The Python/C API
Release 3.12.0rc3

Guido van Rossum and the Python development team

September 18, 2023

Python Software Foundation
Email: docs@python.org

CONTENTS

Introduction 3
1.1 Codingstandards e e 3
1.2 Include Files o o . e e 3
1.3 Useful macros i i i i e e e e e e 4
1.4 Objects, Types and Reference Counts o i ittt e e 6

1.4.1 Reference Counts i i e e e e 6

142 TYPES . o o o e e e e e e e e e e e e 9
1.5 Exceptions e e 10
1.6 Embedding Python e 11
1.7 Debugging Builds e 12
C API Stability 13
2.1 Unstable CAPI e e 13
2.2 Stable Application Binary Interface e 13

22,1 Limited CAPL 14

222 Stable ABL. 14

2.2.3 Limited API Scope and Performance 14

224 Limited APTCaveats e 15
2.3 Platform Considerations o e e e e e e e 15
2.4 Contents of Limited APT e 15
The Very High Level Layer 39
Reference Counting 45
Exception Handling 49
5.1 Printingandclearing L e 49
5.2 Raising exceptions L. e e e e 50
5.3 Issuing Warnings i i i e e e e e e e e e e e e e e e 53
54 Querying the error indicatoro e 53
5.5 SignalHandling e e e e e 56
5.6 Exception Classes v v i i i e e e e e e e e e e e e e 57
5.7 Exception Objects o L e e e e e e e e 58
5.8 Unicode Exception Objects e 58
5.9 Recursion Control e e e e e 59
5.10 Standard EXCeptions o e e e e e e e e e e e e e e e e 60
5.11 Standard Warning Categories o v v v v it e e e e e e e e e e e e e e e e 62
Utilities 63
6.1 Operating System Utilities 0 0 i e e e e e e e 63
6.2 System Functions e e e e e e e e 65
6.3 Process Control e e 68
6.4 Importing Modules e 68
6.5 Datamarshalling support e 72
6.6 Parsing arguments and building values L L 73

6.6.1 ParsingargUmEeNnts vt e 73

6.6.2 Buildingvalues e e e e e 78
6.7 String conversion and formattingo L. oL 80
6.8 Reflection L e e e 81
6.9 Codec registry and support functions 82
6.9.1 Codeclookup APL. e 82
6.9.2 Registry API for Unicode encoding error handlers 83
6.10 Supportfor Perf Maps e e e e e e 83
Abstract Objects Layer 85
7.1 ObjectProtocol e e e 85
7.2 CallProtocol e e 90
7.2.1 Thetp_call Protocol e e e 90
7.2.2 The Vectorcall Protocol e 90
7.23 ObjectCalling API e 92
7.2.4 Call Support APT e e e e e 94
7.3 Number Protocol L 94
7.4 Sequence Protocol e 97
7.5 Mapping Protocolo 99
7.6 Tterator Protocol e e e e e e e e e e e 100
7.7 Buffer Protocol e e 101
7.7.1 Bufferstructure e 102
7.7.2 Bufferrequesttypes L 104
7773 Complex arrays e e e e e 106
7.7.4 Buffer-related functions L. 107
7.8 Old Buffer Protocol e e e e e e e e 108
Concrete Objects Layer 109
8.1 Fundamental Objects L e e e 109
8.1.1 Type Objects o v i i it e e e e 109
8.1.2 TheNone ODbject i v v it e e e e e e e e e e e e 115
8.2 Numeric ObJECtS v o o e e e e e e e e e e e e e e e e 115
8.2.1 Integer Objects i i e e e e e e e e e 115
8.2.2 Boolean Objects o oL e e e e e 118
8.2.3 Floating Point Objects i e e 119
824 Complex Number Objects ot ie 121
83 Sequence ObJects e e e e e e e e 122
8.3.1 BytesObjects e e e e e 122
8.3.2 Byte Array Objects e e e e e e e e e 124
8.3.3 Unicode Objectsand Codecs oo i ittt e 125
834 Tuple Objects i i e e e e e 142
8.3.5 StructSequence Objects 143
8.3.6 ListObjects i i e e e e e e e e e e 144
8.4 Container Objects L e 146
8.4.1 Dictionary ObJects« o vt e e e e e e e 146
8.4.2 SetODbJectS o i e e e e e e e e e e e 149
8.5 Function ObJeCts o o v i e e e e e e e e e e e e e e e 151
85.1 FunctionObjects 151
8.5.2 Imstance Method Objects 153
853 Method Objects o e e e 154
854 CellObjects v v vt e e e e 154
8.5.5 Code ObJects v v i i e e e e e e e e e e e e e e 155
8.5.6 Extrainformation L e e e e e 157
8.6 Other ObJects o i i e e e e e e e e e e e e e 158
8.6.1 FileObjects e e e 158
8.6.2 Module Objects e 159
8.6.3 Tterator ODJECts o v i i e e e e e e e e e e e e 167
8.6.4 Descriptor Objects o o . e e e e e e e e e 167

8.6.5 Slice ObJects i i e e e e e e e e e e e e 168

8.6.6 MemoryVIiew ObJECES e e e e e e e e e e e e 169

8.6.7 Weak Reference Objects o . i e e 170

8.6.8 Capsules e e 171

8.69 Frame Objects e 172
8.6.10 Generator ObJECtS v v it e e e e e e e e e 175

8.6.11 Coroutine ObJECtS v v v v et e e e e e e e e e e e e e e e 175
8.6.12 Context Variables Objects o o v it e e e e e e 175
8.6.13 DateTime Objects i 177
8.6.14 Objects for Type Hinting o 180

9 Initialization, Finalization, and Threads 183
9.1 Before Python Initialization e 183
9.2 Global configuration variables e 184
9.3 Initializing and finalizing the interpreter o 187
9.4 Process-wide parameters v . v it e e e e e e e e e e e e e e e e e e 188
9.5 Thread State and the Global Interpreter Lock 192
9.5.1 Releasing the GIL from extensioncode 192

9.52 Non-Pythoncreated threads 193

9.5.3 Cautionsaboutfork() e e 193

9.5.4 High-level APT e 194

955 Low-level APL e 196

0.6 Sub-interpreter SUPPOIt L. e e e e e e e e e e e e e e e 199
9.6.1 APer-Interpreter GIL 201

9.6.2 BugsandcaveatS. oL e e e e e e e e e e e 202

9.7 Asynchronous Notifications e 202
9.8 Profilingand Tracing L e e e e e e e e e e e e e e 203
9.9 Advanced Debugger Support L. e e e e e 204
9.10 Thread Local Storage Support L e 205
9.10.1 Thread Specific Storage (TSS) API 205
9.10.2 Thread Local Storage (TLS) API 206

