The Python Library Reference
Release 3.2.3

Guido van Rossum
Fred L. Drake, Jr., editor

April 11, 2012

Python Software Foundation
Email: docs@python.org

CONTENTS

Introduction 3
Built-in Functions 5
Built-in Constants 23
3.1 Constants added by the sitemodule e 23
Built-in Types 25
4.1 Truth Value Testing o it e e e e e e e e 25
4.2 Boolean Operations — and, O0r, NOT . .+ v v v v v v v v v e e e e e e e e e e e e e e 25
4.3 CompariSONS . . v v v v e 26
4.4 Numeric Types — int, float,complex« o o v v v ittt 26
4.5 Tterator Types oL e 31
4.6 Sequence Types — str, bytes, bytearray, list, tuple, range 32
477 SetTypes — set, frozenset v v i v v i i i e e e e e e e e e e e e 43
4.8 Mapping Types — dicCt o v v i i e e e e e e e e e e e e e e e 45
4.9 memOTyVIEW tYPE i i i e 48
4.10 Context Manager Types e 50
4.11 Other Built-in Types o e e e e 51
4.12 Special Attributes L L. e e e e e e 53
Built-in Exceptions 55
5.1 Exception hierarchy e 59
String Services 61
6.1 string-— Common string Operationso 61
6.2 re — Regular expression operations oo e e e e 70
6.3 struct — Interpret bytes as packed binary data 86
6.4 difflib— Helpers for computingdeltas 90
6.5 textwrap —Textwrappingandfilling 100
6.6 codecs—Codecregistry andbaseclasses Lo 102
6.7 wunicodedata— Unicode Database 115
6.8 stringprep — Internet String Preparation oL 116
Data Types 119
7.1 datetime —Basicdateandtimetypesl 119
7.2 calendar — General calendar-related functions, 142
7.3 collections —Container datatypes ¢ v v v v it e e e e e e e e e e e e 145
74 heapg—Heap queue algorithm L o 159
7.5 Dbisect — Array bisection algorithmo 0oL 163
7.6 array — Efficient arrays of numeric values Lo 165
7.7 sched—Eventscheduler 167
7.8 queue — A synchronized queueclass e 169
7.9 weakref —Weakreferences L e 171

10

11

12

13

14

15

7.10
7.11
7.12
7.13

types — Names for built-intypes e
copy — Shallow and deep COpy OPerations v v v v v v v vt e e e e e
pprint — Data pretty printero i e e e e e e e e e e e e e e e e e e
reprlib — Alternate repr () implementation Lo e

Numeric and Mathematical Modules

8.1
8.2
8.3
8.4
8.5
8.6

numbers — Numeric abstractbaseclasses o
math — Mathematical functions e
cmath — Mathematical functions for complex numbers,
decimal — Decimal fixed point and floating point arithmetic
fractions —Rationalnumbers L oL
random — Generate pseudo-random nUMbETSo L. e e e e e e e

Functional Programming Modules

9.1
9.2
9.3
9.4

itertools — Functions creating iterators for efficient looping
functools — Higher-order functions and operations on callable objects
operator — Standard operators as functions oL
Inplace Operators o o e e e e e e e

File and Directory Access

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9

os.path — Common pathname manipulations
fileinput — Iterate over lines from multiple input streams
stat — Interpreting stat () results
filecmp — File and Directory CompariSOns v v v v v v v v i e e e e
tempfile — Generate temporary files and directories
glob — Unix style pathname pattern expansion
fnmatch — Unix filename pattern matching
linecache —Randomaccesstotextlines
shutil — High-level file operations i i v it

10.10 macpath — Mac OS 9 path manipulation functions

Data Persistence

11.1
11.2
11.3
11.4
11.5
11.6

pickle — Python object serialization e
copyreg — Register pickle support functions Lo
shelve — Python object persistence
marshal — Internal Python object serialization
dbm — Interfaces to Unix “databases”
sglite3 — DB-API 2.0 interface for SQLite databases

Data Compression and Archiving

12.1
12.2
12.3
12.4
12.5

z1ib — Compression compatible withgzip oo,
gzip — Support for gzipfiles e e
bz2 — Compression compatible withbzip2
zipfile — Work with ZIP archives
tarfile — Read and write tar archive files L.

File Formats

13.1
13.2
13.3
13.4
13.5

csv — CSV File Reading and Writing
configparser — Configuration file parser L.
netrc—netrc file processing oL e e
xdrlib —Encode and decode XDRdata
plistlib — Generate and parse Mac OS X .plistfiles.

Cryptographic Services

14.1
14.2

hashlib — Secure hashes and message digests v i i
hmac — Keyed-Hashing for Message Authentication

Generic Operating System Services

15.1

os — Miscellaneous operating system interfaces o0

183
183
186
190
192
215
217

221
221
233
236
241

243
243
246
248
252
253
256
257
258
259
263

265
265
275
276
278
279
282

301
301
303
305
307
312

321
321
326
342
343
345

349
349
351

353

15.2 io— Core tools for working with streams
15.3 time — Time access and CONVEISIONS« « v v v v v v vt bt e e e e e e e e
15.4 argparse — Parser for command-line options, arguments and sub-commands
15.5 optparse — Parser for command line options oo
15.6 getopt — C-style parser for command line options
15.7 logging — Logging facility for Python 0.
15.8 logging.config—Logging configuration
159 logging.handlers—Logginghandlers
15.10 getpass — Portable passwordinput e
15.11 curses — Terminal handling for character-cell displays
15.12 curses. textpad — Text input widget for curses programs
15.13 curses.ascii — Utilities for ASCII characters
15.14 curses.panel — A panel stack extension forcurses
15.15 plat form — Access to underlying platform’s identifyingdata
15.16 errno — Standard errno system symbolso L0000
15.17 ctypes — A foreign function library for Python00,

16 Optional Operating System Services
16.1 select — Waiting for /O completion e
16.2 threading— Thread-based parallelism
16.3 multiprocessing— Process-based parallelism
164 concurrent.futures — Launching parallel tasks
16.5 mmap — Memory-mapped file support oL
16.6 readline —GNUreadlineinterface
16.7 rlcompleter — Completion function for GNU readline
16.8 dummy_threading — Drop-in replacement for the threadingmodule
169 _thread — Low-level threading API,
16.10 _dummy_thread — Drop-in replacement for the _threadmodule

17 Interprocess Communication and Networking
17.1 subprocess — Subprocess managemento v e e e e e e e e e e e
17.2 socket — Low-level networking interface
17.3 ss1 — TLS/SSL wrapper for socket objects
17.4 signal — Set handlers for asynchronous events
17.5 asyncore — Asynchronous sockethandler,
17.6 asynchat — Asynchronous socket command/response handler

18 Internet Data Handling
18.1 email — Anemail and MIME handling package
182 json—JSONencoderanddecoder,
183 mailcap—Mailcap filehandling
18.4 mailbox — Manipulate mailboxes in various formatso
18.5 mimetypes — Map filenames to MIME types
18.6 base64 — RFC 3548: Basel6, Base32, Base64 Data Encodings
18.7 binhex — Encode and decode binhex4 files L.
18.8 binascii — Convert between binary and ASCIT
18.9 quopri — Encode and decode MIME quoted-printabledata
18.10 uu — Encode and decode uuencode files

19 Structured Markup Processing Tools
19.1 html — HyperText Markup Language support
19.2 html.parser — Simple HTML and XHTML parser
19.3 html.entities — Definitions of HTML general entities
19.4 xml.parsers.expat — Fast XML parsingusing Expat
19.5 xml.dom— The Document Object Model APT
19.6 xml.dom.minidom — Lightweight DOM implementation
19.7 xml.dom.pulldom — Support for building partial DOM trees
19.8 xml.sax — Support for SAX2 parsers it e e
19.9 xml.sax.handler — Baseclasses for SAX handlers

465
474

533
533
537
548
595
600
603
605
606
606
608

609
609
620
632
645
648
651

655
655
685
690
691
707
709
711
712
713
714

715
715
715
719
720
728
738
742
742
744

19.10 xml.sax.saxutils — SAX Utlities i i e e
19.11 xml.sax.xmlreader — Interface for XML parsers
19.12 xml .etree.ElementTree — The ElementTree XML API

20 Internet Protocols and Support
20.1 webbrowser — Convenient Web-browser controller
20.2 cgi — Common Gateway Interface support e
20.3 cgitb — Traceback manager for CGIscripts
20.4 wsgiref — WSGI Utilities and Reference Implementation
20.5 urllib.request — Extensible library foropening URLs
20.6 urllib.response — Response classesusedbyurllib
20.7 urllib.parse — Parse URLsintocomponents v ...
20.8 urllib.error — Exception classes raised by urllib.request
209 urllib.robotparser — Parser forrobots.txt
20.10 http.client — HTTP protocolclient
20.11 ftplib —FTPprotocolclient o . i i e e e
20.12 poplib —POP3 protocol client e
20.13 imaplib —IMAP4 protocolclient L
20.14 nntplib —NNTP protocolclient L
20.15 smtplib — SMTP protocol client e
20.16 smtpd — SMTP Server e e e e
20.17 telnetlib —Telnetclient e
20.18 uuid — UUID objects according to RFC 4122
20.19 socketserver — A framework for network servers L oL
20.20 http.server — HTTPservers e
20.21 http.cookies — HTTP state management
20.22 http.cookiejar — Cookie handling for HTTPclients
20.23 xmlrpc.client — XML-RPCclientaccess oo v i i v i i i e i
20.24 xmlrpc.server — Basic XML-RPCservers

21 Multimedia Services
21.1 audiocop — Manipulate raw audiodata Lo
21.2 aifc—Read and write AIFF and AIFCfiles
21.3 sunau—Readand write Sun AU files L L
21.4 wave —Read and write WAV files L L
21.5 chunk —ReadIFFchunkeddata
21.6 colorsys — Conversions between color systems o .o e e
21.7 imghdr — Determine the type of animage
21.8 sndhdr — Determine type of sound file
21.9 ossaudiodev — Access to OSS-compatible audio devices

22 Internationalization
22.1 gettext — Multilingual internationalization services
22.2 locale — Internationalization Services e

23 Program Frameworks
23.1 turtle—Turtle graphics e
23.2 cmd — Support for line-oriented command interpreters oL L.
23.3 shlex — Simple lexical analysSis v v v it e e e e e e e

24 Graphical User Interfaces with Tk
24.1 tkinter —Pythoninterfaceto Tcl/Tk o
242 tkinter.ttk —Tkthemedwidgets e
243 tkinter.tix —Extensionwidgetsfor Tk
244 tkinter.scrolledtext — Scrolled Text Widget
245 IDLE o
24.6 Other Graphical User Interface Packages

25 Development Tools

761
761
763
769
769
778
792
792
798
798
799
804
808
810
816
821
826
828
830
833
840
844
847
855
861

867
867
870
872
874
876
877
878
879
879

885
885
893

899
899
931
936

941
941
950
966
971
971
974

977

25.1 pydoc — Documentation generator and online help system
25.2 doctest — Testinteractive Pythonexamples
25.3 unittest — Unittesting framework o
25.4 2to3 - Automated Python 2 to 3 code translation oL
25.5 test — Regression tests package forPython. oo
25.6 test.support — Utilities for the Python testsuite

26 Debugging and Profiling
26.1 bdb — Debugger framework
26.2 pdb — The Python Debugger e
26.3 The Python Profilers e e e e
26.4 timeit — Measure execution time of small code snippets
26.5 trace — Trace or track Python statement execution

27 Python Runtime Services
27.1 sys — System-specific parameters and functions o oL
27.2 sysconfig— Provide access to Python’s configuration information.
273 builtins—Built-inobjects
274 __main___ —Top-level scriptenvironment
27.5 warnings — Warningcontrol Lo e e e e
27.6 contextlib — Utilities for with-statementcontexts
2777 abc—Abstract Base Classes L e
27.8 atexit —Exithandlers
279 traceback — Print or retrieve a stack traceback oo
27.10 __ future_ — Future statement definitions
27.11 gc — Garbage Collectorinterface e
27.12 inspect — Inspectlive objects L. L e
27.13 site — Site-specific configurationhook 0oL 0oL
27.14 fpectl — Floating point exception controlo
27.15 distutils — Building and installing Python modules

28 Custom Python Interpreters
28.1 code —Interpreter base classes Lo
28.2 codeop — Compile Pythoncode

29 Importing Modules
29.1 imp — Accessthe importinternals e
29.2 zipimport — Import modules from Zip archives
29.3 pkgutil — Package extension utility Lo
29.4 modulefinder —Find modulesused by ascript L.
29.5 runpy — Locating and executing Pythonmodules o o0
29.6 importlib — Animplementation of importo

30 Python Language Services
30.1 parser — Access Pythonparsetrees e
30.2 ast — Abstract Syntax Treeso e
30.3 symtable — Access to the compiler’s symboltables
30.4 symbol — Constants used with Python parsetrees
30.5 token — Constants used with Python parsetrees
30.6 keyword — Testing for Pythonkeywords
30.7 tokenize — Tokenizer for Pythonsource L
30.8 tabnanny — Detection of ambiguous indentation oL
30.9 pyclbr —Pythonclass browser sSupport o e e e e
30.10 py_compile — Compile Python source files
30.11 compileall — Byte-compile Python libraries
30.12 dis — Disassembler for Python bytecode
30.13 pickletools — Tools for pickle developers

31 Miscellaneous Services

31.1 formatter — Generic output formatting Lo 1147

32 MS Windows Specific Services 1151
32.1 msilib — Read and write Microsoft Installer files 1151
32.2 msvcrt — Useful routines from the MS VC++runtime 1156
323 winreg— WIndows regiStry QCCeSS . . . v v v v v v v v e e e e e e e e e e e e e e e e 1157
32.4 winsound — Sound-playing interface for Windows oL 1164

33 Unix Specific Services 1167
33.1 posix — The most common POSIX systemcalls 1167
33.2 pwd—The password database e e e e 1168
33.3 spwd— The shadow password database 1169
334 grp—Thegroupdatabase 1169
33.5 crypt — Function to check Unix passwords 1170
33.6 termios —POSIXstylettycontrol e 1170
33.7 tty — Terminal control functions 1172
33.8 pty —Pseudo-terminal utilities 1172
339 fcntl —The fentl () and ioctl () systemealls oL oL 1173
33.10 pipes — Interface to shell pipelines 1175
33.11 resource — Resource usage information e 1176
33.12 nis — Interface to Sun’s NIS (Yellow Pages) 1178
33.13 syslog— Unix syslog library routines 1179

34 Undocumented Modules 1181
34.1 Platform specificmodules L e e e e 1181

A Glossary 1183

Bibliography 1191

B About these documents 1193
B.1 Contributors to the Python Documentation 1193

C History and License 1195
C.1 Historyof the software e e 1195
C.2 Terms and conditions for accessing or otherwise using Python 1196
C.3 Licenses and Acknowledgements for Incorporated Software 1198

D Copyright 1209

Python Module Index 1211

Index 1215

vi

The Python Library Reference, Release 3.2.3

Release 3.2
Date April 11, 2012

While reference-index describes the exact syntax and semantics of the Python language, this library reference
manual describes the standard library that is distributed with Python. It also describes some of the optional
components that are commonly included in Python distributions.

