa?’)],
encoding=’latin-1’)

’type=telenovela&name=%BFD%F3nde+Est%E1+Elisa%3F’

As detailed in parsing-ascii-encoded-bytes, all the urllib.parse functions now accept ASCII-encoded byte
strings as input, so long as they are not mixed with regular strings. If ASCII-encoded byte strings are given as
parameters, the return types will also be an ASCII-encoded byte strings:

>>> urllib.parse.urlparse(b’http://www.python.org:80/about/’)
ParseResultBytes(scheme=b’http’, netloc=b’www.python.org:80’,

path=b’/about/’, params=b’’, query=b’’, fragment=b’’)

(Work by Nick Coghlan, Dan Mahn, and Senthil Kumaran in issue 2987, issue 5468, and issue 9873.)

9.48 mailbox

Thanks to a concerted effort by R. David Murray, the mailbox module has been fixed for Python 3.2. The chal-
lenge was that mailbox had been originally designed with a text interface, but email messages are best represented
with bytes because various parts of a message may have different encodings.

The solution harnessed the email package’s binary support for parsing arbitrary email messages. In addition, the
solution required a number of API changes.

As expected, the add() method for mailbox.Mailbox objects now accepts binary input.

StringIO and text file input are deprecated. Also, string input will fail early if non-ASCII characters are used.
Previously it would fail when the email was processed in a later step.

There is also support for binary output. The get_file() method now returns a file in the binary mode (where
it used to incorrectly set the file to text-mode). There is also a new get_bytes() method that returns a bytes
representation of a message corresponding to a given key.

It is still possible to get non-binary output using the old API’s get_string() method, but that approach is not
very useful. Instead, it is best to extract messages from a Message object or to load them from binary input.

(Contributed by R. David Murray, with efforts from Steffen Daode Nurpmeso and an initial patch by Victor Stinner
in issue 9124.)

9.49 turtledemo

The demonstration code for the turtle module was moved from the Demo directory to main library. It includes
over a dozen sample scripts with lively displays. Being on sys.path, it can now be run directly from the

http://bugs.python.org/issue2987
http://bugs.python.org/issue5468
http://bugs.python.org/issue9873
http://bugs.python.org/issue9124

command-line:

$ python -m turtledemo

(Moved from the Demo directory by Alexander Belopolsky in issue 10199.)

10 Multi-threading

• The mechanism for serializing execution of concurrently running Python threads (generally known as the
GIL or Global Interpreter Lock) has been rewritten. Among the objectives were more predictable switching
intervals and reduced overhead due to lock contention and the number of ensuing system calls. The notion
of a “check interval” to allow thread switches has been abandoned and replaced by an absolute duration
expressed in seconds. This parameter is tunable through sys.setswitchinterval(). It currently
defaults to 5 milliseconds.

Additional details about the implementation can be read from a python-dev mailing-list message (however,
“priority requests” as exposed in this message have not been kept for inclusion).

(Contributed by Antoine Pitrou.)

• Regular and recursive locks now accept an optional timeout argument to their acquire() method. (Con-
tributed by Antoine Pitrou; issue 7316.)

• Similarly, threading.Semaphore.acquire() also gained a timeout argument. (Contributed by
Torsten Landschoff; issue 850728.)

• Regular and recursive lock acquisitions can now be interrupted by signals on platforms using Pthreads. This
means that Python programs that deadlock while acquiring locks can be successfully killed by repeatedly
sending SIGINT to the process (by pressing Ctrl+C in most shells). (Contributed by Reid Kleckner; issue
8844.)

11 Optimizations

A number of small performance enhancements have been added:

• Python’s peephole optimizer now recognizes patterns such x in {1, 2, 3} as being a test for mem-
bership in a set of constants. The optimizer recasts the set as a frozenset and stores the pre-built
constant.

Now that the speed penalty is gone, it is practical to start writing membership tests using set-notation. This
style is both semantically clear and operationally fast:

extension = name.rpartition(’.’)[2]
if extension in {’xml’, ’html’, ’xhtml’, ’css’}:

handle(name)

(Patch and additional tests contributed by Dave Malcolm; issue 6690).

• Serializing and unserializing data using the pickle module is now several times faster.

(Contributed by Alexandre Vassalotti, Antoine Pitrou and the Unladen Swallow team in issue 9410 and
issue 3873.)