10 Python Initialization Configuration 207
10.1 Example e e e e e e 207
10.2 PyWideStringLList L L e e e 208
10.3 PyStatus L e 208
10.4 PyPreConfig o e e e e e e e 210
10.5 Preinitialize Python with PyPreConfig 211
10.6 PyConfig e e e 212
10.7 Inmitialization with PyConfig e 223
10.8 TIsolated Configuration v v i i e e e e e e e e e e e e e 225
10.9 Python Configuration ot i e e e e e e e e e e e e 225
10.10 Python Path Configuration e 225
10.11 Py_RunMain() o o o e e e e e e e 226
10.12 Py_GetArgCArgv() o o o e e e e 227
10.13 Multi-Phase Initialization Private Provisional APT 227
11 Memory Management 229
T1L OVeIVIEW . . . oo vt e e e e e e e e e e e e 229
11.2 Allocator Domains e e 230
11.3 Raw Memory Interface e e e e 230
11.4 Memory Interface e 231
11.5 Objectallocators e e 232
11.6 Default Memory Allocators o oo e e e 233
11.7 Customize Memory Allocators o o vt i e e e e 234
11.8 Debug hooks on the Python memory allocators 235
11.9 The pymalloc allocator e e e 236
11.9.1 Customize pymalloc Arena Allocator 237

11.10 tracemalloc C APL e e 237

12

13

T1.11 Examples . . . o oo oo e e e e

Object Implementation Support
12.1 Allocating Objectsonthe Heap i
12.2 Common Object StrUCtUIes v v v v v e

12.3

12.4
12.5
12.6
12.7
12.8
12.9

12.2.1
12.2.2
12.2.3

Base object types and macroso u . e e e e e e e e
Implementing functions and methods Lo oL
Accessing attributes of eXtension typeso i e e e e e e

Type Objects e e

12.3.1
12.3.2
12.3.3
12.3.4
12.3.5
12.3.6
12.3.7

Quick Reference e
PyTypeObject Definition e
PyObject Slots o e e e e
PyVarObject Slots e
PyTypeObject SIots o o e e
Static TYPes o o o e e e e e
Heap Types o o o e e e e e e e e e e

Number Object StruCtures v v v v v e e e e e e e e e e e e e e e e e e e
Mapping Object Structures« o v vt e e e e e e e e e e e e
Sequence ObJect SIIUCIUIES . . .« . v v v vt v i e e e e e e e e et e e e e e e e
Buffer Object Structures e
Async Object Structures e e e e e e e e
Slot Type typedefs o e e e e e e e e
12,10 Examples o o e e e e e e e e e
12.11 Supporting Cyclic Garbage Collection
12.11.1 Controlling the Garbage Collector State
12.11.2 Querying Garbage Collector State e

API and ABI Versioning

Glossary

About these documents
Contributors to the Python Documentation

B.1

History and License
History of the software e e e e e e
C.2 Terms and conditions for accessing or otherwise using Python

C.1

C3

C.2.1
C22
C23
C24
C.25

PSF LICENSE AGREEMENT FOR PYTHON 3.12.0r¢3
BEOPEN.COM LICENSE AGREEMENT FOR PYTHON20
CNRI LICENSE AGREEMENT FORPYTHON 1.6.1
CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2
ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.12.0rc3 DOCUMEN-

TATION o e

Licenses and Acknowledgements for Incorporated Software

C3.1
C32
C33
C34
C35
C3.6
C3.7
C3.8
C3.9
C3.10
C3.11
C3.12
C3.13
C3.14
C3.15

Mersenne TWIStEr e e e e e e
Sockets e
ASynchronous SOCKEt SEIVICES v v v v v v v e e e e e e e e e e e e
Cookie Management v v vt e e e e e e e e e e e e e e e e e e
Execution tracing e e e e e
UUencode and UUdecode functions
XML Remote Procedure Calls
test_epoll e
Selectkqueue e e e e e
SipHash24 o e e e
strtodand dtoa. e e e e e e
OpenSSL e

239
239
240
240
241
244
248
248
253
254
255
255
273
274
274
276
276
277
278
279
281
283
285
286

287

289

C3.16
C3.17
C3.18
C3.19

D Copyright

Index

cfuhash o 320

libmpdec e 321
W3C CIANtest Suite o v v vttt e e ettt e e e e e e e 321
Audioop e e 322
323
325

vi

The Python/C API, Release 3.12.0rc3

This manual documents the API used by C and C++ programmers who want to write extension modules or embed
Python. It is a companion to extending-index, which describes the general principles of extension writing but does
not document the API functions in detail.

CONTENTS 1

The Python/C API, Release 3.12.0rc3

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

The Application Programmer’s Interface to Python gives C and C++ programmers access to the Python interpreter
at a variety of levels. The API is equally usable from C++, but for brevity it is generally referred to as the Python/C
API. There are two fundamentally different reasons for using the Python/C API. The first reason is to write extension
modules for specific purposes; these are C modules that extend the Python interpreter. This is probably the most
common use. The second reason is to use Python as a component in a larger application; this technique is generally
referred to as embedding Python in an application.

Writing an extension module is a relatively well-understood process, where a “cookbook™ approach works well. There
are several tools that automate the process to some extent. While people have embedded Python in other applications
since its early existence, the process of embedding Python is less straightforward than writing an extension.

Many API functions are useful independent of whether you’re embedding or extending Python; moreover, most
applications that embed Python will need to provide a custom extension as well, so it’s probably a good idea to
become familiar with writing an extension before attempting to embed Python in a real application.

1.1 Coding standards

If you're writing C code for inclusion in CPython, you must follow the guidelines and standards defined in PEP 7.
These guidelines apply regardless of the version of Python you are contributing to. Following these conventions is
not necessary for your own third party extension modules, unless you eventually expect to contribute them to Python.

1.2 Include Files

All function, type and macro definitions needed to use the Python/C API are included in your code by the following
line:

#define PY _SSIZE_T CLEAN
#include <Python.h>

This implies inclusion of the following standard headers: <stdio.h>, <string.h>, <errno.h>,<limits.
h>, <assert.h>and <stdlib.h> (if available).

Note: Since Python may define some pre-processor definitions which affect the standard headers on some systems,
you must include Python . h before any standard headers are included.

It is recommended to always define PY_SSIZE_T_CLEAN before including Python.h. See Parsing arguments
and building values for a description of this macro.

All user visible names defined by Python.h (except those defined by the included standard headers) have one of the
prefixes Py or _Py. Names beginning with _Py are for internal use by the Python implementation and should not
be used by extension writers. Structure member names do not have a reserved prefix.

https://peps.python.org/pep-0007/

The Python/C API, Release 3.12.0rc3

Note: User code should never define names that begin with Py or _Py. This confuses the reader, and jeopardizes
the portability of the user code to future Python versions, which may define additional names beginning with one of
these prefixes.