Python’s standard library is very extensive, offering a wide range of facilities as indicated by the long table of
contents listed below. The library contains built-in modules (written in C) that provide access to system func-
tionality such as file I/O that would otherwise be inaccessible to Python programmers, as well as modules written
in Python that provide standardized solutions for many problems that occur in everyday programming. Some of
these modules are explicitly designed to encourage and enhance the portability of Python programs by abstracting
away platform-specifics into platform-neutral APIs.

The Python installers for the Windows platform usually includes the entire standard library and often also include
many additional components. For Unix-like operating systems Python is normally provided as a collection of
packages, so it may be necessary to use the packaging tools provided with the operating system to obtain some or
all of the optional components.

In addition to the standard library, there is a growing collection of several thousand components (from individual
programs and modules to packages and entire application development frameworks), available from the Python
Package Index.

CONTENTS 1

http://pypi.python.org/pypi
http://pypi.python.org/pypi

The Python Library Reference, Release 3.2.3

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers and
lists. For these types, the Python language core defines the form of literals and places some constraints on their
semantics, but does not fully define the semantics. (On the other hand, the language core does define syntactic
properties like the spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without
the need of an import statement. Some of these are defined by the core language, but many are not essential for
the core semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this col-
lection. Some modules are written in C and built in to the Python interpreter; others are written in Python and
imported in source form. Some modules provide interfaces that are highly specific to Python, like printing a
stack trace; some provide interfaces that are specific to particular operating systems, such as access to specific
hardware; others provide interfaces that are specific to a particular application domain, like the World Wide Web.
Some modules are available in all versions and ports of Python; others are only available when the underlying
system supports or requires them; yet others are available only when a particular configuration option was chosen
at the time when Python was compiled and installed.

This manual is organized “from the inside out:” it first describes the built-in data types, then the built-in functions
and exceptions, and finally the modules, grouped in chapters of related modules. The ordering of the chapters as
well as the ordering of the modules within each chapter is roughly from most relevant to least important.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored,
you will get a reasonable overview of the available modules and application areas that are supported by the Python
library. Of course, you don’t have to read it like a novel — you can also browse the table of contents (in front of
the manual), or look for a specific function, module or term in the index (in the back). And finally, if you enjoy
learning about random subjects, you choose a random page number (see module random) and read a section or
two. Regardless of the order in which you read the sections of this manual, it helps to start with chapter Built-in
Functions, as the remainder of the manual assumes familiarity with this material.

Let the show begin!

The Python Library Reference, Release 3.2.3

4 Chapter 1. Introduction

CHAPTER
TWO

BUILT-IN FUNCTIONS

The Python interpreter has a number of functions and types built into it that are always available. They are listed
here in alphabetical order.

Built-in Functions

abs () dict () help () min () setattr ()
all() dir () hex () next () slice()

any () divmod () id() object () sorted ()
ascii() enumerate () | input () oct () staticmethod ()
bin () eval () int () open () str()

bool () exec () isinstance () ord () sum ()
bytearray () filter () issubclass () pow () super ()
bytes () float () iter () print () tuple ()
callable () format () len () property () | type ()

chr () frozenset () list () range () vars ()
classmethod () getattr () locals () repr () zip ()
compile () globals () map () reversed() | __import__ ()
complex () hasattr () max () round ()

delattr () hash () memoryview () set ()
abs (x)

Return the absolute value of a number. The argument may be an integer or a floating point number. If the
argument is a complex number, its magnitude is returned.

all (iterable)
Return True if all elements of the iterable are true (or if the iterable is empty). Equivalent to:

def all (iterable):
for element in iterable:
if not element:
return False
return True

any (iterable)
Return True if any element of the iterable is true. If the iterable is empty, return False. Equivalent to:

def any(iterable) :
for element in iterable:
if element:
return True
return False

ascii (object)
As repr (), return a string containing a printable representation of an object, but escape the non-ASCII
characters in the string returned by repr () using \x, \u or \U escapes. This generates a string similar to
that returned by repr () in Python 2.

The Python Library Reference, Release 3.2.3

bin (x)
Convert an integer number to a binary string. The result is a valid Python expression. If x is not a Python
int object, it has to define an ___index__ () method that returns an integer.

bool ([x])

Convert a value to a Boolean, using the standard rruth testing procedure. If x is false or omitted, this returns
False; otherwise it returns True. bool is also a class, which is a subclass of int (see Numeric Types —
int, float, complex). Class bool cannot be subclassed further. Its only instances are False and True (see
Boolean Values).

bytearray ([source[, encoding[, errors]]])
Return a new array of bytes. The bytearray type is a mutable sequence of integers in the range 0 <=x <
256. It has most of the usual methods of mutable sequences, described in Mutable Sequence Types, as well
as most methods that the bytes type has, see Bytes and Byte Array Methods.

The optional source parameter can be used to initialize the array in a few different ways:

oIf it is a string, you must also give the encoding (and optionally, errors) parameters; bytearray ()
then converts the string to bytes using str.encode ().

oIf it is an integer, the array will have that size and will be initialized with null bytes.

oIf it is an object conforming to the buffer interface, a read-only buffer of the object will be used to
initialize the bytes array.

oIf it is an iterable, it must be an iterable of integers in the range 0 <= x < 256, which are used as
the initial contents of the array.

Without an argument, an array of size 0 is created.

bytes ([source[, encoding[, errors]]])
Return a new “bytes” object, which is an immutable sequence of integers in the range 0 <= x < 256.
bytes is an immutable version of bytearray — it has the same non-mutating methods and the same
indexing and slicing behavior.

Accordingly, constructor arguments are interpreted as for bytearray ().
Bytes objects can also be created with literals, see strings.

callable (object)
Return True if the object argument appears callable, False if not. If this returns true, it is still possible
that a call fails, but if it is false, calling object will never succeed. Note that classes are callable (calling
a class returns a new instance); instances are callable if their class hasa _ call__ () method. New in
version 3.2: This function was first removed in Python 3.0 and then brought back in Python 3.2.

chr (i)
Return the string representing a character whose Unicode codepoint is the integer i. For example, chr (97)
returns the string ” a’. This is the inverse of ord (). The valid range for the argument is from O through
1,114,111 (Ox10FFFF in base 16). ValueError will be raised if i is outside that range.

Note that on narrow Unicode builds, the result is a string of length two for i greater than 65,535 (OxFFFF in
hexadecimal).

classmethod (function)
Return a class method for function.

A class method receives the class as implicit first argument, just like an instance method receives the in-
stance. To declare a class method, use this idiom:

class C:
@classmethod
def f(cls, argl, arg2, ...):

The @classmethod form is a function decorator — see the description of function definitions in function
for details.

6 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.2.3

It can be called either on the class (such as C. £ ()) or on an instance (such as C () . £ ()). The instance is
ignored except for its class. If a class method is called for a derived class, the derived class object is passed
as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those, see stat icmethod () in
this section.

For more information on class methods, consult the documentation on the standard type hierarchy in fypes.

compile (source, filename, mode, flags=0, dont_inherit=False, optimize=-1)
Compile the source into a code or AST object. Code objects can be executed by exec () or eval ().
source can either be a string or an AST object. Refer to the ast module documentation for information on
how to work with AST objects.

The filename argument should give the file from which the code was read; pass some recognizable value if
it wasn’t read from a file (<string>’ is commonly used).

The mode argument specifies what kind of code must be compiled; it can be " exec’ if source consists of a
sequence of statements, ’ eval’ if it consists of a single expression, or / single’ if it consists of a single
interactive statement (in the latter case, expression statements that evaluate to something other than None
will be printed).

The optional arguments flags and dont_inherit control which future statements (see PEP 236) affect the
compilation of source. If neither is present (or both are zero) the code is compiled with those future state-
ments that are in effect in the code that is calling compile. If the flags argument is given and dont_inherit
is not (or is zero) then the future statements specified by the flags argument are used in addition to those
that would be used anyway. If dont_inherit is a non-zero integer then the flags argument is it — the future
statements in effect around the call to compile are ignored.

Future statements are specified by bits which can be bitwise ORed together to specify multiple statements.
The bitfield required to specify a given feature can be found as the compiler_flag attribute on the
_Featureinstance inthe _ future__ module.

The argument optimize specifies the optimization level of the compiler; the default value of -1 selects
the optimization level of the interpreter as given by —O options. Explicit levels are 0 (no optimization;
__debug___istrue), 1 (asserts are removed, ___debug___is false) or 2 (docstrings are removed t0o0).

This function raises SyntaxError if the compiled source is invalid, and TypeError if the source con-
tains null bytes.

Note: When compiling a string with multi-line code in ' single’ or eval’ mode, input must be
terminated by at least one newline character. This is to facilitate detection of incomplete and complete
statements in the code module.

Changed in version 3.2: Allowed use of Windows and Mac newlines. Also inputin ’ exec’ mode does not
have to end in a newline anymore. Added the optimize parameter.

complex ([real[, imag]])
Create a complex number with the value real + imag*j or convert a string or number to a complex number.
If the first parameter is a string, it will be interpreted as a complex number and the function must be called
without a second parameter. The second parameter can never be a string. Each argument may be any
numeric type (including complex). If imag is omitted, it defaults to zero and the function serves as a
numeric conversion function like int () and £1loat (). If both arguments are omitted, returns 0 j.

The complex type is described in Numeric Types — int, float, complex.

delattr (object, name)
This is a relative of setattr (). The arguments are an object and a string. The string must be the name
of one of the object’s attributes. The function deletes the named attribute, provided the object allows it. For
example, delattr (x, ’foobar’) isequivalentto del x.foobar.

dict ([arg])
Create a new data dictionary, optionally with items taken from arg. The dictionary type is described in
Mapping Types — dict.

http://www.python.org/dev/peps/pep-0236

The Python Library Reference, Release 3.2.3

For other containers see the built in 1ist, set, and tuple classes, and the col lect ions module.

dir([object])
Without arguments, return the list of names in the current local scope. With an argument, attempt to return
a list of valid attributes for that object.

If the object has a method named __dir__ (), this method will be called and must return the list of
attributes. This allows objects that implement a custom __getattr__ () or __getattribute__ ()
function to customize the way dir () reports their attributes.

If the object does not provide __dir__ (), the function tries its best to gather information from the object’s
__dict__ attribute, if defined, and from its type object. The resulting list is not necessarily complete, and
may be inaccurate when the object has a custom __getattr__ ().

The default dir () mechanism behaves differently with different types of objects, as it attempts to produce
the most relevant, rather than complete, information:

oIf the object is a module object, the list contains the names of the module’s attributes.

oIf the object is a type or class object, the list contains the names of its attributes, and recursively of the
attributes of its bases.

*Otherwise, the list contains the object’s attributes’ names, the names of its class’s attributes, and re-
cursively of the attributes of its class’s base classes.

The resulting list is sorted alphabetically. For example:

>>> import struct

>>> dir () # show the names in the module namespace
["__builtins_ ', ’__doc_ ', ’'__name__ ', ’struct’]
>>> dir(struct) # show the names 1in the struct module

["Struct’, '__builtins_ ', ' _doc__ ', ’'__file ', ’'__name__ ',

! __package__'’, ’'_clearcache’, ’'calcsize’, '"error’, ’'pack’, ’pack_into’,
"unpack’, ’"unpack_from’]
>>> class Shape (object):

def _ dir_ (self):
return [’"area’, ’'perimeter’, ’location’]

>>> s = Shape()
>>> dir(s)

["area’, ’'perimeter’, ’location’]

Note: Because dir () is supplied primarily as a convenience for use at an interactive prompt, it tries to
supply an interesting set of names more than it tries to supply a rigorously or consistently defined set of
names, and its detailed behavior may change across releases. For example, metaclass attributes are not in
the result list when the argument is a class.

divmod (a, b)
Take two (non complex) numbers as arguments and return a pair of numbers consisting of their quotient and
remainder when using integer division. With mixed operand types, the rules for binary arithmetic operators
apply. For integers, the result is the same as (a // b, a % Db). For floating point numbers the result is
(q, a % b), where g isusually math.floor(a / b) but may be 1 less than that. In any case g =
b + a % bisveryclosetoa,if a % b is non-zero it has the same sign as b,and 0 <= abs(a % b)
< abs (b).

enumerate (iterable, start=0)
Return an enumerate object. iterable must be a sequence, an iterator, or some other object which supports
iteration. The ___next___ () method of the iterator returned by enumerate () returns a tuple containing
a count (from start which defaults to 0) and the values obtained from iterating over iterable.

>>> seasons = [’/Spring’, ’Summer’, ’'Fall’, ’'Winter’]
>>> list (enumerate (seasons))

8 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.2.3

[(O, "Spring’), (1, ’Summer’), (2, ’'Fall’), (3, ’"Winter’)]
>>> list (enumerate (seasons, start=1))
[(1, "Spring’), (2, 'Summer’), (3, ’'Fall’), (4, "Winter’)]

Equivalent to:

def enumerate (sequence, start=0):
n = start
for elem in sequence:
yield n, elem
n += 1

eval (expression, globals=None, locals=None)
The arguments are a string and optional globals and locals. If provided, globals must be a dictionary. If
provided, locals can be any mapping object.

The expression argument is parsed and evaluated as a Python expression (technically speaking, a condition
list) using the globals and locals dictionaries as global and local namespace. If the globals dictionary is
present and lacks ‘__builtins__’, the current globals are copied into globals before expression is parsed.
This means that expression normally has full access to the standard builtins module and restricted
environments are propagated. If the locals dictionary is omitted it defaults to the globals dictionary. If both
dictionaries are omitted, the expression is executed in the environment where eval () is called. The return
value is the result of the evaluated expression. Syntax errors are reported as exceptions. Example:

>>> x = 1
>>> eval (/
2

x+1")

This function can also be used to execute arbitrary code objects (such as those created by compile ()). In
this case pass a code object instead of a string. If the code object has been compiled with " exec’ as the
mode argument, eval () ‘s return value will be None.

Hints: dynamic execution of statements is supported by the exec () function. The globals () and
locals () functions returns the current global and local dictionary, respectively, which may be useful to
pass around for use by eval () orexec ().

See ast.literal_eval () for a function that can safely evaluate strings with expressions containing
only literals.

exec (object[, globals[, locals]])
This function supports dynamic execution of Python code. object must be either a string or a code object. If
itis a string, the string is parsed as a suite of Python statements which is then executed (unless a syntax error
occurs). ! If it is a code object, it is simply executed. In all cases, the code that’s executed is expected to
be valid as file input (see the section “File input” in the Reference Manual). Be aware that the return and
yield statements may not be used outside of function definitions even within the context of code passed
to the exec () function. The return value is None.

In all cases, if the optional parts are omitted, the code is executed in the current scope. If only globals is
provided, it must be a dictionary, which will be used for both the global and the local variables. If globals
and locals are given, they are used for the global and local variables, respectively. If provided, locals can be
any mapping object.

If the globals dictionary does not contain a value for the key __builtins__, areference to the dictionary
of the built-in module builtins is inserted under that key. That way you can control what builtins
are available to the executed code by inserting your own ___builtins__ dictionary into globals before
passing it to exec ().

! Note that the parser only accepts the Unix-style end of line convention. If you are reading the code from a file, make sure to use newline
conversion mode to convert Windows or Mac-style newlines.

The Python Library Reference, Release 3.2.3

Note: The built-in functions globals () and locals () return the current global and local dictionary,
respectively, which may be useful to pass around for use as the second and third argument to exec ().

