Python Setup and Usage
Release 3.10.0rc1

Guido van Rossum
and the Python development team

August 02, 2021

Python Software Foundation
Email: docs@python.org

CONTENTS

1 Command line and environment 3
1.1 Commandline e e 3
1.1.1 Imnterface options e 3

1.1.2 0 Generic Options o v v v v e e e e e e e e e e e e e e e e 5

1.1.3 Miscellaneous Options v v v v v v i e e e e e e e e e e e e e e e e e e 5

1.1.4 Options you shouldn’t use 0 i i i e e e e e e e 9

1.2 Environment variables oL 9
1.2.1 Debug-mode variables L e e e 13

2 Using Python on Unix platforms 15
2.1 Getting and installing the latest versionof Python 0oL, 15
211 OnLinuxo e e e e e e 15

2.1.2 OnFreeBSDand OpenBSD e 15

2.1.3 0 OnOpenSolaris e e e e e e e e e e e e e 16

2.2 Building Python. L e e e e e 16
2.3 Python-related pathsand files 16
24 Miscellaneouso e e e e e e e e e e e 16
2.5 Custom OpenSSL o L e e e e 17
3 Configure Python 19
3.1 Configure Options e e 19
311 General Options o L L e e e e e e e 19

3.1.2 0 Install Optons v o v v o e 20

3.1.3 Performance options oo . e e e e e e e e e e e e e e e 21

3.14 PythonDebugBuild 22

3.1.5 Debugoptions e e e e e e e e e e e 22

3.1.6 Linker options L. e e e e e e 23

3.1.7 LAbrarieS Options v v i e 23

3.1.8 Security Options v o i e e e e e e e e e e e e e e 24

3.1.9 0 macOS Options o v v i i e e e e e e e e e e e e 25

3.2 PythonBuild System e 26
3.2.1 Mainfiles of the build system e 26

322 MainbuildSteps oL e e e e e 26

3.23 Main Makefile targets e e e e e e e e e e e e 26

324 Cextensionsl e e 26

3.3 Compilerandlinker flags L 27
3.3.1 Preprocessor flags L. e e e 27

332 Compilerflags 28

333 Linkerflags e e e e e e e e 29

4 Using Python on Windows

4.1 Thefullinstaller e e e e e e
4.1.1 Installation StEPS . . . v v o o e e e e e e e e e e e e e e e e e
4.1.2 Removing the MAX_PATH Limitation
4.1.3 Installing Without UL 0. e
4.1.4 Installing Without Downloading
4.1.5 Modifyinganinstall L e e e e
4.2 The Microsoft Store package e e e e e e e
421 Knownlssues e
4.3 The nuget.org packages o i i e e e e e e e e e e e e e e e
44 Theembeddable package L
4.4.1 Python Application e e e e
442 Embedding Python e e e
4.5 Alternative bundles L.
4.6 Configuring Python o e e e e
4.6.1 Excursus: Setting environment variables oL oL
4.6.2 Finding the Python executable
47 UTF-8mode e
4.8 Python Launcher for Windows L e e e
4.8.1 Gettingstarted L e e
4.8.2 Shebang Lines e
4.8.3 Argumentsinshebanglines
4.8.4 Customization e e e e e e e e e e
4.8.5 DIagnostiCs i i e
4.9 Findingmodules L e e e e e e e e e e e
4.10 Additional moduleso L L e e e e e e e
4.10.1 PyWIn32 . . . e e e
4.10.2 cx_Freeze e e
4103 WCONIO . . . v v vt e e e e
4.11 Compiling Pythonon Windows
4.12 Other Platforms o L e e e e e e e e

Using Python on a Macintosh

5.1 Getting and Installing MacPython
5.1.1 HowtorunaPythonscript e
5.1.2 Runningscripts witha GUIL
5.1.3 0 Configuration e e e e e e e e e e
52 ThelDE
5.3 Installing Additional Python Packages
54 GUIProgrammingonthe Mac e
5.5 Distributing Python Applicationsonthe Mac.o
5.6 OtherResources i i e
Editors and IDEs
Glossary

About these documents
Contributors to the Python Documentation e

B.1

History and License

C.1 Historyof the software i i e e e e e e e e e e
C.2 Terms and conditions for accessing or otherwise using Python
C.2.1 PSF LICENSE AGREEMENT FOR PYTHON 3.10.0rcl
C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON2.0