The header files are typically installed with Python. On Unix, these are located in the directories prefix/
include/pythonversion/ and exec_prefix/include/pythonversion/, where prefix and
exec_prefix are defined by the corresponding parameters to Python’s configure script and version is ' $d.
$d' % sys.version_info[:2]. On Windows, the headers are installed in prefix/include, where
prefix is the installation directory specified to the installer.

To include the headers, place both directories (if different) on your compiler’s search path for includes. Do not place
the parent directories on the search path and then use #include <pythonX.Y/Python.h>;this will break on
multi-platform builds since the platform independent headers under pre £1ix include the platform specific headers
from exec_prefix.

C++ users should note that although the API is defined entirely using C, the header files properly declare the entry
points to be extern "C". As a result, there is no need to do anything special to use the API from C++.

1.3 Useful macros

Several useful macros are defined in the Python header files. Many are defined closer to where they are useful (e.g.
Py_RETURN_NONE). Others of a more general utility are defined here. This is not necessarily a complete listing.

Py_ABS (x)
Return the absolute value of x.
New in version 3.3.

Py ALWAYS_INLINE

Ask the compiler to always inline a static inline function. The compiler can ignore it and decides to not inline
the function.

It can be used to inline performance critical static inline functions when building Python in debug mode with
function inlining disabled. For example, MSC disables function inlining when building in debug mode.

Marking blindly a static inline function with Py_ ALWAYS_INLINE can result in worse performances (due
to increased code size for example). The compiler is usually smarter than the developer for the cost/benefit
analysis.

If Python is built in debug mode (if the Py_DEBUG macro is defined), the Py ALWAYS INLINE macro
does nothing.

It must be specified before the function return type. Usage:

static inline Py_ALWAYS_INLINE int random(void) { return 4; }

New in version 3.11.

Py_CHARMASK (c)

Argument must be a character or an integer in the range [-128, 127] or [0, 255]. This macro returns c cast to
an unsigned char.

Py_DEPRECATED (version)

Use this for deprecated declarations. The macro must be placed before the symbol name.

Example:

Py_DEPRECATED (3.8) PyAPI_FUNC (int) Py_OldFunction (void);

Changed in version 3.8: MSVC support was added.

4 Chapter 1. Introduction

The Python/C API, Release 3.12.0rc3

Py_GETENV (s)

Like getenv (s), but returns NULL if —-E was passed on the command line (see PyConfig.
use_environment).

Py_MAX (X,y)
Return the maximum value between x and y.
New in version 3.3.

Py_MEMBER_SIZE (type, member)
Return the size of a structure (t ype) member in bytes.

New in version 3.6.
Py_MIN (X, y)
Return the minimum value between x and y.

New in version 3.3.

Py_NO_INLINE

Disable inlining on a function. For example, it reduces the C stack consumption: useful on LTO+PGO builds
which heavily inline code (see bpo-33720).

Usage:

Py_NO_INLINE static int random(wvoid) { return 4; }

New in version 3.11.

Py _STRINGIFY (X)
Convert x to a C string. E.g. Py_ STRINGIFY (123) returns "123".

New in version 3.4.

Py_UNREACHABLE ()

Use this when you have a code path that cannot be reached by design. For example, in the default : clause
in a switch statement for which all possible values are covered in case statements. Use this in places where
you might be tempted to put an assert (0) or abort () call

In release mode, the macro helps the compiler to optimize the code, and avoids a warning about unreachable
code. For example, the macro is implemented with __builtin_unreachable () on GCC in release
mode.

A use for Py_UNREACHABLE () is following a call a function that never returns but that is not declared
_Py_NO_RETURN.

If a code path is very unlikely code but can be reached under exceptional case, this macro must not be used.
For example, under low memory condition or if a system call returns a value out of the expected range. In this
case, it’s better to report the error to the caller. If the error cannot be reported to caller, Py_FatalError ()
can be used.

New in version 3.7.

Py_UNUSED (arg)

Use this for unused arguments in a function definition to silence compiler warnings. Example: int
func(int a, int Py_UNUSED (b)) { return a; }.

New in version 3.4.

PyDoc_STRVAR (name, str)

Creates a variable with name name that can be used in docstrings. If Python is built without docstrings, the
value will be empty.

Use PyDoc_ STRVAR for docstrings to support building Python without docstrings, as specified in PEP 7.

Example:

1.3. Useful macros 5

https://bugs.python.org/issue?@action=redirect&bpo=33720
https://peps.python.org/pep-0007/

The Python/C API, Release 3.12.0rc3

PyDoc_STRVAR (pop_doc, "Remove and return the rightmost element.");

static PyMethodDef deque_methods([] = {
V2R
{"pop", (PyCFunction)deque_pop, METH_NOARGS, pop_doc},
VIR

PyDoc_STR (str)

Creates a docstring for the given input string or an empty string if docstrings are disabled.

Use PyDoc_ STR in specifying docstrings to support building Python without docstrings, as specified in PEP
7.

Example:

static PyMethodDef pysglite_row_methods[] = {
{"keys", (PyCFunction)pysqglite_row_keys, METH_NOARGS,
PyDoc_STR ("Returns the keys of the row.")},
{NULL, NULL}
bi

1.4 Objects, Types and Reference Counts

Most Python/C API functions have one or more arguments as well as a return value of type PyOb ject*. This type
is a pointer to an opaque data type representing an arbitrary Python object. Since all Python object types are treated
the same way by the Python language in most situations (e.g., assignments, scope rules, and argument passing), it
is only fitting that they should be represented by a single C type. Almost all Python objects live on the heap: you
never declare an automatic or static variable of type PyObject, only pointer variables of type PyOb ject* can
be declared. The sole exception are the type objects; since these must never be deallocated, they are typically static
PyTypeObject objects.

All Python objects (even Python integers) have a type and a reference count. An object’s type determines what kind of
object it is (e.g., an integer, a list, or a user-defined function; there are many more as explained in types). For each of
the well-known types there is a macro to check whether an object is of that type; for instance, PyList_Check (a)
is true if (and only if) the object pointed to by a is a Python list.

1.4.1 Reference Counts

The reference count is important because today’s computers have a finite (and often severely limited) memory size;
it counts how many different places there are that have a strong reference to an object. Such a place could be another
object, or a global (or static) C variable, or a local variable in some C function. When the last strong reference to an
object is released (i.e. its reference count becomes zero), the object is deallocated. If it contains references to other
objects, those references are released. Those other objects may be deallocated in turn, if there are no more references
to them, and so on. (There’s an obvious problem with objects that reference each other here; for now, the solution is
“don’t do that.”)