Note: The default locals act as described for function 1ocals () below: modifications to the default
locals dictionary should not be attempted. Pass an explicit locals dictionary if you need to see effects of the
code on locals after function exec () returns.

filter (function, iterable)

Construct an iterator from those elements of iterable for which function returns true. iterable may be either
a sequence, a container which supports iteration, or an iterator. If function is None, the identity function is
assumed, that is, all elements of iterable that are false are removed.

Note that filter (function, iterable) is equivalent to the generator expression (item for
item in iterable if function (item)) if function is not None and (item for item in
iterable if item) if function is None.

See itertools.filterfalse () for the complementary function that returns elements of iterable for
which function returns false.

float ([x])

Convert a string or a number to floating point.

If the argument is a string, it should contain a decimal number, optionally preceded by a sign, and option-
ally embedded in whitespace. The optional sign may be / +’ or / =’ ;a ’ +’ sign has no effect on the value
produced. The argument may also be a string representing a NaN (not-a-number), or a positive or nega-
tive infinity. More precisely, the input must conform to the following grammar after leading and trailing
whitespace characters are removed:

Sign L \\+II ‘ W_ W

infinity = “Infinity” | “inf”

nan = “nan”

numeric_value = floatnumber | infinity | nan
numeric_string = [sign] numeric_value

Here floatnumber is the form of a Python floating-point literal, described in floating. Case is not sig-
nificant, so, for example, “inf”, “Inf”, “INFINITY”” and “iNfINity” are all acceptable spellings for positive
infinity.

Otherwise, if the argument is an integer or a floating point number, a floating point number with the same
value (within Python’s floating point precision) is returned. If the argument is outside the range of a Python
float, an OverflowError will be raised.

For a general Python object x, f1loat (x) delegatesto x.___float__ ().
If no argument is given, 0. O is returned.

Examples:

>>> float ("+1.23")

1.23

>>> float (’ -12345\n")
-12345.0

>>> float ("1e-003")
0.001

>>> float (' +1E6")
1000000.0

>>> float (' -Infinity’)
—-inf

The float type is described in Numeric Types — int, float, complex.

10

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.2.3

format (value[, format_spec])
Convert a value to a “formatted” representation, as controlled by format_spec. The interpretation of for-
mat_spec will depend on the type of the value argument, however there is a standard formatting syntax that
is used by most built-in types: Format Specification Mini-Language.

The default format_spec is an empty string which usually gives the same effect as calling str (value).

Acallto format (value, format_spec) istranslatedto type (value) ._ format_ (format_spec)

which bypasses the instance dictionary when searching for the value’s __format__ () method. A
TypeError exception is raised if the method is not found or if either the format_spec or the return value
are not strings.

frozenset ([iterable])
Return a frozenset object, optionally with elements taken from iterable. The frozenset type is described in
Set Types — set, frozenset.

For other containers see the built in dict, 1ist, and tuple classes, and the collections module.

getattr (object, name[, default])
Return the value of the named attribute of object. name must be a string. If the string is the name of one of
the object’s attributes, the result is the value of that attribute. For example, getattr (x, ’foobar’) is
equivalent to x . foobar. If the named attribute does not exist, default is returned if provided, otherwise
AttributeError is raised.

globals ()
Return a dictionary representing the current global symbol table. This is always the dictionary of the current
module (inside a function or method, this is the module where it is defined, not the module from which it is
called).

hasattr (object, name)
The arguments are an object and a string. The result is True if the string is the name of one of the ob-
ject’s attributes, False if not. (This is implemented by calling getattr (object, name) and seeing
whether it raises an At t ributeError or not.)

hash (object)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly
compare dictionary keys during a dictionary lookup. Numeric values that compare equal have the same
hash value (even if they are of different types, as is the case for 1 and 1.0).

help ([object])
Invoke the built-in help system. (This function is intended for interactive use.) If no argument is given, the
interactive help system starts on the interpreter console. If the argument is a string, then the string is looked
up as the name of a module, function, class, method, keyword, or documentation topic, and a help page is
printed on the console. If the argument is any other kind of object, a help page on the object is generated.

This function is added to the built-in namespace by the site module.

hex (x)
Convert an integer number to a hexadecimal string. The result is a valid Python expression. If x is not a
Python int object, it has to define an __index___ () method that returns an integer.

Note: To obtain a hexadecimal string representation for a float, use the f1oat . hex () method.

id (object)
Return the “identity” of an object. This is an integer which is guaranteed to be unique and constant for this
object during its lifetime. Two objects with non-overlapping lifetimes may have the same id () value.

CPython implementation detail: This is the address of the object in memory.

input ([prompt])
If the prompt argument is present, it is written to standard output without a trailing newline. The function
then reads a line from input, converts it to a string (stripping a trailing newline), and returns that. When
EOF is read, EOFError is raised. Example:

11

The Python Library Reference, Release 3.2.3

>>> s = input (' -—-> ")
—-—> Monty Python’s Flying Circus
>>> 5

"Monty Python’s Flying Circus"

If the readline module was loaded, then input () will use it to provide elaborate line editing and
history features.

int ([number | string[, base]])

Convert a number or string to an integer. If no arguments are given, return 0. If a number is given, return
number.__int__ (). Conversion of floating point numbers to integers truncates towards zero. A string
must be a base-radix integer literal optionally preceded by ‘+’ or ‘- (with no space in between) and option-
ally surrounded by whitespace. A base-n literal consists of the digits 0 to n-1, with ‘a’ to ‘z’ (or ‘A’ to Z’)
having values 10 to 35. The default base is 10. The allowed values are 0 and 2-36. Base-2, -8, and -16 liter-
als can be optionally prefixed with 0b/0B, 00/00, or 0x/0X, as with integer literals in code. Base 0 means
to interpret exactly as a code literal, so that the actual base is 2, 8, 10, or 16, and so that int (' 010", 0)
is not legal, while int (* 010’) is,as well as int (Y 010", 8).

The integer type is described in Numeric Types — int, float, complex.

isinstance (object, classinfo)

Return true if the object argument is an instance of the classinfo argument, or of a (direct, indirect or virfual)
subclass thereof. If object is not an object of the given type, the function always returns false. If classinfo is
not a class (type object), it may be a tuple of type objects, or may recursively contain other such tuples (other
sequence types are not accepted). If classinfo is not a type or tuple of types and such tuples, a TypeError
exception is raised.

issubclass (class, classinfo)

Return true if class is a subclass (direct, indirect or virtual) of classinfo. A class is considered a subclass of
itself. classinfo may be a tuple of class objects, in which case every entry in classinfo will be checked. In
any other case, a TypeError exception is raised.

iter (object[, sentinel])

Return an iterator object. The first argument is interpreted very differently depending on the presence of the
second argument. Without a second argument, object must be a collection object which supports the iteration
protocol (the __iter__ () method), or it must support the sequence protocol (the __getitem__ ()

method with integer arguments starting at 0). If it does not support either of those protocols, TypeError
is raised. If the second argument, sentinel, is given, then object must be a callable object. The iterator
created in this case will call object with no arguments for each call to its __next__ () method; if the
value returned is equal to sentinel, St opIteration will be raised, otherwise the value will be returned.

One useful application of the second form of iter () is to read lines of a file until a certain line is reached.
The following example reads a file until the readline () method returns an empty string:

with open ('mydata.txt’) as fp:
for line in iter (fp.readline, ’7’):
process_line(line)

len (s)

Return the length (the number of items) of an object. The argument may be a sequence (string, tuple or list)
or a mapping (dictionary).

list ([iterable])

Return a list whose items are the same and in the same order as iferable‘s items. iterable may be either a
sequence, a container that supports iteration, or an iterator object. If iterable is already a list, a copy is made
and returned, similar to iterable[:]. Forinstance, 1ist (' abc’) returns ["a’, ’'b’, ’'c’] and
list((1, 2, 3)) returns [1, 2, 3].Ifnoargument is given, returns a new empty list, [].

list is a mutable sequence type, as documented in Sequence Types — str, bytes, bytearray, list, tuple,
range.

12

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.2.3

locals ()
Update and return a dictionary representing the current local symbol table. Free variables are returned by
locals () when it is called in function blocks, but not in class blocks.

Note: The contents of this dictionary should not be modified; changes may not affect the values of local
and free variables used by the interpreter.

map (function, iterable, ...)
Return an iterator that applies function to every item of iterable, yielding the results. If additional iterable
arguments are passed, function must take that many arguments and is applied to the items from all iterables
in parallel. With multiple iterables, the iterator stops when the shortest iterable is exhausted. For cases
where the function inputs are already arranged into argument tuples, see itertools.starmap ().

max (iterahle[, args...], *[, key])
With a single argument iterable, return the largest item of a non-empty iterable (such as a string, tuple or
list). With more than one argument, return the largest of the arguments.

The optional keyword-only key argument specifies a one-argument ordering function like that used for
list.sort ().

If multiple items are maximal, the function returns the first one encountered. This is consistent with other
sort-stability preserving tools such as sorted (iterable, key=keyfunc, reverse=True) [0]
and heapg.nlargest (1, iterable, key=keyfunc).

memoryview (obj)
Return a “memory view” object created from the given argument. See memoryview type for more informa-
tion.

min (iterable[, args...], *[, key])
With a single argument iterable, return the smallest item of a non-empty iterable (such as a string, tuple or
list). With more than one argument, return the smallest of the arguments.

The optional keyword-only key argument specifies a one-argument ordering function like that used for
list.sort ().

If multiple items are minimal, the function returns the first one encountered. This is consistent
with other sort-stability preserving tools such as sorted(iterable, key=keyfunc) [0] and
heapg.nsmallest (1, iterable, key=keyfunc).

next (iterator[, default])
Retrieve the next item from the iferator by calling its __next__ () method. If default is given, it is
returned if the iterator is exhausted, otherwise St opIteration is raised.

object ()
Return a new featureless object. object is a base for all classes. It has the methods that are common to
all instances of Python classes. This function does not accept any arguments.

Note: object does not have a __dict__, so you can’t assign arbitrary attributes to an instance of the
object class.

oct (x)
Convert an integer number to an octal string. The result is a valid Python expression. If x is not a Python
int object, it has to define an ___index__ () method that returns an integer.

open (file, mode="r’, buffering=-1, encoding=None, errors=None, newline=None, closefd=True)
Open file and return a corresponding stream. If the file cannot be opened, an TOError is raised.

file is either a string or bytes object giving the pathname (absolute or relative to the current working direc-
tory) of the file to be opened or an integer file descriptor of the file to be wrapped. (If a file descriptor is
given, it is closed when the returned I/O object is closed, unless closefd is setto False.)

mode is an optional string that specifies the mode in which the file is opened. It defaults to ’ r’ which means
open for reading in text mode. Other common values are ' w’ for writing (truncating the file if it already

13

The Python Library Reference, Release 3.2.3

exists), and ’ a’ for appending (which on some Unix systems, means that all writes append to the end of the
file regardless of the current seek position). In text mode, if encoding is not specified the encoding used is
platform dependent. (For reading and writing raw bytes use binary mode and leave encoding unspecified.)
The available modes are:

Character | Meaning

"¢’ open for reading (default)

"w! open for writing, truncating the file first

ra’ open for writing, appending to the end of the file if it exists

"o’ binary mode

e text mode (default)

T4 open a disk file for updating (reading and writing)

"y’ universal newline mode (for backwards compatibility; should not be used in new code)

The default mode is ” r’ (open for reading text, synonym of ’ rt /). For binary read-write access, the mode
"w+b’ opens and truncates the file to O bytes. ' r+b’ opens the file without truncation.

As mentioned in the Overview, Python distinguishes between binary and text I/O. Files opened in binary
mode (including b’ in the mode argument) return contents as bytes objects without any decoding. In
text mode (the default, or when ’ t is included in the mode argument), the contents of the file are returned
as str, the bytes having been first decoded using a platform-dependent encoding or using the specified
encoding if given.

Note: Python doesn’t depend on the underlying operating system’s notion of text files; all the processing
is done by Python itself, and is therefore platform-independent.

buffering is an optional integer used to set the buffering policy. Pass 0 to switch buffering off (only allowed
in binary mode), 1 to select line buffering (only usable in text mode), and an integer > 1 to indicate the size
of a fixed-size chunk buffer. When no buffering argument is given, the default buffering policy works as
follows:

*Binary files are buffered in fixed-size chunks; the size of the buffer is chosen using a heuristic trying to
determine the underlying device’s “block size” and falling back on io.DEFAULT_BUFFER_SIZE.
On many systems, the buffer will typically be 4096 or 8192 bytes long.

*“Interactive” text files (files for which isatty () returns True) use line buffering. Other text files use
the policy described above for binary files.

encoding is the name of the encoding used to decode or encode the file. This should only be used in text
mode. The default encoding is platform dependent (whatever locale.getpreferredencoding ()
returns), but any encoding supported by Python can be used. See the codecs module for the list of
supported encodings.

errors is an optional string that specifies how encoding and decoding errors are to be handled—this cannot be
used in binary mode. Pass strict’ toraise a ValueError exception if there is an encoding error (the
default of None has the same effect), or pass ignore’ to ignore errors. (Note that ignoring encoding
errors can lead to data loss.) ' replace’ causes a replacement marker (such as 2’) to be inserted
where there is malformed data. When writing, ’ xmlcharrefreplace’ (replace with the appropriate
XML character reference) or ' backslashreplace’ (replace with backslashed escape sequences) can
be used. Any other error handling name that has been registered with codecs.register_error () is
also valid.

newline controls how universal newlines works (it only applies to text mode). It can be None, ”, " \n’,
"\r’,and ' \r\n’. It works as follows:

*On input, if newline is None, universal newlines mode is enabled. Lines in the input can end in * \n’,
"\r’,or "\r\n’, and these are translated into * \n’ before being returned to the caller. If it is ",
universal newline mode is enabled, but line endings are returned to the caller untranslated. If it has
any of the other legal values, input lines are only terminated by the given string, and the line ending is
returned to the caller untranslated.

*On output, if newline is None, any ’ \n’ characters written are translated to the system default line
separator, os . Linesep. If newline is ”, no translation takes place. If newline is any of the other

14 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.2.3

legal values, any ’ \n’ characters written are translated to the given string.

If closefd is False and a file descriptor rather than a filename was given, the underlying file descriptor will
be kept open when the file is closed. If a filename is given closefd has no effect and must be True (the
default).

The type of file object returned by the open () function depends on the mode. When open () is used
to open a file in a text mode (" w’, "r’, 'wt’, ' rt’, etc.), it returns a subclass of io.Text IOBase
(specifically io.Text IOWrapper). When used to open a file in a binary mode with buffering, the re-
turned class is a subclass of io. BufferedIOBase. The exact class varies: in read binary mode, it returns
aio.BufferedReader;in write binary and append binary modes, itreturnsa io . Bufferediiriter,
and in read/write mode, it returns a io.Buf feredRandom. When buffering is disabled, the raw stream,
asubclass of io.RawIOBase, i0.FileIO, isreturned.

See also the file handling modules, such as, fileinput, io (where open () is declared), os, os.path,
tempfile,and shutil.

ord (c)
Given a string representing one Unicode character, return an integer representing the Unicode code point of
that character. For example, ord (” a’) returns the integer 97 and ord (’ \u2020’) returns 8224. This
is the inverse of chr ().