• The Timsort algorithm used in list.sort() and sorted() now runs faster and uses less memory
when called with a key function. Previously, every element of a list was wrapped with a temporary object
that remembered the key value associated with each element. Now, two arrays of keys and values are sorted
in parallel. This saves the memory consumed by the sort wrappers, and it saves time lost to delegating
comparisons.

(Patch by Daniel Stutzbach in issue 9915.)

http://bugs.python.org/issue10199
http://mail.python.org/pipermail/python-dev/2009-October/093321.html
http://bugs.python.org/issue7316
http://bugs.python.org/issue850728
http://bugs.python.org/issue8844
http://bugs.python.org/issue8844
http://bugs.python.org/issue6690
http://bugs.python.org/issue9410
http://bugs.python.org/issue3873
http://en.wikipedia.org/wiki/Timsort
http://bugs.python.org/issue9915

• JSON decoding performance is improved and memory consumption is reduced whenever the same string is
repeated for multiple keys. Also, JSON encoding now uses the C speedups when the sort_keys argument
is true.

(Contributed by Antoine Pitrou in issue 7451 and by Raymond Hettinger and Antoine Pitrou in issue 10314.)

• Recursive locks (created with the threading.RLock() API) now benefit from a C implementation
which makes them as fast as regular locks, and between 10x and 15x faster than their previous pure Python
implementation.

(Contributed by Antoine Pitrou; issue 3001.)

• The fast-search algorithm in stringlib is now used by the split(), splitlines() and replace()
methods on bytes, bytearray and str objects. Likewise, the algorithm is also used by rfind(),
rindex(), rsplit() and rpartition().

(Patch by Florent Xicluna in issue 7622 and issue 7462.)

• Integer to string conversions now work two “digits” at a time, reducing the number of division and modulo
operations.

(issue 6713 by Gawain Bolton, Mark Dickinson, and Victor Stinner.)

There were several other minor optimizations. Set differencing now runs faster when one operand is much larger
than the other (patch by Andress Bennetts in issue 8685). The array.repeat() method has a faster imple-
mentation (issue 1569291 by Alexander Belopolsky). The BaseHTTPRequestHandler has more efficient
buffering (issue 3709 by Andrew Schaaf). The operator.attrgetter() function has been sped-up (is-
sue 10160 by Christos Georgiou). And ConfigParser loads multi-line arguments a bit faster (issue 7113 by
Łukasz Langa).

12 Unicode

Python has been updated to Unicode 6.0.0. The update to the standard adds over 2,000 new characters including
emoji symbols which are important for mobile phones.

In addition, the updated standard has altered the character properties for two Kannada characters (U+0CF1,
U+0CF2) and one New Tai Lue numeric character (U+19DA), making the former eligible for use in identifiers
while disqualifying the latter. For more information, see Unicode Character Database Changes.

13 Codecs

Support was added for cp720 Arabic DOS encoding (issue 1616979).

MBCS encoding no longer ignores the error handler argument. In the default strict mode, it raises an
UnicodeDecodeError when it encounters an undecodable byte sequence and an UnicodeEncodeError
for an unencodable character.

The MBCS codec supports ’strict’ and ’ignore’ error handlers for decoding, and ’strict’ and
’replace’ for encoding.

To emulate Python3.1 MBCS encoding, select the ’ignore’ handler for decoding and the ’replace’ handler
for encoding.

On Mac OS X, Python decodes command line arguments with ’utf-8’ rather than the locale encoding.

By default, tarfile uses ’utf-8’ encoding on Windows (instead of ’mbcs’) and the
’surrogateescape’ error handler on all operating systems.

http://bugs.python.org/issue7451
http://bugs.python.org/issue10314
http://bugs.python.org/issue3001
http://bugs.python.org/issue7622
http://bugs.python.org/issue7462
http://bugs.python.org/issue6713
http://bugs.python.org/issue8685
http://bugs.python.org/issue1569291
http://bugs.python.org/issue3709
http://bugs.python.org/issue10160
http://bugs.python.org/issue10160
http://bugs.python.org/issue7113
http://unicode.org/versions/Unicode6.0.0/
http://en.wikipedia.org/wiki/Emoji
http://www.unicode.org/versions/Unicode6.0.0/#Database_Changes
http://bugs.python.org/issue1616979

14 Documentation

The documentation continues to be improved.