Reference counts are always manipulated explicitly. The normal way is to use the macro Py_ INCREF () to take a
new reference to an object (i.e. increment its reference count by one), and Py DECREF () to release that reference
(i.e. decrement the reference count by one). The Py_DECREF () macro is considerably more complex than the
incref one, since it must check whether the reference count becomes zero and then cause the object’s deallocator to
be called. The deallocator is a function pointer contained in the object’s type structure. The type-specific deallocator
takes care of releasing references for other objects contained in the object if this is a compound object type, such as
a list, as well as performing any additional finalization that’s needed. There’s no chance that the reference count can
overflow; at least as many bits are used to hold the reference count as there are distinct memory locations in virtual
memory (assuming sizeof (Py_ssize_t) >= sizeof (void*)). Thus, the reference count increment is a
simple operation.

6 Chapter 1. Introduction

https://peps.python.org/pep-0007/
https://peps.python.org/pep-0007/

The Python/C API, Release 3.12.0rc3

It is not necessary to hold a strong reference (i.e. increment the reference count) for every local variable that contains
a pointer to an object. In theory, the object’s reference count goes up by one when the variable is made to point to
it and it goes down by one when the variable goes out of scope. However, these two cancel each other out, so at the
end the reference count hasn’t changed. The only real reason to use the reference count is to prevent the object from
being deallocated as long as our variable is pointing to it. If we know that there is at least one other reference to the
object that lives at least as long as our variable, there is no need to take a new strong reference (i.e. increment the
reference count) temporarily. An important situation where this arises is in objects that are passed as arguments to
C functions in an extension module that are called from Python; the call mechanism guarantees to hold a reference
to every argument for the duration of the call.

However, a common pitfall is to extract an object from a list and hold on to it for a while without taking a new
reference. Some other operation might conceivably remove the object from the list, releasing that reference, and
possibly deallocating it. The real danger is that innocent-looking operations may invoke arbitrary Python code which
could do this; there is a code path which allows control to flow back to the user from a Py DECREF (), so almost
any operation is potentially dangerous.

A safe approach is to always use the generic operations (functions whose name begins with PyObject_, PyNum-—
ber_, PySequence_ or PyMapping_). These operations always create a new strong reference (i.e. increment
the reference count) of the object they return. This leaves the caller with the responsibility to call Py DECREF ()
when they are done with the result; this soon becomes second nature.

Reference Count Details

The reference count behavior of functions in the Python/C API is best explained in terms of ownership of references.
Ownership pertains to references, never to objects (objects are not owned: they are always shared). “Owning a
reference” means being responsible for calling Py DECREF on it when the reference is no longer needed. Ownership
can also be transferred, meaning that the code that receives ownership of the reference then becomes responsible for
eventually releasing it by calling Py DECREF () or Py_XDECREF () when it’s no longer needed—or passing on
this responsibility (usually to its caller). When a function passes ownership of a reference on to its caller, the caller is
said to receive a new reference. When no ownership is transferred, the caller is said to borrow the reference. Nothing
needs to be done for a borrowed reference.

Conversely, when a calling function passes in a reference to an object, there are two possibilities: the function steals
a reference to the object, or it does not. Stealing a reference means that when you pass a reference to a function, that
function assumes that it now owns that reference, and you are not responsible for it any longer.

Few functions steal references; the two notable exceptions are PyList_SetItem() and PyTu-—
ple_SetItem(), which steal a reference to the item (but not to the tuple or list into which the item is
put!). These functions were designed to steal a reference because of a common idiom for populating a tuple or list
with newly created objects; for example, the code to create the tuple (1, 2, "three") could look like this
(forgetting about error handling for the moment; a better way to code this is shown below):

PyObject *t;

t = PyTuple_New
PyTuple_SetItem
PyTuple_SetItem
PyTuple_SetItem

3);

t, 0, PyLong_FromLong (lL));
t, 1, PyLong_FromLong(2L));
t

(
(
(
(t, 2, PyUnicode_FromString("three"));

Here, PyLong FromLong () returns a new reference which is immediately stolen by PyTuple SetItem().
‘When you want to keep using an object although the reference to it will be stolen, use Py TNCREF () to grab another
reference before calling the reference-stealing function.

Incidentally, PyTuple_SetItem () is the only way to set tuple items; PySequence_SetItem() and Py—
Object_SetItem() refuse to do this since tuples are an immutable data type. You should only use Py Tu-—
ple_SetItem () for tuples that you are creating yourself.

Equivalent code for populating a list can be written using PyList_New () and PyList_SetItem().

However, in practice, you will rarely use these ways of creating and populating a tuple or list. There’s a generic
function, Py_BuildValue (), that can create most common objects from C values, directed by a format string.

1.4. Objects, Types and Reference Counts 7

The Python/C API, Release 3.12.0rc3

For example, the above two blocks of code could be replaced by the following (which also takes care of the error
checking):

PyObject *tuple, *list;

tuple = Py_BuildValue (" (iis)", 1, 2, "three");
list = Py_Buildvalue("[iis]", 1, 2, "three");

It is much more common to use PyObject_SetItem () and friends with items whose references you are only
borrowing, like arguments that were passed in to the function you are writing. In that case, their behaviour regarding
references is much saner, since you don’t have to take a new reference just so you can give that reference away (“have
it be stolen”). For example, this function sets all items of a list (actually, any mutable sequence) to a given item:

int
set_all (PyObject *target, PyObject *item)
{

Py_ssize_t i, n;

n = PyObject_Length (target);
if (n < 0)
return -1;
for (i = 0; i < n; i++) {
PyObject *index = PyLong_FromSsize_t (1i);
if (!index)
return -1;
if (PyObject_SetItem(target, index, item) < 0) {
Py_DECREF (index) ;
return -1;
}
Py_DECREF (index) ;
}

return 0O;

The situation is slightly different for function return values. While passing a reference to most functions does not
change your ownership responsibilities for that reference, many functions that return a reference to an object give you
ownership of the reference. The reason is simple: in many cases, the returned object is created on the fly, and the
reference you get is the only reference to the object. Therefore, the generic functions that return object references, like
PyObject_GetItem() and PySequence_GetItem (), always return a new reference (the caller becomes
the owner of the reference).

It is important to realize that whether you own a reference returned by a function depends on which function you call
only — the plumage (the type of the object passed as an argument to the function) doesnt enter into it! Thus, if you
extract an item from a list using PyList_GetItem (), you don’t own the reference — but if you obtain the same
item from the same list using PySequence_GetItem () (which happens to take exactly the same arguments),
you do own a reference to the returned object.