On wide Unicode builds, if the argument length is not one, a TypeError will be raised. On narrow
Unicode builds, strings of length two are accepted when they form a UTF-16 surrogate pair.

pow (x,y[. z])
Return x to the power y; if z is present, return x to the power y, modulo z (computed more efficiently
than pow (x, y) % z). The two-argument form pow (x, y) is equivalent to using the power operator:
X**Yy.

The arguments must have numeric types. With mixed operand types, the coercion rules for binary arithmetic
operators apply. For int operands, the result has the same type as the operands (after coercion) unless the
second argument is negative; in that case, all arguments are converted to float and a float result is delivered.
For example, 10+ 2 returns 100, but 10%—2 returns 0. 01. If the second argument is negative, the third
argument must be omitted. If z is present, x and y must be of integer types, and y must be non-negative.

print ([object,], * sep="", end="\n’, file=sys.stdout)
Print object(s) to the stream file, separated by sep and followed by end. sep, end and file, if present, must be
given as keyword arguments.

All non-keyword arguments are converted to strings like st r () does and written to the stream, separated
by sep and followed by end. Both sep and end must be strings; they can also be None, which means to use
the default values. If no object is given, print () will just write end.

The file argument must be an object with a write (string) method; if it is not present or None,
sys.stdout will be used. Output buffering is determined by file. Use file.flush () to ensure,
for instance, immediate appearance on a screen.

property (fget=None, fset=None, fdel=None, doc=None)
Return a property attribute.

fget is a function for getting an attribute value, likewise fset is a function for setting, and fdel a function for
del’ing, an attribute. Typical use is to define a managed attribute x:

class C:
def _ init_ (self):
self._x = None

def getx(self):
return self._x
def setx(self, wvalue):
self._x = value
def delx(self):

15

The Python Library Reference, Release 3.2.3

del self._x
x = property(getx, setx, delx, "I'm the

14 4

x’ property.")
If then c is an instance of C, c.x will invoke the getter, c.x = value will invoke the setter and del
¢ . x the deleter.

If given, doc will be the docstring of the property attribute. Otherwise, the property will copy fget ‘s docstring
(if it exists). This makes it possible to create read-only properties easily using property () asadecorator:

class Parrot:
def @ init_ (self):
self._voltage = 100000

@property

def voltage(self):
"""Get the current voltage."""
return self._voltage

turns the voltage () method into a “getter” for a read-only attribute with the same name.

A property object has getter, setter, and deleter methods usable as decorators that create a copy of
the property with the corresponding accessor function set to the decorated function. This is best explained
with an example:

class C:
def _ init_ (self):
self._x = None

@property

def x(self):
"""I’m the ’x’ property.
return self._x

mmn

@x.setter
def x(self, wvalue):
self._x = value

@x.deleter
def x(self):
del self._x

This code is exactly equivalent to the first example. Be sure to give the additional functions the same name
as the original property (x in this case.)

The returned property also has the attributes fget, fset, and fdel corresponding to the constructor
arguments.

range ([start], stop[, step])

This is a versatile function to create iterables yielding arithmetic progressions. It is most often used in
for loops. The arguments must be integers. If the sfep argument is omitted, it defaults to 1. If the start
argument is omitted, it defaults to 0. The full form returns an iterable of integers [start, start +
step, start + 2 * step, ...]. If step is positive, the last element is the largest start + 1
x step less than stop; if step is negative, the last element is the smallest start + i1 * step greater
than stop. step must not be zero (or else ValueError is raised). Example:

>>> list (range (10))

(0o, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list (range (1, 11))

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> list (range (0, 30, 5))

16

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.2.3

[0, 5, 10, 15, 20, 25]

>>> list (range (0, 10, 3))

[0, 3, 6, 9]

>>> list (range (0, -10, -1))

(o, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> list (range (0))

>>> list (range (1, 0))

Range objects implement the collections. Sequence ABC, and provide features such as containment
tests, element index lookup, slicing and support for negative indices (see Sequence Types — str, bytes,
bytearray, list, tuple, range):

>>> r = range (0, 20, 2)
>>> 1

range (0, 20, 2)
>>> 11 in r
False

>>> 10 in r
True

>>> r.index (10)
5

>>> r[5]

10

>>> r[:5]

range (0, 10, 2)
>>> r[-1]

18

Ranges containing absolute values larger than sys.maxsize are permitted but some features (such as
len ()) will raise OverflowError. Changed in version 3.2: Implement the Sequence ABC. Support
slicing and negative indices. Test integers for membership in constant time instead of iterating through all
items.

repr (object)
Return a string containing a printable representation of an object. For many types, this function makes an
attempt to return a string that would yield an object with the same value when passed to eval (), otherwise
the representation is a string enclosed in angle brackets that contains the name of the type of the object
together with additional information often including the name and address of the object. A class can control
what this function returns for its instances by defininga___repr__ () method.

reversed (seq)
Return a reverse iferator. seq must be an object which has a ___reversed__ () method or supports the
sequence protocol (the __len__ () method and the ___getitem__ () method with integer arguments
starting at 0).

round (x[, n])
Return the floating point value x rounded to n digits after the decimal point. If n is omitted, it defaults to
zero. Delegates to x .___round__ (n).

For the built-in types supporting round (), values are rounded to the closest multiple of 10 to the power
minus #; if two multiples are equally close, rounding is done toward the even choice (so, for example, both
round (0.5) and round (-0.5) are 0, and round (1.5) is 2). The return value is an integer if called
with one argument, otherwise of the same type as x.

Note: The behavior of round () for floats can be surprising: for example, round (2.675, 2) gives
2. 67 instead of the expected 2. 68. This is not a bug: it’s a result of the fact that most decimal fractions
can’t be represented exactly as a float. See tut-fp-issues for more information.

17

The Python Library Reference, Release 3.2.3

set ([iterable])

Return a new set, optionally with elements taken from iterable. The set type is described in Set Types — set,

frozenset.

setattr (object, name, value)

This is the counterpart of getattr (). The arguments are an object, a string and an arbitrary value. The
string may name an existing attribute or a new attribute. The function assigns the value to the attribute, pro-
vided the object allows it. For example, setattr (x, ’foobar’, 123) isequivalentto x.foobar
= 123.

slice ([start], stop[, step])

Return a slice object representing the set of indices specified by range (start, stop, step). The
start and step arguments default to None. Slice objects have read-only data attributes start, stop and
step which merely return the argument values (or their default). They have no other explicit functionality;
however they are used by Numerical Python and other third party extensions. Slice objects are also generated
when extended indexing syntax is used. For example: a[start:stop:step] or a[start:stop,
i].See itertools.islice () for an alternate version that returns an iterator.

sorted (iterable[, key][, reverse])

Return a new sorted list from the items in iterable.
Has two optional arguments which must be specified as keyword arguments.

key specifies a function of one argument that is used to extract a comparison key from each list element:
key=str.lower. The default value is None (compare the elements directly).

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were
reversed.

Use functools.cmp_to_key () to convert an old-style cmp function to a key function.

For sorting examples and a brief sorting tutorial, see Sorting HowTo.

staticmethod (function)

Return a static method for function.
A static method does not receive an implicit first argument. To declare a static method, use this idiom:
class C:

@staticmethod
def f(argl, arg2, ...):

The @staticmethod form is a function decorator — see the description of function definitions in function
for details.

It can be called either on the class (such as C. £ ()) or on an instance (such as C () . £ ()). The instance is
ignored except for its class.

Static methods in Python are similar to those found in Java or C++. Also see classmethod () for a
variant that is useful for creating alternate class constructors.

For more information on static methods, consult the documentation on the standard type hierarchy in fypes.

str ([object[, encoding[, errors]]])

Return a string version of an object, using one of the following modes:

If encoding and/or errors are given, str () will decode the object which can either be a byte string or a
character buffer using the codec for encoding. The encoding parameter is a string giving the name of an en-
coding; if the encoding is not known, LookupError is raised. Error handling is done according to errors;
this specifies the treatment of characters which are invalid in the input encoding. If errorsis ' strict’
(the default), a ValueError is raised on errors, while a value of / ignore’ causes errors to be silently
ignored, and a value of ' replace’ causes the official Unicode replacement character, U+FFFD, to be
used to replace input characters which cannot be decoded. See also the codecs module.

When only object is given, this returns its nicely printable representation. For strings, this is the string itself.
The difference with repr (object) isthat str (object) does not always attempt to return a string that

18

Chapter 2. Built-in Functions

http://wiki.python.org/moin/HowTo/Sorting/

The Python Library Reference, Release 3.2.3

is acceptable to eval () ; its goal is to return a printable string. With no arguments, this returns the empty
string.

Objects can specify what st r (object) returns by defininga ___str__ () special method.

For more information on strings see Sequence Types — str, bytes, bytearray, list, tuple, range which de-
scribes sequence functionality (strings are sequences), and also the string-specific methods described in the
String Methods section. To output formatted strings, see the String Formatting section. In addition see the
String Services section.

sum (iterable[, start])
Sums start and the items of an iferable from left to right and returns the total. start defaults to 0. The
iterable‘s items are normally numbers, and the start value is not allowed to be a string.

For some use cases, there are good alternatives to sum () . The preferred, fast way to concatenate a sequence
of strings is by calling ” . join (sequence). To add floating point values with extended precision, see
math. fsum (). To concatenate a series of iterables, consider using itertools.chain ().

super ([type[, object-or-type]])
Return a proxy object that delegates method calls to a parent or sibling class of zype. This is useful for
accessing inherited methods that have been overridden in a class. The search order is same as that used by
getattr () except that the rype itself is skipped.

The ___mro___ attribute of the rype lists the method resolution search order used by both getattr () and
super (). The attribute is dynamic and can change whenever the inheritance hierarchy is updated.

If the second argument is omitted, the super object returned is unbound. If the second argument is an object,
isinstance (obj, type) must be true. If the second argument is a type, issubclass (type2,
type) must be true (this is useful for classmethods).

There are two typical use cases for super. In a class hierarchy with single inheritance, super can be used to
refer to parent classes without naming them explicitly, thus making the code more maintainable. This use
closely parallels the use of super in other programming languages.

The second use case is to support cooperative multiple inheritance in a dynamic execution environment.
This use case is unique to Python and is not found in statically compiled languages or languages that only
support single inheritance. This makes it possible to implement “diamond diagrams” where multiple base
classes implement the same method. Good design dictates that this method have the same calling signature
in every case (because the order of calls is determined at runtime, because that order adapts to changes in
the class hierarchy, and because that order can include sibling classes that are unknown prior to runtime).

For both use cases, a typical superclass call looks like this:

class C(B):
def method(self, arg):
super () .method (arg) # This does the same thing as:
super (C, self).method(arg)

Note that super () is implemented as part of the binding process for explicit dotted attribute lookups such
as super () .__getitem__ (name). It does so by implementing its own __getattribute__ ()
method for searching classes in a predictable order that supports cooperative multiple inheritance. Accord-
ingly, super () is undefined for implicit lookups using statements or operators such as super () [name].

Also note that super () is not limited to use inside methods. The two argument form specifies the argu-
ments exactly and makes the appropriate references. The zero argument form automatically searches the
stack frame for the class (__class__) and the first argument.

For practical suggestions on how to design cooperative classes using super (), see guide to using super().

tuple ([itemble])
Return a tuple whose items are the same and in the same order as iterable‘s items. iterable may be a se-
quence, a container that supports iteration, or an iterator object. If iterable is already a tuple, it is returned
unchanged. For instance, tuple (" abc’) returns (“a’, 'b’, ’c’) and tuple([1l, 2, 3]) re-
turns (1, 2, 3).Ifnoargument is given, returns a new empty tuple, ().

19

http://rhettinger.wordpress.com/2011/05/26/super-considered-super/

The Python Library Reference, Release 3.2.3

tuple is an immutable sequence type, as documented in Sequence Types — str, bytes, bytearray, list, tuple,
range.

type (object)
Return the type of an object. The return value is a type object and generally the same object as returned by
object._ _class__ .

The i sinstance () built-in function is recommended for testing the type of an object, because it takes
subclasses into account.

With three arguments, t ype () functions as a constructor as detailed below.

type (name, bases, dict)
Return a new type object. This is essentially a dynamic form of the class statement. The name string is
the class name and becomes the ___name___ attribute; the bases tuple itemizes the base classes and becomes
the _ bases___ attribute; and the dict dictionary is the namespace containing definitions for class body
and becomes the __dict___ attribute. For example, the following two statements create identical t ype
objects:

>>> class X:
a =1

>>> X = type('X’, (object,), dict(a=1))

vars ([object])
Without an argument, act like 1ocals ().

With a module, class or class instance object as argument (or anything else thathasa ___dict___ attribute),
return that attribute.

Note: The returned dictionary should not be modified: the effects on the corresponding symbol table are
undefined. *

zip (*iterables)
Make an iterator that aggregates elements from each of the iterables.

Returns an iterator of tuples, where the i-th tuple contains the i-th element from each of the argument
sequences or iterables. The iterator stops when the shortest input iterable is exhausted. With a single iterable
argument, it returns an iterator of 1-tuples. With no arguments, it returns an empty iterator. Equivalent to:

def zip(xiterables):
zip(’ABCD’, ’‘xy’) —--> Ax By
sentinel = object ()
iterators = [iter(it) for it in iterables]
while iterators:
result = []
for it in iterators:
elem = next (it, sentinel)
if elem is sentinel:
return
result.append(elem)
yield tuple(result)

The left-to-right evaluation order of the iterables is guaranteed. This makes possible an idiom for clustering
a data series into n-length groups using zip (% [iter (s)] *n).

zip () should only be used with unequal length inputs when you don’t care about trailing, unmatched val-
ues from the longer iterables. If those values are important, use itertools.zip_longest () instead.

2 In the current implementation, local variable bindings cannot normally be affected this way, but variables retrieved from other scopes
(such as modules) can be. This may change.

20 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.2.3

z1ip () in conjunction with the » operator can be used to unzip a list:

>>> x = [1, 2, 3]

>>> vy = [4, 5, 6]

>>> zipped = zip(x, Vy)

>>> list (zipped)

[(1, 4), (2, 5), (3, 6)]

>>> x2, y2 = zip(*zip(x, y))

>>> x == list(x2) and y == list (y2)
True

__import___ (name, globals={}, locals={}, fromlist= [], level=0)

Note: This is an advanced function that is not needed in everyday Python programming, unlike
importlib.import_module ().

This function is invoked by the import statement. It can be replaced (by importing the bui 1t ins module
and assigning to builtins.__import__) in order to change semantics of the import statement, but
nowadays it is usually simpler to use import hooks (see PEP 302). Direct use of ___import__ () is rare,
except in cases where you want to import a module whose name is only known at runtime.

The function imports the module name, potentially using the given globals and locals to determine how to
interpret the name in a package context. The fromlist gives the names of objects or submodules that should
be imported from the module given by name. The standard implementation does not use its locals argument
at all, and uses its globals only to determine the package context of the import statement.

level specifies whether to use absolute or relative imports. O (the default) means only perform absolute
imports. Positive values for level indicate the number of parent directories to search relative to the directory
of the module calling ___import__ ().

When the name variable is of the form package .module, normally, the top-level package (the name up
till the first dot) is returned, not the module named by name. However, when a non-empty fromlist argument
is given, the module named by name is returned.

For example, the statement import spam results in bytecode resembling the following code:
spam = ___import__ (’spam’, globals (), locals(), [1, 0)

The statement import spam.ham results in this call:

spam = __import__ (’spam.ham’, globals (), locals(), [], 0)

Note how ___import__ () returns the toplevel module here because this is the object that is bound to a
name by the import statement.