• A table of quick links has been added to the top of lengthy sections such as built-in-funcs. In the case of
itertools, the links are accompanied by tables of cheatsheet-style summaries to provide an overview
and memory jog without having to read all of the docs.

• In some cases, the pure Python source code can be a helpful adjunct to the documentation, so now many
modules now feature quick links to the latest version of the source code. For example, the functools
module documentation has a quick link at the top labeled:

Source code Lib/functools.py.

(Contributed by Raymond Hettinger; see rationale.)

• The docs now contain more examples and recipes. In particular, re module has an extensive section, re-
examples. Likewise, the itertools module continues to be updated with new itertools-recipes.

• The datetime module now has an auxiliary implementation in pure Python. No functionality was
changed. This just provides an easier-to-read alternate implementation.

(Contributed by Alexander Belopolsky in issue 9528.)

• The unmaintained Demo directory has been removed. Some demos were integrated into the documentation,
some were moved to the Tools/demo directory, and others were removed altogether.

(Contributed by Georg Brandl in issue 7962.)

15 IDLE

• The format menu now has an option to clean source files by stripping trailing whitespace.

(Contributed by Raymond Hettinger; issue 5150.)

• IDLE on Mac OS X now works with both Carbon AquaTk and Cocoa AquaTk.

(Contributed by Kevin Walzer, Ned Deily, and Ronald Oussoren; issue 6075.)

16 Code Repository

In addition to the existing Subversion code repository at http://svn.python.org there is now a Mercurial repository
at http://hg.python.org/.

After the 3.2 release, there are plans to switch to Mercurial as the primary repository. This distributed version
control system should make it easier for members of the community to create and share external changesets. See

PEP 385 for details.

To learn the new version control system, see the tutorial by Joel Spolsky or the Guide to Mercurial Workflows.

17 Build and C API Changes

Changes to Python’s build process and to the C API include:

• The idle, pydoc and 2to3 scripts are now installed with a version-specific suffix on make altinstall
(issue 10679).

http://hg.python.org/cpython/file/3.2/Lib/functools.py
http://rhettinger.wordpress.com/2011/01/28/open-your-source-more/
http://bugs.python.org/issue9528
http://bugs.python.org/issue7962
http://bugs.python.org/issue5150
http://bugs.python.org/issue6075
http://svn.python.org
http://mercurial.selenic.com/
http://hg.python.org/
http://www.python.org/dev/peps/pep-0385
http://hginit.com
http://mercurial.selenic.com/guide/
http://bugs.python.org/issue10679

• The C functions that access the Unicode Database now accept and return characters from the full Unicode
range, even on narrow unicode builds (Py_UNICODE_TOLOWER, Py_UNICODE_ISDECIMAL, and oth-
ers). A visible difference in Python is that unicodedata.numeric() now returns the correct value for
large code points, and repr() may consider more characters as printable.

(Reported by Bupjoe Lee and fixed by Amaury Forgeot D’Arc; issue 5127.)

• Computed gotos are now enabled by default on supported compilers (which are detected by the configure
script). They can still be disabled selectively by specifying --without-computed-gotos.

(Contributed by Antoine Pitrou; issue 9203.)

• The option --with-wctype-functions was removed. The built-in unicode database is now used for
all functions.

(Contributed by Amaury Forgeot D’Arc; issue 9210.)

• Hash values are now values of a new type, Py_hash_t, which is defined to be the same size as a pointer.
Previously they were of type long, which on some 64-bit operating systems is still only 32 bits long. As
a result of this fix, set and dict can now hold more than 2**32 entries on builds with 64-bit pointers
(previously, they could grow to that size but their performance degraded catastrophically).

(Suggested by Raymond Hettinger and implemented by Benjamin Peterson; issue 9778.)

• A new macro Py_VA_COPY copies the state of the variable argument list. It is equivalent to C99 va_copy
but available on all Python platforms (issue 2443).

• A new C API function PySys_SetArgvEx() allows an embedded interpreter to set sys.argv without
also modifying sys.path (issue 5753).

• PyEval_CallObject is now only available in macro form. The function declaration, which was kept
for backwards compatibility reasons, is now removed – the macro was introduced in 1997 (issue 8276).

• There is a new function PyLong_AsLongLongAndOverflow() which is analogous to
PyLong_AsLongAndOverflow(). They both serve to convert Python int into a native fixed-
width type while providing detection of cases where the conversion won’t fit (issue 7767).