31
31
31
33
33
35
35
36
36
36
37
38
38
38
39
39
40
40
41
41
42
43
43
45
45
46
46
47
47
47
47

49
49
50
50
50
50
50
51
51
51

53

55

69
69

C.2.3 CNRILICENSE AGREEMENT FOR PYTHON 1.6.1 74
C.2.4 CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2 75

C.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.10.0rc1 DOCUMENTA-
TION . e 75
C.3 Licenses and Acknowledgements for Incorporated Software 76
C3.1 Mersenne TWIStEI o v v it i ittt e e e e e e e e e e e 76
C32 Sockets o e 77
C.3.3 Asynchronous SOCKEt SETVICES v v v v v i v e i e e e e e e e e e e 77
C34 Cookiemanagement it 78
C3.5 Executiontracing o e e 78
C3.6 UUencode and UUdecode functionso v v v i v it i 79
C3.7 XML Remote Procedure Calls 79
C.3.8 test_epoll L e e e e e e 80
C.3.9 Selectkqueue e e e e e e 80
C3.10 SipHash24 e e e 81
C3.11 strtodanddtoa. L 81
C.3.12 OpenSSL . . . o o e 82
C3U13 eXPat. . v o o v e e e e e e e e e e e e e e e 84
C3.014 Hbfi . . . e 85
C3.15 zlib . . o e 85
C3.16 cfuhash e 86
C3.17 Hbmpdec o e e e e 86
C3.18 WI3CCIANTeSt SUIte . . . v v v v e e e et e e e e e e e e e e e e e e e e 87
D Copyright 89
Index 91

Python Setup and Usage, Release 3.10.0rc1

This part of the documentation is devoted to general information on the setup of the Python environment on different
platforms, the invocation of the interpreter and things that make working with Python easier.

CONTENTS 1

Python Setup and Usage, Release 3.10.0rc1

2 CONTENTS

CHAPTER
ONE

COMMAND LINE AND ENVIRONMENT

The CPython interpreter scans the command line and the environment for various settings.

CPython implementation detail: Other implementations’ command line schemes may differ. See implementations for
further resources.

1.1

Command line

When invoking Python, you may specify any of these options:

’python [-bBdEhiIOgsSuvVWx?] [-c command | -m module-name | script | -] [args]

The most common use case is, of course, a simple invocation of a script:

’python myscript.py

1.1.1 Interface options

The interpreter interface resembles that of the UNIX shell, but provides some additional methods of invocation:

When called with standard input connected to a tty device, it prompts for commands and executes them until an
EOF (an end-of-file character, you can produce that with Ct r1-D on UNIX or Ctr1-Z, Enter on Windows)
is read.

When called with a file name argument or with a file as standard input, it reads and executes a script from that file.

When called with a directory name argument, it reads and executes an appropriately named script from that direc-
tory.

When called with —c command, it executes the Python statement(s) given as command. Here command may
contain multiple statements separated by newlines. Leading whitespace is significant in Python statements!

When called with -m module-name, the given module is located on the Python module path and executed as a
script.

In non-interactive mode, the entire input is parsed before it is executed.

An interface option terminates the list of options consumed by the interpreter, all consecutive arguments will end up in
sys.argv — note that the first element, subscript zero (sys.argv [01]), is a string reflecting the program’s source.

—c <command>

Execute the Python code in command. command can be one or more statements separated by newlines, with
significant leading whitespace as in normal module code.

Python Setup and Usage, Release 3.10.0rc1

If this option is given, the first element of sys.argv will be "—c" and the current directory will be added to the
start of sys.path (allowing modules in that directory to be imported as top level modules).

Raises an auditing event cpython. run_command with argument command.

-m <module—name>
Search sys . path for the named module and execute its contents as the __main__ module.

Since the argument is a module name, you must not give a file extension (. py). The module name should be a valid
absolute Python module name, but the implementation may not always enforce this (e.g. it may allow you to use a
name that includes a hyphen).

Package names (including namespace packages) are also permitted. When a package name is supplied instead
of a normal module, the interpreter will execute <pkg>.__main___ as the main module. This behaviour is
deliberately similar to the handling of directories and zipfiles that are passed to the interpreter as the script argument.

Note: This option cannot be used with built-in modules and extension modules written in C, since they do not
have Python module files. However, it can still be used for precompiled modules, even if the original source file is
not available.