On the other hand, the statement from spam.ham import eggs, sausage as saus resultsin

_temp = __import__ (’spam.ham’, globals (), locals(), [’"eggs’, ’"sausage’], 0)
eggs = _temp.eggs

saus = _temp.sausage

Here, the spam.ham module is returned from __import__ (). From this object, the names to import are

retrieved and assigned to their respective names.

If you simply want to import a module (potentially within a package) by name, use
importlib.import_module ().

21

http://www.python.org/dev/peps/pep-0302

The Python Library Reference, Release 3.2.3

22 Chapter 2. Built-in Functions

CHAPTER
THREE

BUILT-IN CONSTANTS

A small number of constants live in the built-in namespace. They are:

False
The false value of the bool type. Assignments to False are illegal and raise a SyntaxError.

True
The true value of the bool type. Assignments to True are illegal and raise a SyntaxError.

None
The sole value of t ypes . NoneType. None is frequently used to represent the absence of a value, as when
default arguments are not passed to a function. Assignments to None are illegal and raise a SyntaxError.

NotImplemented
Special value which can be returned by the “rich comparison” special methods (__eq (), __1t__ (),
and friends), to indicate that the comparison is not implemented with respect to the other type.

Ellipsis
The same as Special value used mostly in conjunction with extended slicing syntax for user-defined

container data types.

__debug___
This constant is true if Python was not started with an —O option. See also the assert statement.

Note: The names None, False, True and __debug___ cannot be reassigned (assignments to them, even as
an attribute name, raise SyntaxError), so they can be considered “true” constants.

3.1 Constants added by the site module

The site module (which is imported automatically during startup, except if the —S command-line option is
given) adds several constants to the built-in namespace. They are useful for the interactive interpreter shell and
should not be used in programs.

quit (code=None)

exit (code=None)
Objects that when printed, print a message like “Use quit() or Ctrl-D (i.e. EOF) to exit”, and when called,
raise SystemExit with the specified exit code.

copyright

license

credits
Objects that when printed, print a message like “Type license() to see the full license text”, and when called,
display the corresponding text in a pager-like fashion (one screen at a time).

23

The Python Library Reference, Release 3.2.3

24 Chapter 3. Built-in Constants

CHAPTER
FOUR

BUILT-IN TYPES

The following sections describe the standard types that are built into the interpreter.
The principal built-in types are numerics, sequences, mappings, classes, instances and exceptions.

Some operations are supported by several object types; in particular, practically all objects can be compared, tested
for truth value, and converted to a string (with the repr () function or the slightly different st r () function).
The latter function is implicitly used when an object is written by the print () function.

4.1 Truth Value Testing

Any object can be tested for truth value, for use in an if or while condition or as operand of the Boolean
operations below. The following values are considered false:

* None

* False

* zero of any numeric type, for example, 0, 0.0, 0.
* any empty sequence, for example, ”, (), [].

¢ any empty mapping, for example, { }.

¢ instances of user-defined classes, if the class definesa ___bool__ () or __len__ () method, when that
method returns the integer zero or bool value False.

All other values are considered true — so objects of many types are always true.

Operations and built-in functions that have a Boolean result always return 0 or False for false and 1 or True
for true, unless otherwise stated. (Important exception: the Boolean operations or and and always return one of
their operands.)

4.2 Boolean Operations — and, or, not

These are the Boolean operations, ordered by ascending priority:

Operation Result Notes

X Or y if x is false, then y, else x €))]

x and y if x is false, then x, else y 2)

not x if x is false, then True, else False | (3)
Notes:

1. This is a short-circuit operator, so it only evaluates the second argument if the first one is False.

! Additional information on these special methods may be found in the Python Reference Manual (customization).

25

The Python Library Reference, Release 3.2.3

2. This is a short-circuit operator, so it only evaluates the second argument if the first one is True.

3. not has alower priority than non-Boolean operators, so not a == b isinterpreted as not (a == b),
and a == not Db is a syntax error.

4.3 Comparisons

There are eight comparison operations in Python. They all have the same priority (which is higher than that of the
Boolean operations). Comparisons can be chained arbitrarily; for example, x < y <= z is equivalent to x <
y and y <= z,except that y is evaluated only once (but in both cases z is not evaluated at all when x < y is
found to be false).

This table summarizes the comparison operations:

Operation Meaning

< strictly less than

<= less than or equal

> strictly greater than
>= greater than or equal
== equal

I= not equal

is object identity

is not negated object identity

Objects of different types, except different numeric types, never compare equal. Furthermore, some types (for
example, function objects) support only a degenerate notion of comparison where any two objects of that type are
unequal. The <, <=, > and >= operators will raise a TypeError exception when comparing a complex number
with another built-in numeric type, when the objects are of different types that cannot be compared, or in other
cases where there is no defined ordering.

Non-identical instances of a class normally compare as non-equal unless the class defines the __eq___ () method.

Instances of a class cannot be ordered with respect to other instances of the same class, or other types of object,
unless the class defines enough of the methods __1t__ (),__le_ (),__gt__ (),and__ge__ () (in general,
1t () and__eq__ () are sufficient, if you want the conventional meanings of the comparison operators).

The behavior of the is and is not operators cannot be customized; also they can be applied to any two objects
and never raise an exception.

Two more operations with the same syntactic priority, in and not in, are supported only by sequence types
(below).

4.4 Numeric Types — int, float, complex

There are three distinct numeric types: integers, floating point numbers, and complex numbers. In addition,
Booleans are a subtype of integers. Integers have unlimited precision. Floating point numbers are usually imple-
mented using double in C; information about the precision and internal representation of floating point numbers
for the machine on which your program is running is available in sys.float_info. Complex numbers have
a real and imaginary part, which are each a floating point number. To extract these parts from a complex number
z,use z.real and z.imag. (The standard library includes additional numeric types, fractions that hold
rationals, and decimal that hold floating-point numbers with user-definable precision.)

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned integer
literals (including hex, octal and binary numbers) yield integers. Numeric literals containing a decimal point or
an exponent sign yield floating point numbers. Appending ’ j’ or ’ J’ to a numeric literal yields an imaginary
number (a complex number with a zero real part) which you can add to an integer or float to get a complex number
with real and imaginary parts.

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric
types, the operand with the “narrower” type is widened to that of the other, where integer is narrower than floating

26 Chapter 4. Built-in Types

The Python Library Reference, Release 3.2.3

point, which is narrower than complex. Comparisons between numbers of mixed type use the same rule. > The
constructors int (), float (), and complex () can be used to produce numbers of a specific type.

All numeric types (except complex) support the following operations, sorted by ascending priority (operations in
the same box have the same priority; all numeric operations have a higher priority than comparison operations):

Operation Result Notes | Full
documentation
X + vy sum of x and y
X -y difference of x and y
X *x v product of x and y
x /y quotient of x and y
x //y floored quotient of x and y Q)
X %y remainderof x / y 2)
-X x negated
+x x unchanged
abs (x) absolute value or magnitude of x abs ()
int (x) x converted to integer 3)(6) | int ()
float (x) x converted to floating point @)(6) | float ()
complex (re, a complex number with real part re, imaginary part im. im (6) complex ()
im) defaults to zero.
c.conjugate ()| conjugate of the complex number ¢
divmod (x, V) the pair (x // y, X $ V) 2) divmod ()
pow (x, V) X to the power y 5) pow ()
X k% Y X to the power y (®)]
Notes:

1. Also referred to as integer division. The resultant value is a whole integer, though the result’s type is not
necessarily int. The result is always rounded towards minus infinity: 1//21is 0, (-1) //2is-1,1// (=2)
is—-1,and (-1)//(-2) is 0.

2. Not for complex numbers. Instead convert to floats using abs () if appropriate.

3. Conversion from floating point to integer may round or truncate as in C; see functions floor () and
ceil () inthe math module for well-defined conversions.

4. float also accepts the strings “nan” and “inf” with an optional prefix “+” or “-” for Not a Number (NaN) and
positive or negative infinity.

5. Python defines pow (0, 0) and 0 =% O tobe 1, as is common for programming languages.

6. The numeric literals accepted include the digits 0 to 9 or any Unicode equivalent (code points with the Nd
property).

See http://www.unicode.org/Public/6.0.0/ucd/extracted/DerivedNumericType.txt for a complete list of code
points with the Nd property.

All numbers.Real types (int and £1loat) also include the following operations:

Operation Result Notes
math.trunc(x) | xtruncated to Integral

round (x[, n]) | xrounded to n digits, rounding half to even. If n is omitted, it defaults to O.
math.floor (x) | the greatest integral float <= x

math.ceil (x) the least integral float >= x

For additional numeric operations see the math and cmath modules.

4.4.1 Bitwise Operations on Integer Types

Bitwise operations only make sense for integers. Negative numbers are treated as their 2’s complement value (this
assumes a sufficiently large number of bits that no overflow occurs during the operation).

2 Asa consequence, the list [1, 2] is considered equalto [1.0, 2.0], and similarly for tuples.

4.4. Numeric Types — int, float, complex 27

http://www.unicode.org/Public/6.0.0/ucd/extracted/DerivedNumericType.txt

The Python Library Reference, Release 3.2.3

The priorities of the binary bitwise operations are all lower than the numeric operations and higher than the
comparisons; the unary operation ~ has the same priority as the other unary numeric operations (+ and —).

This table lists the bitwise operations sorted in ascending priority (operations in the same box have the same
priority):

Operation Result Notes
X |y bitwise or of x and y
x Ny bitwise exclusive or of x and y
X &y bitwise and of x and y
x << n x shifted left by n bits (DH(2)
X >> n x shifted right by n bits (HA3)
~xX the bits of x inverted

Notes:

1. Negative shift counts are illegal and cause a ValueError to be raised.
2. A left shift by #n bits is equivalent to multiplication by pow (2, n) without overflow check.

3. A right shift by n bits is equivalent to division by pow (2, n) without overflow check.

4.4.2 Additional Methods on Integer Types

The int type implements the numbers . Integral abstract base class. In addition, it provides one more method:

int.bit_length()
Return the number of bits necessary to represent an integer in binary, excluding the sign and leading zeros:

>>> n = —-37

>>> bin (n)
’-0b100101"

>>> n.bit_length ()
6

More precisely, if x is nonzero, then x.bit_length () is the unique positive integer k such that
2x% (k=1) <= abs(x) < 2*xk. Equivalently, when abs (x) is small enough to have a correctly
rounded logarithm, then k = 1 + int (log(abs(x), 2)). If xis zero, then x.bit_length ()
returns O.

Equivalent to:

def bit_length(self):

s = bin(self) # binary representation: bin(-37) —--> ’-0b100101’
s = s.lstrip(’'-0b’) # remove leading zeros and minus sign
return len(s) # len(’71001017) —-——> 6

New in version 3.1.

int.to_bytes (length, byteorder, *, signed=False)
Return an array of bytes representing an integer.

>>> (1024) .to_bytes (2, byteorder='big’)

b’ \x04\x00"

>>> (1024) .to_bytes (10, byteorder="big’)

b’ \x00\x00\x00\x00\x00\x00\x00\x00\x04\x00"

>>> (-1024) .to_bytes (10, byteorder="big’, signed=True)

b/ \xff\xfE\xfE\xEf\XEE\xEE\xEff\xff\xfc\x00"

>>> x = 1000

>>> x.to_bytes ((x.bit_length() // 8) + 1, byteorder=’'little’)
b’ \xe8\x03"

28 Chapter 4. Built-in Types

The Python Library Reference, Release 3.2.3

The integer is represented using length bytes. An OverflowError is raised if the integer is not repre-
sentable with the given number of bytes.

The byteorder argument determines the byte order used to represent the integer. If byteorder is "big",
the most significant byte is at the beginning of the byte array. If byteorder is "1ittle™", the most sig-
nificant byte is at the end of the byte array. To request the native byte order of the host system, use
sys.byteorder as the byte order value.

The signed argument determines whether two’s complement is used to represent the integer. If signed is
False and a negative integer is given, an OverflowError is raised. The default value for signed is
False. New in version 3.2.

classmethod int . from_bytes (bytes, byteorder, *, signed=False)
Return the integer represented by the given array of bytes.

>>> int.from_bytes (b’ \x00\x10’, byteorder='big’)

16

>>> int.from_bytes (b’ \x00\x10’, byteorder='little’)

4096

>>> int.from_bytes (b’ \xfc\x00’, byteorder="big’, signed=True)
-1024

>>> int.from_bytes (b’ \xfc\x00’, byteorder='big’, signed=False)
64512

>>> int.from_bytes ([255, 0, 0], byteorder="big’)

16711680

The argument bytes must either support the buffer protocol or be an iterable producing bytes. bytes and
bytearray are examples of built-in objects that support the buffer protocol.

The byteorder argument determines the byte order used to represent the integer. If byteorder is "big",
the most significant byte is at the beginning of the byte array. If byteorder is "1ittle", the most sig-
nificant byte is at the end of the byte array. To request the native byte order of the host system, use
sys.byteorder as the byte order value.

The signed argument indicates whether two’s complement is used to represent the integer. New in version
3.2.

4.4.3 Additional Methods on Float

The float type implements the numbers .Real abstract base class. float also has the following additional meth-
ods.

float.as_integer_ratio()
Return a pair of integers whose ratio is exactly equal to the original float and with a positive denominator.
Raises OverflowError on infinities and a ValueError on NaNs.

float.is_integer ()
Return True if the float instance is finite with integral value, and False otherwise:

>>> (-2.0).is_integer ()
True

>>> (3.2).1is_integer()
False

Two methods support conversion to and from hexadecimal strings. Since Python’s floats are stored internally as
binary numbers, converting a float to or from a decimal string usually involves a small rounding error. In contrast,
hexadecimal strings allow exact representation and specification of floating-point numbers. This can be useful
when debugging, and in numerical work.

4.4. Numeric Types — int, float, complex 29

The Python Library Reference, Release 3.2.3

float.hex ()
Return a representation of a floating-point number as a hexadecimal string. For finite floating-point numbers,
this representation will always include a leading Ox and a trailing p and exponent.

classmethod f1loat . fromhex (s)
Class method to return the float represented by a hexadecimal string s. The string s may have leading and
trailing whitespace.

Note that f1oat .hex () is an instance method, while f1oat . fromhex () is a class method.
A hexadecimal string takes the form:
[sign] [’0x’] integer [’.’ fraction] [’'p’ exponent]

where the optional sign may by either + or —, integer and fraction are strings of hexadecimal digits,
and exponent is a decimal integer with an optional leading sign. Case is not significant, and there must be at
least one hexadecimal digit in either the integer or the fraction. This syntax is similar to the syntax specified in
section 6.4.4.2 of the C99 standard, and also to the syntax used in Java 1.5 onwards. In particular, the output
of float.hex () is usable as a hexadecimal floating-point literal in C or Java code, and hexadecimal strings
produced by C’s $a format character or Java’s Double.toHexString are accepted by float . fromhex ().