Here is an example of how you could write a function that computes the sum of the items in a list of integers; once
using PyList_GetItem(),and onceusing PySequence_GetItem().

long

sum_list (PyObject *list)

{
Py_ssize_t i, n;
long total = 0, value;
PyObject *item;

n = PyList_Size(list);
if (n < 0)
return -1; /* Not a list */
for (i = 0; 1 < n; 1i++) {
item = PyList_GetItem(list, 1); /* Can't fail */

(continues on next page)

8 Chapter 1. Introduction

The Python/C API, Release 3.12.0rc3

(continued from previous page)

if (!PyLong_Check (item)) continue; /* Skip non-integers */
value PyLong_AsLong (item) ;
if (value == -1 && PyErr_Occurred())
/* Integer too big to fit in a C long, bail out */
return -1;
total += wvalue;

}

return total;

long

sum_sequence (PyObject *sequence)

{

Py_ssize_t i, nj;
long total = 0, value;
PyObject *item;
n = PySequence_Length (sequence) ;
if (n < 0)
return -1; /* Has no length */

for (i = 0; i < n; i++) {
item = PySequence_GetItem(sequence, 1i);
if (item == NULL)

return -1; /* Not a sequence, or other failure */
if (PyLong_Check (item)) {
value = PyLong_AsLong (item);
Py_DECREF (item) ;
if (value == -1 && PyErr_Occurred())
/* Integer too big to fit in a C long, bail out */
return -1;
total += wvalue;
}
else {
Py_DECREF (item); /* Discard reference ownership */

}

return total;

1.4.2 Types

There are few other data types that play a significant role in the Python/C API; most are simple C types such as
int, long, double and char*. A few structure types are used to describe static tables used to list the functions
exported by a module or the data attributes of a new object type, and another is used to describe the value of a
complex number. These will be discussed together with the functions that use them.

type Py_ssize_t

Part of the Stable ABIL. A signed integral type such that sizeof (Py_ssize_t) == sizeof (size_t).
C99 doesn’t define such a thing directly (size_t is an unsigned integral type). See PEP 353 for details.
PY_SSIZE_T_MAX is the largest positive value of type Py_ssize_t.

1.4. Objects, Types and Reference Counts 9

https://peps.python.org/pep-0353/

The Python/C API, Release 3.12.0rc3

1.5 Exceptions

The Python programmer only needs to deal with exceptions if specific error handling is required; unhandled exceptions
are automatically propagated to the caller, then to the caller’s caller, and so on, until they reach the top-level interpreter,
where they are reported to the user accompanied by a stack traceback.

For C programmers, however, error checking always has to be explicit. All functions in the Python/C API can raise
exceptions, unless an explicit claim is made otherwise in a function’s documentation. In general, when a function
encounters an error, it sets an exception, discards any object references that it owns, and returns an error indicator.
If not documented otherwise, this indicator is either NULL or -1, depending on the function’s return type. A few
functions return a Boolean true/false result, with false indicating an error. Very few functions return no explicit error
indicator or have an ambiguous return value, and require explicit testing for errors with PyErr_Occurred ().
These exceptions are always explicitly documented.

Exception state is maintained in per-thread storage (this is equivalent to using global storage in an unthreaded applica-
tion). A thread can be in one of two states: an exception has occurred, or not. The function PyErr_Occurred ()
can be used to check for this: it returns a borrowed reference to the exception type object when an exception has
occurred, and NULL otherwise. There are a number of functions to set the exception state: PyErr_SetString ()
is the most common (though not the most general) function to set the exception state, and PyErr_Clear () clears
the exception state.

The full exception state consists of three objects (all of which can be NULL): the exception type, the corresponding
exception value, and the traceback. These have the same meanings as the Python result of sys.exc_info();
however, they are not the same: the Python objects represent the last exception being handled by a Python try ...
except statement, while the C level exception state only exists while an exception is being passed on between C
functions until it reaches the Python bytecode interpreter’s main loop, which takes care of transferring it to sys.
exc_info () and friends.

Note that starting with Python 1.5, the preferred, thread-safe way to access the exception state from Python code is
to call the function sys.exc_info (), which returns the per-thread exception state for Python code. Also, the
semantics of both ways to access the exception state have changed so that a function which catches an exception will
save and restore its thread’s exception state so as to preserve the exception state of its caller. This prevents common
bugs in exception handling code caused by an innocent-looking function overwriting the exception being handled; it
also reduces the often unwanted lifetime extension for objects that are referenced by the stack frames in the traceback.

As a general principle, a function that calls another function to perform some task should check whether the called
function raised an exception, and if so, pass the exception state on to its caller. It should discard any object references
that it owns, and return an error indicator, but it should not set another exception — that would overwrite the exception
that was just raised, and lose important information about the exact cause of the error.

A simple example of detecting exceptions and passing them on is shown in the sum_sequence () example above.
It so happens that this example doesn’t need to clean up any owned references when it detects an error. The following
example function shows some error cleanup. First, to remind you why you like Python, we show the equivalent Python
code:

def incr_item(dict, key):
try:
item = dictlkey]
except KeyError:
item = 0
dictl[key] = item + 1

Here is the corresponding C code, in all its glory:

int

incr_item (PyObject *dict, PyObject *key)

{
/* Objects all initialized to NULL for Py_XDECREF */
PyObject *item = NULL, *const_one = NULL, *incremented_item = NULL;
int rv = -1; /* Return value initialized to -1 (failure) */

(continues on next page)

10 Chapter 1. Introduction

The Python/C API, Release 3.12.0rc3

(continued from previous page)

item = PyObject_GetItem(dict, key);
if (item == NULL) {
/* Handle KeyError only: */
if (!PyErr_ExceptionMatches (PyExc_KeyError))
goto error;

/* Clear the error and use zero: */
PyErr_Clear();
item = PyLong_FromLong (0L) ;
if (item == NULL)
goto error;
}
const_one = PyLong_FromLong (1L);
if (const_one == NULL)
goto error;

incremented_item = PyNumber_Add(item, const_one);
if (incremented_item == NULL)
goto error;

if (PyObject_SetItem(dict, key, incremented_item) < 0)
goto error;

rv = 0; /* Success */

/* Continue with cleanup code */

error:
/* Cleanup code, shared by success and failure path */

/* Use Py_XDECREF () to ignore NULL references */
Py_XDECREF (item) ;

Py_XDECREF (const_one) ;

Py_XDECREF (incremented_item);

return rv; /* -1 for error, 0 for success */

This example represents an endorsed use of the goto statement in C! It illustrates the use of Py-
Err_ExceptionMatches () and PyErr_ Clear () to handle specific exceptions, and the use of
Py_XDECREF () to dispose of owned references that may be NULL (note the 'X"' in the name; Py_DECREF ()
would crash when confronted with a NULL reference). It is important that the variables used to hold owned references
are initialized to NULL for this to work; likewise, the proposed return value is initialized to —1 (failure) and only set
to success after the final call made is successful.

1.6 Embedding Python

The one important task that only embedders (as opposed to extension writers) of the Python interpreter have to worry
about is the initialization, and possibly the finalization, of the Python interpreter. Most functionality of the interpreter
can only be used after the interpreter has been initialized.

The basic initialization functionis Py Tnitialize (). This initializes the table of loaded modules, and creates the
fundamental modules builtins, __main__,and sys. It also initializes the module search path (sys.path).