• The PyUnicode_CompareWithASCIIString() function now returns not equal if the Python string
is NUL terminated.

• There is a new function PyErr_NewExceptionWithDoc() that is like PyErr_NewException()
but allows a docstring to be specified. This lets C exceptions have the same self-documenting capabilities
as their pure Python counterparts (issue 7033).

• When compiled with the --with-valgrind option, the pymalloc allocator will be automatically dis-
abled when running under Valgrind. This gives improved memory leak detection when running under
Valgrind, while taking advantage of pymalloc at other times (issue 2422).

• Removed the O? format from the PyArg_Parse functions. The format is no longer used and it had never
been documented (issue 8837).

There were a number of other small changes to the C-API. See the Misc/NEWS file for a complete list.

Also, there were a number of updates to the Mac OS X build, see Mac/BuildScript/README.txt for de-
tails. For users running a 32/64-bit build, there is a known problem with the default Tcl/Tk on Mac OS X
10.6. Accordingly, we recommend installing an updated alternative such as ActiveState Tcl/Tk 8.5.9. See
http://www.python.org/download/mac/tcltk/ for additional details.

18 Porting to Python 3.2

This section lists previously described changes and other bugfixes that may require changes to your code:

• The configparser module has a number of clean-ups. The major change is to replace the old
ConfigParser class with long-standing preferred alternative SafeConfigParser. In addition there
are a number of smaller incompatibilities:

http://bugs.python.org/issue5127
http://bugs.python.org/issue9203
http://bugs.python.org/issue9210
http://bugs.python.org/issue9778
http://bugs.python.org/issue2443
http://bugs.python.org/issue5753
http://bugs.python.org/issue8276
http://bugs.python.org/issue7767
http://bugs.python.org/issue7033
http://bugs.python.org/issue2422
http://bugs.python.org/issue8837
http://hg.python.org/cpython/file/3.2/Misc/NEWS
http://hg.python.org/cpython/file/3.2/Mac/BuildScript/README.txt
http://www.activestate.com/activetcl/downloads
http://www.python.org/download/mac/tcltk/

– The interpolation syntax is now validated on get() and set() operations. In the default interpo-
lation scheme, only two tokens with percent signs are valid: %(name)s and %%, the latter being an
escaped percent sign.

– The set() and add_section() methods now verify that values are actual strings. Formerly,
unsupported types could be introduced unintentionally.

– Duplicate sections or options from a single source now raise either DuplicateSectionError or
DuplicateOptionError. Formerly, duplicates would silently overwrite a previous entry.

– Inline comments are now disabled by default so now the ; character can be safely used in values.

– Comments now can be indented. Consequently, for ; or # to appear at the start of a line in multiline
values, it has to be interpolated. This keeps comment prefix characters in values from being mistaken
as comments.

– "" is now a valid value and is no longer automatically converted to an empty string. For empty strings,
use "option =" in a line.

• The nntplib module was reworked extensively, meaning that its APIs are often incompatible with the 3.1
APIs.

• bytearray objects can no longer be used as filenames; instead, they should be converted to bytes.

• The array.tostring() and array.fromstring() have been renamed to array.tobytes()
and array.frombytes() for clarity. The old names have been deprecated. (See issue 8990.)

• PyArg_Parse*() functions:

– “t#” format has been removed: use “s#” or “s*” instead

– “w” and “w#” formats has been removed: use “w*” instead

• The PyCObject type, deprecated in 3.1, has been removed. To wrap opaque C pointers in Python objects,
the PyCapsule API should be used instead; the new type has a well-defined interface for passing typing
safety information and a less complicated signature for calling a destructor.

• The sys.setfilesystemencoding() function was removed because it had a flawed design.

• The random.seed() function and method now salt string seeds with an sha512 hash function. To access
the previous version of seed in order to reproduce Python 3.1 sequences, set the version argument to 1,
random.seed(s, version=1).

• The previously deprecated string.maketrans() function has been removed in favor of the static meth-
ods bytes.maketrans() and bytearray.maketrans(). This change solves the confusion around
which types were supported by the string module. Now, str, bytes, and bytearray each have their
own maketrans and translate methods with intermediate translation tables of the appropriate type.

(Contributed by Georg Brandl; issue 5675.)