Note that the exponent is written in decimal rather than hexadecimal, and that it gives the power of 2 by which to
multiply the coefficient. For example, the hexadecimal string 0x3.a7p10 represents the floating-point number
(3 + 10./16 + 7./16%x%x2) % 2.0%xx10,0r 3740.0:

>>> float.fromhex (' 0x3.a7pl0")
3740.0

Applying the reverse conversion to 3740 . 0 gives a different hexadecimal string representing the same number:

>>> float.hex (3740.0)
"0x1.d380000000000p+11"

4.4.4 Hashing of numeric types

For numbers x and y, possibly of different types, it’s a requirement that hash (x) == hash (y) whenever x
== y(seethe __hash__ () method documentation for more details). For ease of implementation and efficiency
across a variety of numeric types (including int, float, decimal .Decimal and fractions.Fraction)
Python’s hash for numeric types is based on a single mathematical function that’s defined for any rational number,
and hence applies to all instances of int and fraction.Fraction, and all finite instances of f1oat and
decimal.Decimal. Essentially, this function is given by reduction modulo P for a fixed prime P. The value of
P is made available to Python as the modulus attribute of sys.hash_info.

CPython implementation detail: Currently, the prime used is P = 2x%31 - 1 on machines with 32-bit C
longsand P = 2x%61 - 1 on machines with 64-bit C longs.

Here are the rules in detail:

e If x = m / nis a nonnegative rational number and n is not divisible by P, define hash (x) asm =
invmod(n, P) % P,where invmod (n, P) gives the inverse of n modulo P.

e If x = m / n is a nonnegative rational number and n is divisible by P (but m is not) then n has no
inverse modulo P and the rule above doesn’t apply; in this case define hash (x) to be the constant value
sys.hash_info.inf.

e If x = m / nisanegative rational number define hash (x) as —hash (-x) . If the resulting hash is -1,
replace it with —2.

* The particular values sys.hash_info.inf, -sys.hash_info.inf and sys.hash_info.nan
are used as hash values for positive infinity, negative infinity, or nans (respectively). (All hashable nans
have the same hash value.)

e For a complex number z, the hash values of the real and imaginary parts are combined
by computing hash(z.real) + sys.hash_info.imag * hash(z.imag), reduced modulo

30 Chapter 4. Built-in Types

The Python Library Reference, Release 3.2.3

2+«xsys.hash_info.width so that it lies in range (-2** (sys.hash_info.width - 1),
2x% (sys.hash_info.width - 1)). Again, if the result is —1, it’s replaced with —2.

To clarify the above rules, here’s some example Python code, equivalent to the builtin hash, for computing the
hash of a rational number, f1oat, or complex:

import sys, math

def

def

def

hash_fraction(m, n):
"""Compute the hash of a rational number m / n.

Assumes m and n are integers, with n positive.
Equivalent to hash(fractions.Fraction(m, n)).

mmn

P = sys.hash_info.modulus
Remove common factors of P. (Unnecessary 1f m and n already coprime.)

while m $ P == n % == 0:
m, n=m// P, n// P

ifn % P == 0:
hash_ = sys.hash_info.inf
else:

Fermat’s Little Theorem: pow(n, P-1, P) is 1, so
pow(n, P-2, P) gives the inverse of n modulo P.

hash_ = (abs(m) % P) % pow(n, P - 2, P) % P
if m < O:

hash_ = —-hash_
if hash_ == -1:

hash_ = -2

return hash_

hash_float (x) :
"""Compute the hash of a float x."""

if math.isnan (x) :

return sys.hash_info.nan
elif math.isinf (x):

return sys.hash_info.inf if x > 0 else -sys.hash_info.inf
else:

return hash_fraction(*x.as_integer_ratio())

hash_complex(z) :
"""Compute the hash of a complex number z."""

hash_ = hash_float(z.real) + sys.hash_info.imag * hash_float (z.imag)
do a signed reduction modulo 2x*sys.hash_info.width
M = 2%« (sys.hash_info.width - 1)
hash_ = (hash_ &« (M - 1)) - (hash & M)
if hash_ == -1:
hash_ == -2
return hash_

4.5 Iterator Types

Python supports a concept of iteration over containers. This is implemented using two distinct methods; these are
used to allow user-defined classes to support iteration. Sequences, described below in more detail, always support

4.5. Ilterator Types 31

The Python Library Reference, Release 3.2.3

the iteration methods.
One method needs to be defined for container objects to provide iteration support:

container._ iter_ ()
Return an iterator object. The object is required to support the iterator protocol described below. If a
container supports different types of iteration, additional methods can be provided to specifically request
iterators for those iteration types. (An example of an object supporting multiple forms of iteration would be
a tree structure which supports both breadth-first and depth-first traversal.) This method corresponds to the
tp_iter slot of the type structure for Python objects in the Python/C APIL.

The iterator objects themselves are required to support the following two methods, which together form the iterator
protocol:

iterator.__iter_ ()
Return the iterator object itself. This is required to allow both containers and iterators to be used with the
for and in statements. This method corresponds to the tp_iter slot of the type structure for Python
objects in the Python/C APIL.

iterator.__ _next__ ()
Return the next item from the container. If there are no further items, raise the StopIteration exception.
This method corresponds to the tp_iternext slot of the type structure for Python objects in the Python/C
API.

Python defines several iterator objects to support iteration over general and specific sequence types, dictionaries,
and other more specialized forms. The specific types are not important beyond their implementation of the iterator
protocol.

Once an iterator’s __next__ () method raises StopIteration, it must continue to do so on subsequent calls.
Implementations that do not obey this property are deemed broken.

4.5.1 Generator Types

Python’s generators provide a convenient way to implement the iterator protocol. If a container object’s
__iter__ () method is implemented as a generator, it will automatically return an iterator object (technically, a
generator object) supplying the __iter_ () and __next__ () methods. More information about generators
can be found in the documentation for the yield expression.

4.6 Sequence Types — str, bytes, bytearray, list, tuple,
range

There are six sequence types: strings, byte sequences (bytes objects), byte arrays (bytearray objects), lists,
tuples, and range objects. For other containers see the built in dict and set classes, and the collections
module.

Strings contain Unicode characters. Their literals are written in single or double quotes: ' xyzzy’, "frobozz".
See strings for more about string literals. In addition to the functionality described here, there are also string-
specific methods described in the String Methods section.

Bytes and bytearray objects contain single bytes — the former is immutable while the latter is a mutable sequence.
Bytes objects can be constructed the constructor, bytes (), and from literals; use a b prefix with normal string
syntax: b’ xyzzy’ . To construct byte arrays, use the bytearray () function.

While string objects are sequences of characters (represented by strings of length 1), bytes and bytearray objects
are sequences of integers (between 0 and 255), representing the ASCII value of single bytes. That means that for
a bytes or bytearray object b, b [0] will be an integer, while b [0 : 1] will be a bytes or bytearray object of length
1. The representation of bytes objects uses the literal format (b’ . . .) since it is generally more useful than e.g.
bytes ([50, 19, 1001]). You can always convert a bytes object into a list of integers using 1ist (b).

32 Chapter 4. Built-in Types

The Python Library Reference, Release 3.2.3

Also, while in previous Python versions, byte strings and Unicode strings could be exchanged for each other rather
freely (barring encoding issues), strings and bytes are now completely separate concepts. There’s no implicit en-
/decoding if you pass an object of the wrong type. A string always compares unequal to a bytes or bytearray
object.

Lists are constructed with square brackets, separating items with commas: [a, b, c]. Tuples are constructed
by the comma operator (not within square brackets), with or without enclosing parentheses, but an empty tuple
must have the enclosing parentheses, such as a, b, cor (). A single item tuple must have a trailing comma,
suchas (d,).

Objects of type range are created using the range () function. They don’t support concatenation or repetition,
and using min () ormax () on them is inefficient.

Most sequence types support the following operations. The in and not in operations have the same priorities
as the comparison operations. The + and » operations have the same priority as the corresponding numeric
operations. * Additional methods are provided for Mutable Sequence Types.

This table lists the sequence operations sorted in ascending priority (operations in the same box have the same
priority). In the table, s and ¢ are sequences of the same type; n, i, j and k are integers.

Operation Result Notes
x in s True if an item of s is equal to x, else False | (1)

x not in s False if an item of s is equal to x, else True | (1)

s + t the concatenation of s and ¢ (6)

s * n, n x s | nshallow copies of s concatenated 2)
s[i] ith item of s, origin 0 3)
s[i:7] slice of s from i to j 34
s[i:j:k] slice of s from i to j with step k 3)(5)
len(s) length of s

min (s) smallest item of s

max (s) largest item of s

s.index (1) index of the first occurence of i in s

s.count (1) total number of occurences of i in s

Sequence types also support comparisons. In particular, tuples and lists are compared lexicographically by com-
paring corresponding elements. This means that to compare equal, every element must compare equal and the two
sequences must be of the same type and have the same length. (For full details see comparisons in the language
reference.)

Notes:
1. When s is a string object, the in and not in operations act like a substring test.

2. Values of n less than 0 are treated as 0 (which yields an empty sequence of the same type as s). Note also
that the copies are shallow; nested structures are not copied. This often haunts new Python programmers;
consider:

>>> lists = [[]] = 3
>>> lists

(er, 1, 11

>>> 1lists[0].append(3)
>>> lists

(31, [31, [3]]

What has happened is that [[]] is a one-element list containing an empty list, so all three elements of
[[1] = 3 are (pointers to) this single empty list. Modifying any of the elements of 1ists modifies this
single list. You can create a list of different lists this way:

>>> lists = [[] for i in range(3)]
>>> 1lists[0] .append(3)
>>> lists[1l].append(5)
>>> lists[2] .append(7)

3 They must have since the parser can’t tell the type of the operands.

4.6. Sequence Types — str, bytes, bytearray, list, tuple, range 33

The Python Library Reference, Release 3.2.3

>>> lists

(31, 51, (711

. If i or j is negative, the index is relative to the end of the string: 1en (s) + iorlen(s) + jis substi-

tuted. But note that —0 is still 0.

The slice of s from i to j is defined as the sequence of items with index k suchthat i <= k < j.Ifiorjis
greater than 1en (s), use len (s). If i is omitted or None, use 0. If j is omitted or None, use len (s).
If i is greater than or equal to j, the slice is empty.

The slice of s from i to j with step k is defined as the sequence of items with index x = i + nxk such
that 0 <= n < (j-1i)/k. In other words, the indices are i, i+k, i+2+k, 1+3+k and so on, stopping
when j is reached (but never including j). If i or j is greater than len (s),use len (s). If i or j are omitted
or None, they become “end” values (which end depends on the sign of k). Note, k cannot be zero. If k is
None, it is treated like 1.

Concatenating immutable strings always results in a new object. This means that building up a string by
repeated concatenation will have a quadratic runtime cost in the total string length. To get a linear runtime
cost, you must switch to one of the alternatives below:

* if concatenating st r objects, you can build a list and use str. join () at the end;

« if concatenating bytes objects, you can similarly use bytes. join (), or you can do in-place
concatenation with a bytearray object. bytearray objects are mutable and have an efficient
overallocation mechanism.

4.6.1 String Methods

String objects support the methods listed below.

In addition, Python’s strings support the sequence type methods described in the Sequence Types — str, bytes,
bytearray, list, tuple, range section. To output formatted strings, see the String Formatting section. Also, see the
re module for string functions based on regular expressions.

str.

str.

str.

str.

str

str.

capitalize ()
Return a copy of the string with its first character capitalized and the rest lowercased.

center (width[,ﬁllchar])
Return centered in a string of length width. Padding is done using the specified fillchar (default is a space).

count (sub[, start[, end]])
Return the number of non-overlapping occurrences of substring sub in the range [start, end]. Optional
arguments start and end are interpreted as in slice notation.

encode (encoding="utf-8”, errors="strict”)

Return an encoded version of the string as a bytes object. Default encoding is "utf-8’. er-
rors may be given to set a different error handling scheme. The default for errors is ' strict’,
meaning that encoding errors raise a UnicodeError. Other possible values are ’ignore’,
"replace’, "xmlcharrefreplace’, 'backslashreplace’ and any other name registered via
codecs.register_error (), see section Codec Base Classes. For a list of possible encodings, see
section Standard Encodings. Changed in version 3.1: Support for keyword arguments added.

.endswith (suﬁ‘ix[, start[, end]])

Return True if the string ends with the specified suffix, otherwise return False. suffix can also be a tuple
of suffixes to look for. With optional start, test beginning at that position. With optional end, stop comparing
at that position.

expandtabs ([tabsize])

Return a copy of the string where all tab characters are replaced by zero or more spaces, depending on the
current column and the given tab size. The column number is reset to zero after each newline occurring
in the string. If tabsize is not given, a tab size of 8 characters is assumed. This doesn’t understand other
non-printing characters or escape sequences.

34

Chapter 4. Built-in Types

The Python Library Reference, Release 3.2.3

str.

str.

str

str.

str.

str.

str.

str.

find (sub[, start[, end]])

Return the lowest index in the string where substring sub is found, such that sub is contained in the slice
s[start:end]. Optional arguments start and end are interpreted as in slice notation. Return -1 if sub
is not found.

Note: The find () method should be used only if you need to know the position of sub. To check if sub
is a substring or not, use the in operator:

>>> Py’ in ’'Python’
True

format (*args, **kwargs)

Perform a string formatting operation. The string on which this method is called can contain literal text
or replacement fields delimited by braces { }. Each replacement field contains either the numeric index
of a positional argument, or the name of a keyword argument. Returns a copy of the string where each
replacement field is replaced with the string value of the corresponding argument.

>>> "The sum of 1 + 2 is {0}".format (1+2)
"The sum of 1 + 2 1is 3’

See Format String Syntax for a description of the various formatting options that can be specified in format
strings.

. format_map (mapping)

Similar to str. format (**mapping), except that mapping is used directly and not copied to a dict
. This is useful if for example mapping is a dict subclass:

>>> class Default (dict) :
def _ missing__ (self, key):
return key

>>> /{name} was born in {country}’.format_map (Default (name=’'Guido’))
"Guido was born in country’

New in version 3.2.

index (sub[, start[, end]])
Like £ind (), but raise ValueError when the substring is not found.

isalnum()

Return true if all characters in the string are alphanumeric and there is at least one character, false otherwise.
A character c is alphanumeric if one of the following returns True: c.isalpha (), c.isdecimal (),
c.isdigit (),orc.isnumeric().

isalpha ()

Return true if all characters in the string are alphabetic and there is at least one character, false otherwise.
Alphabetic characters are those characters defined in the Unicode character database as “Letter”, i.e., those
with general category property being one of “Lm”, “Lt”, “Lu”, “L1”, or “Lo”. Note that this is different
from the “Alphabetic” property defined in the Unicode Standard.

isdecimal ()

Return true if all characters in the string are decimal characters and there is at least one character, false oth-
erwise. Decimal characters are those from general category “Nd”. This category includes digit characters,
and all characters that can be used to form decimal-radix numbers, e.g. U+0660, ARABIC-INDIC DIGIT
ZERO.

isdigit ()

Return true if all characters in the string are digits and there is at least one character, false otherwise. Digits
include decimal characters and digits that need special handling, such as the compatibility superscript digits.
Formally, a digit is a character that has the property value Numeric_Type=Digit or Numeric_Type=Decimal.

4.6. Sequence Types — str, bytes, bytearray, list, tuple, range 35

The Python Library Reference, Release 3.2.3

str

str

str.

str.

str.

str.

str.

str.

str

str.

str.

static

.isidentifier ()

Return true if the string is a valid identifier according to the language definition, section identifiers.