Py_TInitialize () doesnotsetthe “scriptargumentlist” (sys.argv). If this variable is needed by Python code
that will be executed later, setting PyConfig.argv and PyConfig.parse_argv must be set: see Python
Initialization Configuration.

On most systems (in particular, on Unix and Windows, although the details are slightly different),
Py_Initialize () calculates the module search path based upon its best guess for the location of the standard
Python interpreter executable, assuming that the Python library is found in a fixed location relative to the Python in-

1.6. Embedding Python 11

The Python/C API, Release 3.12.0rc3

terpreter executable. In particular, it looks for a directory named 1ib/pythonX. Y relative to the parent directory
where the executable named python is found on the shell command search path (the environment variable PATH).

For instance, if the Python executable is found in /usr/local/bin/python, it will assume that the libraries
arein /usr/local/lib/pythonX. Y. (Infact, this particular path is also the “fallback” location, used when no
executable file named python is found along PATH.) The user can override this behavior by setting the environment
variable PYTHONHOME, or insert additional directories in front of the standard path by setting PYTHONPATH.

The embedding application can steer the search by calling Py_SetProgramName (file) before calling
Py_TInitialize (). Note that PYTHONHOME still overrides this and PYTHONPATH is still inserted in front
of the standard path. An application that requires total control has to provide its own implementation of
Py_GetPath (), Py_GetPrefix (), Py_GetExecPrefix (), and Py _GetProgramFullPath () (all
defined in Modules/getpath.c).

Sometimes, it is desirable to “uninitialize” Python. For instance, the application may want to start over (make
another call to Py_Tnitialize ()) or the application is simply done with its use of Python and wants to
free memory allocated by Python. This can be accomplished by calling Py_FinalizeEx (). The function
Py _TIsInitialized () returns true if Python is currently in the initialized state. More information about these
functions is given in a later chapter. Notice that Py_FinalizeEx () does not free all memory allocated by the
Python interpreter, e.g. memory allocated by extension modules currently cannot be released.

1.7 Debugging Builds

Python can be built with several macros to enable extra checks of the interpreter and extension modules. These
checks tend to add a large amount of overhead to the runtime so they are not enabled by default.

A full list of the various types of debugging builds is in the file Misc/SpecialBuilds. txt in the Python source
distribution. Builds are available that support tracing of reference counts, debugging the memory allocator, or low-
level profiling of the main interpreter loop. Only the most frequently used builds will be described in the remainder
of this section.

Compiling the interpreter with the Py_DEBUG macro defined produces what is generally meant by a debug build of
Python. Py_DEBUG is enabled in the Unix build by adding ——with-pydebugto the . /configure command.
It is also implied by the presence of the not-Python-specific _ DEBUG macro. When Py_DEBUG is enabled in the
Unix build, compiler optimization is disabled.

In addition to the reference count debugging described below, extra checks are performed, see Python Debug Build.

Defining Py_ TRACE_REFS enables reference tracing (see the configure —-—-with-trace-refs option).
When defined, a circular doubly linked list of active objects is maintained by adding two extra fields to every Py —
Object. Total allocations are tracked as well. Upon exit, all existing references are printed. (In interactive mode
this happens after every statement run by the interpreter.)

Please refer to Misc/SpecialBuilds.txt in the Python source distribution for more detailed information.

12 Chapter 1. Introduction

CHAPTER
TWO

C API STABILITY

Unless documented otherwise, Python’s C API is covered by the Backwards Compatibility Policy, PEP 387. Most
changes to it are source-compatible (typically by only adding new API). Changing existing API or removing API is
only done after a deprecation period or to fix serious issues.

CPython’s Application Binary Interface (ABI) is forward- and backwards-compatible across a minor release (if these
are compiled the same way; see Platform Considerations below). So, code compiled for Python 3.10.0 will work on
3.10.8 and vice versa, but will need to be compiled separately for 3.9.x and 3.10.x.

There are two tiers of C API with different stability expectations:

e Unstable API, may change in minor versions without a deprecation period. It is marked by the PyUnstable
prefix in names.

e Limited API, is compatible across several minor releases. When Py_LIMITED_APT is defined, only this
subset is exposed from Python. h.

These are discussed in more detail below.

Names prefixed by an underscore, such as _Py_InternalState, are private API that can change without notice
even in patch releases. If you need to use this API, consider reaching out to CPython developers to discuss adding
public API for your use case.

2.1 Unstable C API

Any API named with the PyUnstable prefix exposes CPython implementation details, and may change in every
minor release (e.g. from 3.9 to 3.10) without any deprecation warnings. However, it will not change in a bugfix
release (e.g. from 3.10.0 to 3.10.1).

It is generally intended for specialized, low-level tools like debuggers.

Projects that use this API are expected to follow CPython development and spend extra effort adjusting to changes.

2.2 Stable Application Binary Interface

For simplicity, this document talks about extensions, but the Limited API and Stable ABI work the same way for all
uses of the API — for example, embedding Python.

13

https://peps.python.org/pep-0387/
https://discuss.python.org/c/core-dev/c-api/30

The Python/C API, Release 3.12.0rc3

2.2.1 Limited C API

Python 3.2 introduced the Limited API, a subset of Python’s C API. Extensions that only use the Limited API can be
compiled once and work with multiple versions of Python. Contents of the Limited API are listed below.

Py_LIMITED_API

Define this macro before including Python . h to opt in to only use the Limited API, and to select the Limited
API version.

Define Py_LIMITED_APT to the value of PY_VERSION_HEX corresponding to the lowest Python version
your extension supports. The extension will work without recompilation with all Python 3 releases from the
specified one onward, and can use Limited API introduced up to that version.

Rather than using the PY_VERSION_HEX macro directly, hardcode a minimum minor version (e.g.
0x030A0000 for Python 3.10) for stability when compiling with future Python versions.

You can also define Py_ LIMITED_APT to 3. This works the same as 0x03020000 (Python 3.2, the version
that introduced Limited API).

2.2.2 Stable ABI

To enable this, Python provides a Stable ABI: a set of symbols that will remain compatible across Python 3.x versions.

The Stable ABI contains symbols exposed in the Limited API, but also other ones — for example, functions necessary
to support older versions of the Limited API.

On Windows, extensions that use the Stable ABI should be linked against python3.d11 rather than a version-
specific library such as python39.d11.

On some platforms, Python will look for and load shared library files named with the abi 3 tag (e.g. mymodule.
abi3. so). It does not check if such extensions conform to a Stable ABI. The user (or their packaging tools) need to
ensure that, for example, extensions built with the 3.10+ Limited API are not installed for lower versions of Python.

All functions in the Stable ABI are present as functions in Python’s shared library, not solely as macros. This makes
them usable from languages that don’t use the C preprocessor.

2.2.3 Limited API Scope and Performance

The goal for the Limited APl is to allow everything that is possible with the full C API, but possibly with a performance
penalty.