• The previously deprecated contextlib.nested() function has been removed in favor of a plain with
statement which can accept multiple context managers. The latter technique is faster (because it is built-in),
and it does a better job finalizing multiple context managers when one of them raises an exception:

with open(’mylog.txt’) as infile, open(’a.out’, ’w’) as outfile:
for line in infile:

if ’<critical>’ in line:
outfile.write(line)

(Contributed by Georg Brandl and Mattias Brändström; appspot issue 53094.)

• struct.pack() now only allows bytes for the s string pack code. Formerly, it would accept text argu-
ments and implicitly encode them to bytes using UTF-8. This was problematic because it made assumptions
about the correct encoding and because a variable-length encoding can fail when writing to fixed length seg-
ment of a structure.

Code such as struct.pack(’<6sHHBBB’, ’GIF87a’, x, y) should be rewritten with to use
bytes instead of text, struct.pack(’<6sHHBBB’, b’GIF87a’, x, y).

http://bugs.python.org/issue8990
http://bugs.python.org/issue5675
http://codereview.appspot.com/53094

(Discovered by David Beazley and fixed by Victor Stinner; issue 10783.)

• The xml.etree.ElementTree class now raises an xml.etree.ElementTree.ParseError
when a parse fails. Previously it raised a xml.parsers.expat.ExpatError.

• The new, longer str() value on floats may break doctests which rely on the old output format.

• In subprocess.Popen, the default value for close_fds is now True under Unix; under Windows, it is
True if the three standard streams are set to None, False otherwise. Previously, close_fds was always
False by default, which produced difficult to solve bugs or race conditions when open file descriptors
would leak into the child process.

• Support for legacy HTTP 0.9 has been removed from urllib.request and http.client. Such
support is still present on the server side (in http.server).

(Contributed by Antoine Pitrou, issue 10711.)

• SSL sockets in timeout mode now raise socket.timeout when a timeout occurs, rather than a generic
SSLError.

(Contributed by Antoine Pitrou, issue 10272.)

• The misleading functions PyEval_AcquireLock() and PyEval_ReleaseLock() have been
officially deprecated. The thread-state aware APIs (such as PyEval_SaveThread() and
PyEval_RestoreThread()) should be used instead.

• Due to security risks, asyncore.handle_accept() has been deprecated, and a new function,
asyncore.handle_accepted(), was added to replace it.

(Contributed by Giampaolo Rodola in issue 6706.)

• Due to the new GIL implementation, PyEval_InitThreads() cannot be called before
Py_Initialize() anymore.

http://bugs.python.org/issue10783
http://bugs.python.org/issue10711
http://bugs.python.org/issue10272
http://bugs.python.org/issue6706

Index

E
environment variable

PYTHONWARNINGS, ix

P
Python Enhancement Proposals

PEP 3147, vi
PEP 3148, v
PEP 3149, vii
PEP 3333, vii
PEP 384, iii
PEP 385, xxxv
PEP 389, iv
PEP 391, v
PEP 392, ii

PYTHONWARNINGS, ix

R
RFC

RFC 2047, vii, xi
RFC 2616, vii
RFC 2732, xxxi
RFC 2818, xxiii

xxxix

	PEP 384: Defining a Stable ABI
	PEP 389: Argparse Command Line Parsing Module
	PEP 391: Dictionary Based Configuration for Logging
	PEP 3148: The concurrent.futures module
	PEP 3147: PYC Repository Directories
	PEP 3149: ABI Version Tagged .so Files
	PEP 3333: Python Web Server Gateway Interface v1.0.1
	Other Language Changes
	New, Improved, and Deprecated Modules
	email
	elementtree
	functools
	itertools
	collections
	threading
	datetime and time
	math
	abc
	io
	reprlib
	logging
	csv
	contextlib
	decimal and fractions
	ftp
	popen
	select
	gzip and zipfile
	tarfile
	hashlib
	ast
	os
	shutil
	sqlite3
	html
	socket
	ssl
	nntp
	certificates
	imaplib
	http.client
	unittest
	random
	poplib
	asyncore
	tempfile
	inspect
	pydoc
	dis
	dbm
	ctypes
	site
	sysconfig
	pdb
	configparser
	urllib.parse
	mailbox
	turtledemo

	Multi-threading
	Optimizations
	Unicode
	Codecs
	Documentation
	IDLE
	Code Repository
	Build and C API Changes
	Porting to Python 3.2
	Index