.islower ()

Return true if all cased characters * in the string are lowercase and there is at least one cased character, false
otherwise.

isnumeric ()

Return true if all characters in the string are numeric characters, and there is at least one character, false
otherwise. Numeric characters include digit characters, and all characters that have the Unicode numeric
value property, e.g. U+2155, VULGAR FRACTION ONE FIFTH. Formally, numeric characters are those
with the property value Numeric_Type=Digit, Numeric_Type=Decimal or Numeric_Type=Numeric.

isprintable ()

Return true if all characters in the string are printable or the string is empty, false otherwise. Nonprintable
characters are those characters defined in the Unicode character database as “Other” or “Separator”, except-
ing the ASCII space (0x20) which is considered printable. (Note that printable characters in this context are
those which should not be escaped when repr () is invoked on a string. It has no bearing on the handling
of strings written to sys . stdout or sys.stderr.)

isspace ()

Return true if there are only whitespace characters in the string and there is at least one character, false
otherwise. Whitespace characters are those characters defined in the Unicode character database as “Other”
or “Separator” and those with bidirectional property being one of “WS”, “B”, or “S”.

istitle ()

Return true if the string is a titlecased string and there is at least one character, for example uppercase
characters may only follow uncased characters and lowercase characters only cased ones. Return false
otherwise.

isupper ()
Return true if all cased characters * in the string are uppercase and there is at least one cased character, false
otherwise.

join (iterable)

Return a string which is the concatenation of the strings in the iterable iterable. A TypeError will
be raised if there are any non-string values in iferable, including bytes objects. The separator between
elements is the string providing this method.

.13just (width|, fillchar |)

Return the string left justified in a string of length width. Padding is done using the specified fillchar (default
is a space). The original string is returned if width is less than or equal to len (s).

lower ()
Return a copy of the string with all the cased characters # converted to lowercase.

1strip([chars])

Return a copy of the string with leading characters removed. The chars argument is a string specifying the
set of characters to be removed. If omitted or None, the chars argument defaults to removing whitespace.
The chars argument is not a prefix; rather, all combinations of its values are stripped:

>>> spacious " .1lstrip()

" spacious !

>>> 'www.example.com’ .1lstrip ('’ cmowz.”)
"example.com’

str.maketrans (x[, y[, z]])
This static method returns a translation table usable for str.translate ().

If there is only one argument, it must be a dictionary mapping Unicode ordinals (integers) or characters
(strings of length 1) to Unicode ordinals, strings (of arbitrary lengths) or None. Character keys will then be

4 Cased characters are those with general category property being one of “Lu” (Letter, uppercase), “L1” (Letter, lowercase), or “Lt” (Letter,
titlecase).

36

Chapter 4. Built-in Types

The Python Library Reference, Release 3.2.3

converted to ordinals.

If there are two arguments, they must be strings of equal length, and in the resulting dictionary, each char-
acter in X will be mapped to the character at the same position in y. If there is a third argument, it must be a
string, whose characters will be mapped to None in the result.

str.partition (sep)
Split the string at the first occurrence of sep, and return a 3-tuple containing the part before the separator,
the separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing
the string itself, followed by two empty strings.

str.replace (old, new[, count])
Return a copy of the string with all occurrences of substring old replaced by new. If the optional argument
count is given, only the first count occurrences are replaced.

str.rfind (sub[, start[, end]])
Return the highest index in the string where substring sub is found, such that sub is contained within
s[start:end]. Optional arguments start and end are interpreted as in slice notation. Return —1 on
failure.

str.rindex (sub[, start[, end]])
Like r£ind () butraises ValueError when the substring sub is not found.

str.rjust (width[,ﬁllchar])
Return the string right justified in a string of length widrh. Padding is done using the specified fillchar
(default is a space). The original string is returned if width is less than or equal to 1en (s).

str.rpartition (sep)
Split the string at the last occurrence of sep, and return a 3-tuple containing the part before the separator,
the separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing
two empty strings, followed by the string itself.

str.rsplit ([sep[, maxsplit]])
Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit
splits are done, the rightmost ones. If sep is not specified or None, any whitespace string is a separator.
Except for splitting from the right, rsplit () behaves like split () which is described in detail below.

str.rstrip([chars])
Return a copy of the string with trailing characters removed. The chars argument is a string specifying the
set of characters to be removed. If omitted or None, the chars argument defaults to removing whitespace.
The chars argument is not a suffix; rather, all combinations of its values are stripped:

>>> spacious ".rstrip()

! spacious’

>>> 'mississippi’ .rstrip(’ipz’)
"mississ’

str.split ([sep[, maxsplit]])
Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit
splits are done (thus, the list will have at most maxsplit+1 elements). If maxsplit is not specified, then
there is no limit on the number of splits (all possible splits are made).

If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty strings (for
example, 1,2’ .split (’,’) returns ["1’, ", ’2’1). The sep argument may consist of multiple
characters (for example, ’ 1<>2<>3’ . split (/<>") returns [' 17, ’2’, ’3’1]). Splitting an empty
string with a specified separator returns [”].

If sep is not specified or is None, a different splitting algorithm is applied: runs of consecutive whitespace
are regarded as a single separator, and the result will contain no empty strings at the start or end if the string
has leading or trailing whitespace. Consequently, splitting an empty string or a string consisting of just
whitespace with a None separator returns [].

For example,” 1 2 3 ’.split () returns ["1’, ’2’, '3"],and’ 1 2 3 ' .split (None,
1) returns [717, "2 3 "].

4.6. Sequence Types — str, bytes, bytearray, list, tuple, range 37

The Python Library Reference, Release 3.2.3

str

str.

str.

str.

str.

str.

.splitlines ([keepends])

Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the
resulting list unless keepends is given and true.

startswith (preﬁx[, start[, end]])

Return True if string starts with the prefix, otherwise return False. prefix can also be a tuple of prefixes
to look for. With optional start, test string beginning at that position. With optional end, stop comparing
string at that position.

strip([chars])

Return a copy of the string with the leading and trailing characters removed. The chars argument is a string
specifying the set of characters to be removed. If omitted or None, the chars argument defaults to removing
whitespace. The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped:

>>> spacious " .strip ()

" spacious’

>>> 'www.example.com’ .strip(’ cmowz.’)
"example’

swapcase ()
Return a copy of the string with uppercase characters converted to lowercase and vice versa.

title ()
Return a titlecased version of the string where words start with an uppercase character and the remaining
characters are lowercase.

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters.
The definition works in many contexts but it means that apostrophes in contractions and possessives form
word boundaries, which may not be the desired result:

>>> "they’re bill’s friends from the UK".title()
"They’Re Bill’S Friends From The Uk"

A workaround for apostrophes can be constructed using regular expressions:

>>> import re
>>> def titlecase(s):
return re.sub(r"[A-Za-z]+ (' [A-Za-z]+
lambda mo: mo.group (0) [
mo.group (0) [

)?"I
0] .upper () +
1:].1lower (),
s)

>>> titlecase("they’re bill’s friends.")
"They’re Bill’s Friends."

translate (map)

Return a copy of the s where all characters have been mapped through the map which must be a dictionary of
Unicode ordinals (integers) to Unicode ordinals, strings or None. Unmapped characters are left untouched.
Characters mapped to None are deleted.

You can use str.maketrans () to create a translation map from character-to-character mappings in
different formats.

Note: An even more flexible approach is to create a custom character mapping codec using the codecs
module (see encodings.cpl251 for an example).

str.upper ()

Return a copy of the string with all the cased characters * converted to uppercase. Note that

str.upper () .isupper () might be False if s contains uncased characters or if the Unicode cat-
egory of the resulting character(s) is not “Lu” (Letter, uppercase), but e.g. “Lt” (Letter, titlecase).

38

Chapter 4. Built-in Types

The Python Library Reference, Release 3.2.3

str.z£fill (width)
Return the numeric string left filled with zeros in a string of length width. A sign prefix is handled correctly.
The original string is returned if width is less than or equal to 1len (s).

4.6.2 Old String Formatting Operations

Note: The formatting operations described here are obsolete and may go away in future versions of Python. Use
the new String Formatting in new code.

String objects have one unique built-in operation: the $ operator (modulo). This is also known as the string format-
ting or interpolation operator. Given format % values (where format is a string), $ conversion specifications
in format are replaced with zero or more elements of values. The effect is similar to the using sprint £ () in the

C language.

If format requires a single argument, values may be a single non-tuple object. > Otherwise, values must be a
tuple with exactly the number of items specified by the format string, or a single mapping object (for example, a
dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur in
this order:

1. The " %’ character, which marks the start of the specifier.

2. Mapping key (optional), consisting of a parenthesised sequence of characters (for example, (somename)).
3. Conversion flags (optional), which affect the result of some conversion types.
4

. Minimum field width (optional). If specified as an ’ =’ (asterisk), the actual width is read from the next
element of the tuple in values, and the object to convert comes after the minimum field width and optional
precision.

5. Precision (optional), given as a ” .’ (dot) followed by the precision. If specified as ’ =’ (an asterisk), the
actual precision is read from the next element of the tuple in values, and the value to convert comes after
the precision.

6. Length modifier (optional).
7. Conversion type.

When the right argument is a dictionary (or other mapping type), then the formats in the string must include a
parenthesised mapping key into that dictionary inserted immediately after the ’ $’ character. The mapping key
selects the value to be formatted from the mapping. For example:

>>> print (' $ (language)s has % (number)03d quote types.’ %
Ce . {’ language’ : "Python", "number": 2})
Python has 002 quote types.

In this case no * specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag | Meaning

& 24 The value conversion will use the “alternate form” (where defined below).

"o’ The conversion will be zero padded for numeric values.

r—r The converted value is left adjusted (overrides the / 0’ conversion if both are given).

s (a space) A blank should be left before a positive number (or empty string) produced by a signed
conversion.

r4r A sign character (“ +’ or ' -) will precede the conversion (overrides a “space” flag).

A length modifier (h, 1, or L) may be present, but is ignored as it is not necessary for Python — so e.g. $1d is
identical to $d.

The conversion types are:

5 To format only a tuple you should therefore provide a singleton tuple whose only element is the tuple to be formatted.

4.6. Sequence Types — str, bytes, bytearray, list, tuple, range 39

The Python Library Reference, Release 3.2.3

Con- Meaning Notes

version

rd’ Signed integer decimal.

rir Signed integer decimal.

"o’ Signed octal value. €))]

ru’ Obsolete type — it is identical to " d’ . @)

rx’ Signed hexadecimal (lowercase). 2)

rxX’ Signed hexadecimal (uppercase).)

re’ Floating point exponential format (lowercase). 3)

"E’ Floating point exponential format (uppercase). 3)

i Floating point decimal format. 3)

"E’ Floating point decimal format. 3)

rg’ Floating point format. Uses lowercase exponential format if exponent is less than -4 or not | (4)
less than precision, decimal format otherwise.

"G’ Floating point format. Uses uppercase exponential format if exponent is less than -4 or not | (4)
less than precision, decimal format otherwise.

el Single character (accepts integer or single character string).

"¢’ String (converts any Python object using repr ()). 5)

"s’ String (converts any Python object using st r ()). 5)

ra’ String (converts any Python object using ascii ()). 5)

T’ No argument is converted, results in a * $’ character in the result.

Notes:

1. The alternate form causes a leading zero (* 0") to be inserted between left-hand padding and the formatting
of the number if the leading character of the result is not already a zero.

2. The alternate form causes a leading ' Ox’ or ' 0X’ (depending on whether the ’ x’ or ’ X’ format was
used) to be inserted between left-hand padding and the formatting of the number if the leading character of
the result is not already a zero.

3. The alternate form causes the result to always contain a decimal point, even if no digits follow it.

The precision determines the number of digits after the decimal point and defaults to 6.

4. The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed
as they would otherwise be.

The precision determines the number of significant digits before and after the decimal point and defaults to

6.

5. If precision is N, the output is truncated to N characters.

7. See PEP 237.

Since Python strings have an explicit length, $s conversions do not assume that * \0’ is the end of the string.
Changed in version 3.1: $f conversions for numbers whose absolute value is over 1e50 are no longer replaced by
%$g conversions. Additional string operations are defined in standard modules st ring and re.

4.6.3 Range Type

The range type is an immutable sequence which is commonly used for looping. The advantage of the range
type is that an range object will always take the same amount of memory, no matter the size of the range it

represents.

Range objects have relatively little behavior: they support indexing, contains, iteration, the 1en () function, and
the following methods:

range.count (x)
Return the number of i‘s for which s[1i] == x.

New in version 3.2.

40

Chapter 4. Built-in Types

http://www.python.org/dev/peps/pep-0237

The Python Library Reference, Release 3.2.3

range.index (x)

4.6

List

Return the smallest i such that s [1] == x. Raises ValueError when x is not in the range.

New in version 3.2.

.4 Mutable Sequence Types

and bytearray objects support additional operations that allow in-place modification of the object. Other

mutable sequence types (when added to the language) should also support these operations. Strings and tuples are
immutable sequence types: such objects cannot be modified once created. The following operations are defined
on mutable sequence types (where x is an arbitrary object).

Note that while lists allow their items to be of any type, bytearray object “items” are all integers in the range 0 <=

X < 256.
Operation Result Notes
s[i] = x item i of s is replaced by x
s[i:3] =t slice of s from i to j is replaced by the contents of the iterable ¢
del s[i:7j] sameass[i:3] = []
s[i:j:k] =t the elements of s [i: j:k] are replaced by those of ¢ €))
del s[i:7j:k] removes the elements of s [1:j:k] from the list
s.append (x) sameas s[len(s) :len(s)] = [x]
s.extend (x) same as s[len(s) :len(s)] = x 2)
s.count (x return number of i‘s for which s [1] ==
s.index (x[, 1[, 3J11) return smallest k such that s [k] == xandi <= k < j 3)
s.insert (1, Xx) sameas s[1:1] = [x] (@)
s.pop([il) sameas x = s[i]; del s[i]; return x 5)
S.remove (x) same as del s[s.index (x)] 3)
s.reverse () reverses the items of s in place (6)
s.sort ([key[, reverse]]) | sortthe items of s in place 6), (7), (8)
Notes:

1. ¢ must have the same length as the slice it is replacing.

2. x can be any iterable object.

3. Raises ValueError when x is not found in s. When a negative index is passed as the second or third
parameter to the index () method, the sequence length is added, as for slice indices. If it is still negative,
it is truncated to zero, as for slice indices.

4. When a negative index is passed as the first parameter to the insert () method, the sequence length is
added, as for slice indices. If it is still negative, it is truncated to zero, as for slice indices.

5. The optional argument i defaults to —1, so that by default the last item is removed and returned.

6. The sort () and reverse () methods modify the sequence in place for economy of space when sorting
or reversing a large sequence. To remind you that they operate by side effect, they don’t return the sorted or
reversed sequence.

7. The sort () method takes optional arguments for controlling the comparisons. Each must be specified as
a keyword argument.
key specifies a function of one argument that is used to extract a comparison key from each list element:
key=str.lower. The default value is None. Use functools.cmp_to_key () to convert an old-
style cmp function to a key function.
reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were
reversed.

The sort () method is guaranteed to be stable. A sort is stable if it guarantees not to change the relative
order of elements that compare equal — this is helpful for sorting in multiple passes (for example, sort by
department, then by salary grade).

4.6. Sequence Types — str, bytes, bytearray, list, tuple, range 41

The Python Library Reference, Release 3.2.3

CPython implementation detail: While a list is being sorted, the effect of attempting to mutate, or even
inspect, the list is undefined. The C implementation of Python makes the list appear empty for the duration,
and raises ValueError if it can detect that the list has been mutated during a sort.