For example, while PyList_GetItem() isavailable, its “unsafe” macro variant PyList_GET_TITEM () is not.
The macro can be faster because it can rely on version-specific implementation details of the list object.

Without Py_LIMITED_API defined, some C API functions are inlined or replaced by macros. Defining
Py_LIMITED_APT disables this inlining, allowing stability as Python’s data structures are improved, but possi-
bly reducing performance.

By leaving out the Py_LIMITED_APT definition, it is possible to compile a Limited API extension with a version-
specific ABI. This can improve performance for that Python version, but will limit compatibility. Compiling with
Py_LIMITED_APTI will then yield an extension that can be distributed where a version-specific one is not available
— for example, for prereleases of an upcoming Python version.

14 Chapter 2. C API Stability

The Python/C API, Release 3.12.0rc3

2.2.4 Limited API Caveats

Note that compiling with Py_LIMITED_APT is not a complete guarantee that code conforms to the Limited API or
the Stable ABI. Py_LIMITED_APT only covers definitions, but an API also includes other issues, such as expected
semantics.

One issue that Py_LIMITED_APT does not guard against is calling a function with arguments that are invalid in
a lower Python version. For example, consider a function that starts accepting NULL for an argument. In Python
3.9, NULL now selects a default behavior, but in Python 3.8, the argument will be used directly, causing a NULL
dereference and crash. A similar argument works for fields of structs.

Another issue is that some struct fields are currently not hidden when Py_LIMITED_APT is defined, even though
they’re part of the Limited AP

For these reasons, we recommend testing an extension with all minor Python versions it supports, and preferably to
build with the lowest such version.

We also recommend reviewing documentation of all used API to check if it is explicitly part of the Limited API.
Even with Py_LIMITED_APT defined, a few private declarations are exposed for technical reasons (or even unin-
tentionally, as bugs).

Also note that the Limited API is not necessarily stable: compiling with Py_LIMITED_AP I with Python 3.8 means
that the extension will run with Python 3.12, but it will not necessarily compile with Python 3.12. In particular, parts
of the Limited API may be deprecated and removed, provided that the Stable ABI stays stable.

2.3 Platform Considerations

ABI stability depends not only on Python, but also on the compiler used, lower-level libraries and compiler options.
For the purposes of the Stable ABI, these details define a “platform”. They usually depend on the OS type and
processor architecture

It is the responsibility of each particular distributor of Python to ensure that all Python versions on a particular
platform are built in a way that does not break the Stable ABI. This is the case with Windows and macOS releases
from python . org and many third-party distributors.

2.4 Contents of Limited API

Currently, the Limited API includes the following items:

e PY VECTORCALL_ARGUMENTS_OFFSET
e PyAlter_ Check ()

* PyArg Parse ()

e PyArg ParseTuple()

* PyArg ParseTupleAndKeywords ()

* PyArg _UnpackTuple ()

* PyArg VaParse ()

* PyArg VaParseTupleAndKeywords ()
* PyArg ValidateKeywordArguments ()
* PyBaseObject_Type

* PyBool_FromLong()

* PyBool_ Type

2.3. Platform Considerations 15

The Python/C API, Release 3.12.0rc3

PyBuffer FillContiguousStrides ()

PyBuffer FillInfo()
PyBuffer FromContiguous ()
PyBuffer GetPointer ()
PyBuffer IsContiguous ()
PyBuffer Release()
PyBuffer SizeFromFormat ()
PyBuffer ToContiguous ()
PyByteArrayIter_Type
PyByteArray AsString()
PyByteArray_ Concat ()

PyByteArray_ FromObject ()

PyByteArray_ FromStringAndSize ()

PyByteArray Resize()
PyByteArray_Size()
PyByteArray_Type
PyBytesIter_Type
PyBytes_AsString()
PyBytes_AsStringAndSize ()
PyBytes_Concat ()
PyBytes_ConcatAndDel ()
PyBytes_DecodeEscape ()
PyBytes_FromFormat ()
PyBytes_FromFormatV ()
PyBytes_FromObject ()
PyBytes_FromString()
PyBytes_FromStringAndSize ()
PyBytes_Repr ()
PyBytes_Size ()
PyBytes_Type

PyCFunction
PyCFunctionWithKeywords
PyCFunction_Call ()
PyCFunction_GetFlags ()
PyCFunction_GetFunction ()
PyCFunction_GetSelf ()
PyCFunction_New ()
PyCFunction_NewEx ()

PyCFunction_Type

16

Chapter 2. C API Stability

The Python/C API, Release 3.12.0rc3

e PyCMethod_New ()

e PyCalllIter_New/()

* PyCalllter_Type

* PyCallable_Check ()

* PyCapsule_Destructor

* PyCapsule_GetContext ()

* PyCapsule_GetDestructor()

e PyCapsule_GetName ()

e PyCapsule_GetPointer ()

* PyCapsule_Import ()

e PyCapsule_IsValid()

e PyCapsule_New ()

* PyCapsule_SetContext ()

* PyCapsule_SetDestructor ()

e PyCapsule_SetName ()

e PyCapsule_SetPointer ()

* PyCapsule_Type

* PyClassMethodDescr_Type

e PyCodec_BackslashReplaceErrors ()
e PyCodec_Decode ()

* PyCodec_Decoder ()

e PyCodec_Encode ()

e PyCodec_Encoder ()

* PyCodec_IgnoreErrors ()

* PyCodec_IncrementalDecoder ()
e PyCodec_IncrementalEncoder ()
* PyCodec_KnownEncoding ()

* PyCodec_LookupError ()

* PyCodec_NameReplaceErrors ()
e PyCodec_Register ()

* PyCodec_RegisterError()

* PyCodec_ReplaceErrors ()

e PyCodec_StreamReader ()

e PyCodec_StreamWriter ()

e PyCodec_StrictErrors()

e PyCodec_Unregister()

* PyCodec_XMLCharRefReplaceErrors ()
* PyComplex_FromDoubles ()

* PyComplex_ImagAsDouble ()

2.4. Contents of Limited API 17

The Python/C API, Release 3.12.0rc3

PyComplex_RealAsDouble ()
PyComplex_Type
PyDescr_NewClassMethod ()
PyDescr_NewGetSet ()
PyDescr_NewMember ()
PyDescr_NewMethod ()
PyDictItems_Type
PyDictIterItem_Type
PyDictIterKey_Type
PyDictIterValue_Type
PyDictKeys_Type
PyDictProxy_New ()
PyDictProxy_Type
PyDictRevIterItem Type
PyDictRevIterKey_Type
PyDictRevIterValue_Type
PyDictValues_Type
PyDict_Clear ()
PyDict_Contains ()
PyDict_Copy ()
PyDict_DelItem()
PyDict_DellItemString/()
PyDict_GetItem()
PyDict_GetItemString ()
PyDict_GetItemWithError ()
PyDict_Items ()
PyDict_Keys ()
PyDict_Merge ()
PyDict_MergeFromSeqgZ2 ()
PyDict_New ()
PyDict_Next ()
PyDict_SetItem()
PyDict_SetItemString/()
PyDict_Size()
PyDict_Type
PyDict_Update ()
PyDict_Values ()
PyEllipsis_Type