If this option is given, the first element of sy s .argv will be the full path to the module file (while the module file
is being located, the first element will be set to "-m"). As with the —c option, the current directory will be added
to the start of sys.path.

—T option can be used to run the script in isolated mode where sys . path contains neither the current directory
nor the user’s site-packages directory. All PYTHON* environment variables are ignored, too.

Many standard library modules contain code that is invoked on their execution as a script. An example is the
timeit module:

python -m timeit -s 'setup here' 'benchmarked code here'
python -m timeit -h # for details

Raises an auditing event cpython. run_module with argument module—-name.

See also:
runpy . run_module () Equivalent functionality directly available to Python code

PEP 338 — Executing modules as scripts
Changed in version 3.1: Supply the package name toruna __main__ submodule.

Changed in version 3.4: namespace packages are also supported

Read commands from standard input (sys . stdin). If standard input is a terminal, — 1 is implied.

If this option is given, the first element of sys.argv will be "—" and the current directory will be added to the
start of sys.path.

Raises an auditing event cpython. run_stdin with no arguments.

<script>
Execute the Python code contained in script, which must be a filesystem path (absolute or relative) referring to
either a Python file, a directory containinga __main__ . py file, or a zipfile containinga __main__ .py file.

If this option is given, the first element of sys.argv will be the script name as given on the command line.

If the script name refers directly to a Python file, the directory containing that file is added to the start of sys.
path, and the file is executed as the __main___ module.

4 Chapter 1. Command line and environment

https://www.python.org/dev/peps/pep-0338

Python Setup and Usage, Release 3.10.0rc1

If the script name refers to a directory or zipfile, the script name is added to the start of sys.path and the
__main__ .py file in that location is executed as the __main___ module.

—I option can be used to run the script in isolated mode where sys . path contains neither the script’s directory
nor the user’s site-packages directory. All PYTHON* environment variables are ignored, too.

Raises an auditing event cpython.run_file with argument £ilename.

See also:

runpy . run_path () Equivalent functionality directly available to Python code

If no interface option is given, —1 is implied, sys.argv[0] is an empty string (" ") and the current directory will be
added to the start of sys.path. Also, tab-completion and history editing is automatically enabled, if available on your
platform (see rlcompleter-config).

See also:

tut-invoking

Changed in version 3.4: Automatic enabling of tab-completion and history editing.

1.1.2 Generic options

-2
-h

—--help

-V

Print a short description of all command line options.

——version

Print the Python version number and exit. Example output could be:

’Python 3.8.0b2+

When given twice, print more information about the build, like:

Python 3.8.0b2+ (3.8:0c076caaa8, Apr 20 2019, 21:55:00)
[GCC 6.2.0 20161005]

New in version 3.6: The —VV option.

1.1.3 Miscellaneous options

-b

Issue a warning when comparing bytes or bytearray with str or bytes with int. Issue an error when the
option is given twice (-bb).

Changed in version 3.5: Affects comparisons of bytes with int.

If given, Python won'’t try to write . pyc files on the import of source modules. See also PYTHONDONTWRI TE—
BYTECODE.

——check-hash-based-pycs default|always|never

Control the validation behavior of hash-based . pyc files. See pyc-invalidation. When set to default, checked
and unchecked hash-based bytecode cache files are validated according to their default semantics. When set to

1.1. Command line 5

Python Setup and Usage, Release 3.10.0rc1

always, all hash-based .pyc files, whether checked or unchecked, are validated against their corresponding
source file. When set to never, hash-based . pyc files are not validated against their corresponding source files.

The semantics of timestamp-based . pyc files are unaffected by this option.

-d
Turn on parser debugging output (for expert only, depending on compilation options). See also PYTHONDEBUG.

-E
Ignore all PYTHON* environment variables, e.g. PYTHONPATH and PYTHONHOME, that might be set.

-i
When a script is passed as first argument or the —c option is used, enter interactive mode after executing the script
or the command, even when sys.stdin does not appear to be a terminal. The PYTHONSTARTUP file is not
read.
This can be useful to inspect global variables or a stack trace when a script raises an exception. See also
PYTHONINSPECT.

-I
Run Python in isolated mode. This also implies -E and -s. In isolated mode sys.path contains neither the
script’s directory nor the user’s site-packages directory. All PYTHON* environment variables are ignored, too.
Further restrictions may be imposed to prevent the user from injecting malicious code.
New in version 3.4.