8. sort () isnot supported by bytearray objects.

4.6.5 Bytes and Byte Array Methods

Bytes and bytearray objects, being “strings of bytes”, have all methods found on strings, with the exception of
encode (), format () and isidentifier (), which do not make sense with these types. For converting the
objects to strings, they have a decode () method.

Wherever one of these methods needs to interpret the bytes as characters (e.g. the is. .. () methods), the ASCII
character set is assumed.

Note: The methods on bytes and bytearray objects don’t accept strings as their arguments, just as the methods on
strings don’t accept bytes as their arguments. For example, you have to write

a = "abc

b = a.replace("a", "f")

n

a = b"abc"
b = a.replace (b"a", b"f")

bytes.decode (encoding="utf-8”, errors="strict”)

bytearray.decode (encoding="utf-8", errors="strict”)
Return a string decoded from the given bytes. Default encoding is " ut £-8’. errors may be given to set a
different error handling scheme. The default for errorsis * strict’, meaning that encoding errors raise a
UnicodeError. Other possible values are “ ignore’, ' replace’ and any other name registered via
codecs.register_error (), see section Codec Base Classes. For a list of possible encodings, see
section Standard Encodings. Changed in version 3.1: Added support for keyword arguments.

The bytes and bytearray types have an additional class method:

classmethod bytes . fromhex (string)

classmethod bytearray . fromhex (string)
This bytes class method returns a bytes or bytearray object, decoding the given string object. The string
must contain two hexadecimal digits per byte, spaces are ignored.

>>> bytes.fromhex (" £0 f1£2)
b/ \xfO\xfl\xf2’
The maketrans and translate methods differ in semantics from the versions available on strings:

bytes.translate (table[, delete])

bytearray.translate (table[, delete])
Return a copy of the bytes or bytearray object where all bytes occurring in the optional argument delete are
removed, and the remaining bytes have been mapped through the given translation table, which must be a
bytes object of length 256.

You can use the bytes.maketrans () method to create a translation table.

Set the table argument to None for translations that only delete characters:

>>> b’read this short text’.translate (None, b’aeiou’)
b’"rd ths shrt txt’

static bytes .maketrans (from, to)

42 Chapter 4. Built-in Types

The Python Library Reference, Release 3.2.3

static bytearray.maketrans (from, to)
This static method returns a translation table usable for bytes.translate () that will map each char-
acter in from into the character at the same position in fo; from and to must be bytes objects and have the
same length. New in version 3.1.

4.7 Set Types — set, frozenset

A set object is an unordered collection of distinct hashable objects. Common uses include membership testing,
removing duplicates from a sequence, and computing mathematical operations such as intersection, union, differ-
ence, and symmetric difference. (For other containers see the built in dict, 1ist, and tuple classes, and the
collections module.)

Like other collections, sets support x in set, len(set),and for x in set. Being an unordered collec-
tion, sets do not record element position or order of insertion. Accordingly, sets do not support indexing, slicing,
or other sequence-like behavior.

There are currently two built-in set types, set and frozenset. The set type is mutable — the contents can
be changed using methods like add () and remove (). Since it is mutable, it has no hash value and cannot be
used as either a dictionary key or as an element of another set. The frozenset type is immutable and hashable
— its contents cannot be altered after it is created; it can therefore be used as a dictionary key or as an element of
another set.

Non-empty sets (not frozensets) can be created by placing a comma-separated list of elements within braces, for
example: {’ jack’, ’sjoerd’},in addition to the set constructor.

The constructors for both classes work the same:

class set ([iterable])

class frozenset ([itemble])
Return a new set or frozenset object whose elements are taken from iterable. The elements of a set must be
hashable. To represent sets of sets, the inner sets must be frozenset objects. If iterable is not specified,
a new empty set is returned.

Instances of set and frozenset provide the following operations:

len(s)
Return the cardinality of set s.

x in s
Test x for membership in s.

X not in s
Test x for non-membership in s.

isdisjoint (other)
Return True if the set has no elements in common with other. Sets are disjoint if and only if their
intersection is the empty set.

issubset (other)
set <= other
Test whether every element in the set is in other.

set < other
Test whether the set is a true subset of other, that is, set <= other and set != other.

issuperset (other)
set >= other
Test whether every element in other is in the set.

set > other
Test whether the set is a true superset of other, thatis, set >= other and set != other.

union (other, ...)

4.7. Set Types — set, frozenset 43

The Python Library Reference, Release 3.2.3

set | other |
Return a new set with elements from the set and all others.

intersection (other, ...)
set & other &
Return a new set with elements common to the set and all others.

difference (other,...)
set - other -
Return a new set with elements in the set that are not in the others.

symmetric_difference (other)
set * other
Return a new set with elements in either the set or other but not both.

copy ()
Return a new set with a shallow copy of s.

Note, the non-operator versions of union(), intersection(), difference(), and
symmetric_difference (), issubset (), and issuperset () methods will accept any it-
erable as an argument. In contrast, their operator based counterparts require their arguments to be sets.
This precludes error-prone constructions like set (“abc’) & ’cbs’ in favor of the more readable
set (abc’) .intersection(’cbs’).

Both set and frozenset support set to set comparisons. Two sets are equal if and only if every element
of each set is contained in the other (each is a subset of the other). A set is less than another set if and only
if the first set is a proper subset of the second set (is a subset, but is not equal). A set is greater than another
set if and only if the first set is a proper superset of the second set (is a superset, but is not equal).

Instances of set are compared to instances of frozenset based on their members. For ex-
ample, set (‘abc’) == frozenset ('abc’) returns True and so does set (‘abc’) in
set ([frozenset ("abc’)]).

The subset and equality comparisons do not generalize to a complete ordering function. For example, any
two disjoint sets are not equal and are not subsets of each other, so all of the following return False: a<b,
a==Db, or a>b.

Since sets only define partial ordering (subset relationships), the output of the 1ist.sort () method is
undefined for lists of sets.

Set elements, like dictionary keys, must be hashable.

Binary operations that mix set instances with f rozenset return the type of the first operand. For exam-
ple: frozenset (“ab’) | set (’bc’) returns an instance of frozenset.

The following table lists operations available for set that do not apply to immutable instances of
frozenset:

update (other, ...)
set |= other |
Update the set, adding elements from all others.

intersection_update (other, ...)
set &= other &
Update the set, keeping only elements found in it and all others.

difference_update (other,...)
set —= other |
Update the set, removing elements found in others.

symmetric_difference_update (other)
set “= other
Update the set, keeping only elements found in either set, but not in both.

add (elem)
Add element elem to the set.

44

Chapter 4. Built-in Types

The Python Library Reference, Release 3.2.3

remove (elem)
Remove element elem from the set. Raises KeyError if elem is not contained in the set.

discard (elem)
Remove element elem from the set if it is present.

pop ()
Remove and return an arbitrary element from the set. Raises KeyError if the set is empty.

clear ()
Remove all elements from the set.

Note, the non-operator versions of the update(), intersection_update (),
difference_update (), and symmetric_difference_update () methods will accept
any iterable as an argument.

Note, the elem argument to the _ _contains__ (), remove (), and discard () methods may be a
set. To support searching for an equivalent frozenset, the elem set is temporarily mutated during the search
and then restored. During the search, the elem set should not be read or mutated since it does not have a
meaningful value.

4.8 Mapping Types —dict

A mapping object maps hashable values to arbitrary objects. Mappings are mutable objects. There is currently
only one standard mapping type, the dictionary. (For other containers see the built in 1ist, set, and tuple
classes, and the collections module.)

A dictionary’s keys are almost arbitrary values. Values that are not hashable, that is, values containing lists,
dictionaries or other mutable types (that are compared by value rather than by object identity) may not be used as
keys. Numeric types used for keys obey the normal rules for numeric comparison: if two numbers compare equal
(such as 1 and 1.0) then they can be used interchangeably to index the same dictionary entry. (Note however,
that since computers store floating-point numbers as approximations it is usually unwise to use them as dictionary
keys.)

Dictionaries can be created by placing a comma-separated list of key: value pairs within braces, for ex-
ample: {’ jack’: 4098, ’'sjoerd’: 4127}or {4098: 'Jack’, 4127: ’sjoerd’},orby
the dict constructor.

class dict ([arg])

Return a new dictionary initialized from an optional positional argument or from a set of keyword argu-
ments. If no arguments are given, return a new empty dictionary. If the positional argument arg is a
mapping object, return a dictionary mapping the same keys to the same values as does the mapping object.
Otherwise the positional argument must be a sequence, a container that supports iteration, or an iterator
object. The elements of the argument must each also be of one of those kinds, and each must in turn contain
exactly two objects. The first is used as a key in the new dictionary, and the second as the key’s value. If a
given key is seen more than once, the last value associated with it is retained in the new dictionary.

If keyword arguments are given, the keywords themselves with their associated values are added as items
to the dictionary. If a key is specified both in the positional argument and as a keyword argument, the value
associated with the keyword is retained in the dictionary. For example, these all return a dictionary equal to
{"one": 1, "two": 2}:

edict (one=1, two=2)
edict ({’one’: 1, ’'two’: 2})
edict (zip(('one’, ’'two’), (1, 2)))
edict ([["two’, 2], ['one’, 111])
The first example only works for keys that are valid Python identifiers; the others work with any valid keys.

These are the operations that dictionaries support (and therefore, custom mapping types should support too):

4.8. Mapping Types — dict 45

The Python Library Reference, Release 3.2.3

len(d)
Return the number of items in the dictionary d.

d[key]
Return the item of d with key key. Raises a KeyError if key is not in the map.

If a subclass of dict defines a method __missing__ (), if the key key is not present, the d [key]
operation calls that method with the key key as argument. The d [key] operation then returns or raises
whatever is returned or raised by the __missing__ (key) call if the key is not present. No other
operations or methods invoke __missing__ (). If _ _missing__ () is not defined, KeyError
israised. _ _missing__ () must be a method; it cannot be an instance variable:

>>> class Counter (dict):
def _ missing__ (self, key):
.. return 0
>>> ¢ = Counter ()

>>> c [’ red’]
0

>>> c[’'red’] += 1
>>> c[’red’]

See collections.Counter for a complete implementation including other methods helpful for
accumulating and managing tallies.

d[key] = value
Set d[key] to value.

del dlkey]

Remove d [key] from d. Raises a KeyError if key is not in the map.
key in d

Return True if d has a key key, else False.

key not in d
Equivalent to not key in d.

iter(d)
Return an iterator over the keys of the dictionary. This is a shortcut for iter (d.keys ()).

clear ()
Remove all items from the dictionary.

copy ()
Return a shallow copy of the dictionary.

classmethod fromkeys (seq[, value])
Create a new dictionary with keys from seq and values set to value.

fromkeys () is a class method that returns a new dictionary. value defaults to None.

get (key[, default])
Return the value for key if key is in the dictionary, else default. If default is not given, it defaults to
None, so that this method never raises a KeyError.

items ()
Return a new view of the dictionary’s items ((key, value) pairs). See below for documentation
of view objects.

keys ()
Return a new view of the dictionary’s keys. See below for documentation of view objects.

pop (key[, default])
If key is in the dictionary, remove it and return its value, else return default. If default is not given and
key is not in the dictionary, a KeyError is raised.

46

Chapter 4. Built-in Types

The Python Library Reference, Release 3.2.3

popitem/()
Remove and return an arbitrary (key, wvalue) pair from the dictionary.

popitem () is useful to destructively iterate over a dictionary, as often used in set algorithms. If the
dictionary is empty, calling popitem () raises a KeyError.

setdefault (key[, default])
If key is in the dictionary, return its value. If not, insert key with a value of default and return default.
default defaults to None.

update ([other])
Update the dictionary with the key/value pairs from other, overwriting existing keys. Return None.

update () accepts either another dictionary object or an iterable of key/value pairs (as tuples or other
iterables of length two). If keyword arguments are specified, the dictionary is then updated with those
key/value pairs: d.update (red=1, blue=2).

values ()
Return a new view of the dictionary’s values. See below for documentation of view objects.

4.8.1 Dictionary view objects

The objects returned by dict .keys (), dict.values () and dict.items () are view objects. They pro-
vide a dynamic view on the dictionary’s entries, which means that when the dictionary changes, the view reflects
these changes.

Dictionary views can be iterated over to yield their respective data, and support membership tests:

len(dictview)
Return the number of entries in the dictionary.

iter (dictview)
Return an iterator over the keys, values or items (represented as tuples of (key, wvalue)) in the dictio-
nary.

Keys and values are iterated over in an arbitrary order which is non-random, varies across Python im-
plementations, and depends on the dictionary’s history of insertions and deletions. If keys, values and
items views are iterated over with no intervening modifications to the dictionary, the order of items
will directly correspond. This allows the creation of (value, key) pairs using zip (): pairs =
zip(d.values (), d.keys()). Another way to create the same list is pairs = [(v, k) for
(k, v) in d.items()].

Iterating views while adding or deleting entries in the dictionary may raise a Runt imeError or fail to
iterate over all entries.

x in dictview
Return True if x is in the underlying dictionary’s keys, values or items (in the latter case, x should be a
(key, wvalue) tuple).

Keys views are set-like since their entries are unique and hashable. If all values are hashable, so that (key,
value) pairs are unique and hashable, then the items view is also set-like. (Values views are not treated as
set-like since the entries are generally not unique.) For set-like views, all of the operations defined for the abstract
base class collections. Set are available (for example, ==, <, or).

An example of dictionary view usage:

>>> dishes = {’eggs’: 2, ’sausage’: 1, ’"bacon’: 1, ’'spam’: 500}
>>> keys = dishes.keys /()
>>> values = dishes.values()

>>> # iteration

>>n = 0

>>> for val in values:
n += val

4.8. Mapping Types — dict 47

The Python Library Reference, Release 3.2.3

>>> print (n)
504

>>> # keys and values are iterated over in the same order
>>> list (keys)

["eggs’, ’'bacon’, ’'sausage’, ’'spam’]

>>> list (values)

(2, 1, 1, 500]

>>> # view objects are dynamic and reflect dict changes
>>> del dishes[’eggs’]

>>> del dishes[’sausage’]

>>> list (keys)

[/ spam’, ’'bacon’]

>>> # set operations

>>> keys & {’eggs’, ’'bacon’, ’salad’}
{"bacon’}

>>> keys ~ {’sausage’, ’juice’}
{"juice’, ’'sausage’, ’'bacon’, ’'spam’}

4.9 memoryview type

memoryview objects allow Python code to access the internal data of an object that supports the buffer protocol
without copying. Memory is generally interpreted as simple bytes.

class memoryview (0bj)
Create a memoryview that references obj. obj must support the buffer protocol. Built-in objects that
support the buffer protocol include bytes and bytearray

A memoryview has the notion of an element, which is the atomic memory unit handled by the originating
object obj. For many simple types such as bytes and bytearray, an element is a single byte, but other
types such as array.array may have bigger elements.

len (view) returns the total number of elements in the memoryview, view. The itemsize attribute will
give you the number of bytes in a single element.

A memoryview supports slicing to expose its data. Taking a single index will return a single element as a
bytes object. Full slicing will result in a subview:

>>> v = memoryview (b’ abcefqg’)
>>> v[1]

b’ b’

>>> v[-1]

blgl

>>> v[l:4]

<memory at 0x77ab28>

>>> bytes(v[1:4