PyEnum_Type

18

Chapter 2. C API Stability

The Python/C API, Release 3.12.0rc3

e PyErr BadArgument ()

e PyErr BadInternalCall ()

* PyErr CheckSignals ()

* PyErr_ Clear ()

e PyErr_Display ()

* PyErr DisplayException ()

* PyErr ExceptionMatches ()

* PyErr Fetch()

* PyErr Format ()

* PyErr FormatV()

* PyErr GetExcInfo()

e PyErr GetHandledException ()

s PyErr GetRaisedException ()

* PyErr GivenExceptionMatches ()

e PyErr NewException()

* PyErr NewExceptionWithDoc ()

* PyErr NoMemory ()

e PyErr NormalizeException ()

e PyErr Occurred()

e PyErr Print ()

* PyErr PrintEx()

* PyErr_ProgramText ()

* PyErr ResourceWarning ()

* PyErr Restore()

e PyErr SetExcFromWindowsErr ()

* PyErr SetExcFromWindowsErrWithFilename ()
* PyErr SetExcFromWindowsErrWithFilenameObject ()
* PyErr SetExcFromWindowsErrWithFilenameObjects ()
* PyErr_ SetExcInfo()

* PyErr SetFromErrno ()

* PyErr SetFromErrnoWithFilename ()

e PyErr SetFromErrnoWithFilenameObject ()
* PyErr SetFromErrnoWithFilenameObjects ()
* PyErr SetFromWindowsSErr ()

* PyErr SetFromWindowsErrWithFilename ()

* PyErr SetHandledException ()

* PyErr SetImportError ()

* PyErr SetImportErrorSubclass ()

e PyErr SetInterrupt ()

2.4. Contents of Limited API 19

The Python/C API, Release 3.12.0rc3

* PyErr SetInterruptEx()

* PyErr SetNone ()

e PyErr SetObject ()

e PyErr SetRaisedException ()
e PyErr SetString()

e PyErr SyntaxLocation ()

e PyErr SyntaxLocationEx ()
* PyErr_ WarnEx ()

* PyErr WarnExplicit ()

* PyErr WarnFormat ()

* PyErr WriteUnraisable()
e PyEval_AcquireLock ()

* PyEval_ AcquireThread()

e PyEval_CallFunction ()

e PyEval_CallMethod()

e PyEval_CallObjectWithKeywords ()
* PyEval EvalCode ()

* PyEval_ EvalCodeEx ()

e PyEval_FEvalFrame ()

e PyEval_FEvalFrameEx ()

* PyEval GetBuiltins ()

* PyEval_GetFrame ()

* PyEval_ GetFuncDesc ()

* PyEval_ GetFuncName ()

* PyEval_GetGlobals ()

e PyEval_GetLocals ()

* PyEval InitThreads ()

* PyEval_ ReleaseLock ()

* PyEval_ReleaseThread()

* PyEval_RestoreThread/()

* PyEval_ SaveThread ()

* PyEval_ThreadsInitialized()
e PyExc_ArithmeticError

* PyExc_AssertionError

e PyExc_AttributeError

* PyExc_BaseException

* PyExc_BaseExceptionGroup
* PyExc_BlockingIOError

* PyExc_BrokenPipeError

20 Chapter 2. C API Stability

The Python/C API, Release 3.12.0rc3

e PyExc_BufferError
* PyExc_BytesWarning

* PyExc_ChildProcessError

e PyExc_ConnectionAbortedError

* PyExc_ConnectionError

* PyExc_ConnectionRefusedError

* PyExc_ConnectionResetError

e PyExc_DeprecationWarning
e PyExc_EOFError

* PyExc_EncodingWarning

e PyExc_EnvironmentError

* PyExc_Exception

e PyExc_FileExistsError

* PyExc_FileNotFoundError
e PyExc_FloatingPointError
* PyExc_FutureWarning

* PyExc_GeneratorExit

e PyExc_IOError

e PyExc_TImportError

* PyExc_ImportWarning

* PyExc_IndentationError

e PyExc_IndexError

* PyExc_InterruptedError

* PyExc_IsADirectoryError
e PyExc_KeyError

e PyExc_KeyboardInterrupt
* PyExc_LookupError

e PyExc_MemoryError

¢ PyExc_ModuleNotFoundError

¢ PyExc_NameError

* PyExc_NotADirectoryError

* PyExc_NotImplementedError

e PyExc_OSError

* PyExc_OverflowError

* PyExc_PendingDeprecationWarning

e PyExc_PermissionkError
* PyExc_ProcessLookupError
e PyExc_RecursionError

* PyExc_ReferenceError

2.4. Contents of Limited API

21

The Python/C API, Release 3.12.0rc3

PyExc_ResourceWarning
PyExc_RuntimeError
PyExc_RuntimeWarning
PyExc_StopAsyncIteration
PyExc_StoplIteration
PyExc_SyntaxError
PyExc_SyntaxWarning
PyExc_SystemError
PyExc_SystemExit
PyExc_TabError
PyExc_TimeoutError
PyExc_TypeError
PyExc_UnboundLocalError
PyExc_UnicodeDecodeError
PyExc_UnicodeEncodeError

PyExc_UnicodeError

PyExc_UnicodeTranslateError

PyExc_UnicodeWarning
PyExc_UserWarning
PyExc_ValueError
PyExc_Warning
PyExc_WindowsError
PyExc_ZeroDivisionError
PyExceptionClass_Name ()
PyException_GetArgs ()
PyException_GetCause ()
PyException_GetContext ()
PyException_GetTraceback ()
PyException_SetArgs ()
PyException_SetCause ()
PyException_SetContext ()
PyException_SetTraceback ()
PyFile_FromFd()
PyFile_GetLine ()

PyFile WriteObject ()
PyFile WriteString()
PyFilter_Type
PyFloat_AsDouble ()

PyFloat_FromDouble ()

22

Chapter 2. C API Stability

The Python/C API, Release 3.12.0rc3

e PyFloat_FromString/()

e PyFloat_GetInfo()

* PyFloat_GetMax ()

* PyFloat_GetMin ()

e PyFloat_Type

* PyFrameObject

* PyFrame_GetCode ()

* PyFrame_GetLineNumber ()

e PyFrozenSet_New ()

* PyFrozenSet_Type

* PyGC_Collect ()

* PyGC_Disable ()

e PyGC_Enable ()

* PyGC_IsEnabled()

e PyG