-0
Remove assert statements and any code conditional on the value of __debug__. Augment the filename for
compiled (bytecode) files by adding . opt -1 before the . pyc extension (see PEP 488). See also PYTHONOP—
TIMIZE.
Changed in version 3.5: Modify . pyc filenames according to PEP 488.

-00
Do -0 and also discard docstrings. Augment the filename for compiled (bytecode) files by adding . opt -2 before
the . pyc extension (see PEP 488).
Changed in version 3.5: Modify . pyc filenames according to PEP 488.

-q
Don’t display the copyright and version messages even in interactive mode.
New in version 3.2.

-R
Turn on hash randomization. This option only has an effect if the PYTHONHASHSEED environment variable is set
to 0, since hash randomization is enabled by default.
On previous versions of Python, this option turns on hash randomization, so that the __hash__ () values of
str and bytes objects are “salted” with an unpredictable random value. Although they remain constant within an
individual Python process, they are not predictable between repeated invocations of Python.
Hash randomization is intended to provide protection against a denial-of-service caused by carefully-chosen inputs
that exploit the worst case performance of a dict construction, O(n"2) complexity. See http://www.ocert.org/
advisories/ocert-2011-003.html for details.
PYTHONHASHSEED allows you to set a fixed value for the hash seed secret.
Changed in version 3.7: The option is no longer ignored.
New in version 3.2.3.

-s
Don’t add the user site-packages directoryto sys.path.

6 Chapter 1. Command line and environment

https://www.python.org/dev/peps/pep-0488
https://www.python.org/dev/peps/pep-0488
https://www.python.org/dev/peps/pep-0488
https://www.python.org/dev/peps/pep-0488
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html

Python Setup and Usage, Release 3.10.0rc1

See also:

PEP 370 — Per user site-packages directory

-S
Disable the import of the module site and the site-dependent manipulations of sys .path that it entails. Also
disable these manipulations if site is explicitly imported later (call site.main () if you want them to be
triggered).

-u
Force the stdout and stderr streams to be unbuffered. This option has no effect on the stdin stream.
See also PYTHONUNBUFFERED.
Changed in version 3.7: The text layer of the stdout and stderr streams now is unbuffered.

-V
Print a message each time a module is initialized, showing the place (filename or built-in module) from which it is
loaded. When given twice (—vv), print a message for each file that is checked for when searching for a module.
Also provides information on module cleanup at exit.
Changed in version 3.10: The site module reports the site-specific paths and . pth files being processed.
See also PYTHONVERBOSE.

-W arg
Warning control. Python’s warning machinery by default prints warning messages to sys.stderr.
The simplest settings apply a particular action unconditionally to all warnings emitted by a process (even those that
are otherwise ignored by default):
-Wdefault # Warn once per call location
—-Werror # Convert to exceptions
~-Walways # Warn every time
—Wmodule # Warn once per calling module
—-Wonce # Warn once per Python process
-Wignore # Never warn
The action names can be abbreviated as desired and the interpreter will resolve them to the appropriate action name.
For example, W1 is the same as ~-Wignore.
The full form of argument is:
action:message:category:module:lineno
Empty fields match all values; trailing empty fields may be omitted. For example -W ig-
nore: :DeprecationWarning ignores all DeprecationWarning warnings.
The action field is as explained above but only applies to warnings that match the remaining fields.
The message field must match the whole warning message; this match is case-insensitive.
The category field matches the warning category (ex: DeprecationWarning). This must be a class name; the
match test whether the actual warning category of the message is a subclass of the specified warning category.
The module field matches the (fully-qualified) module name; this match is case-sensitive.
The lineno field matches the line number, where zero matches all line numbers and is thus equivalent to an omitted
line number.
Multiple —v options can be given; when a warning matches more than one option, the action for the last matching
option is performed. Invalid —v options are ignored (though, a warning message is printed about invalid options
when the first warning is issued).

1.1. Command line 7

https://www.python.org/dev/peps/pep-0370

Python Setup and Usage, Release 3.10.0rc1

Warnings can also be controlled using the PYTHONWARNINGS environment variable and from within a Python
program using the warnings module. For example, the warnings.filterwarnings () function can be
used to use a regular expression on the warning message.

See warning-filter and describing-warning-filters for more details.

-x
Skip the first line of the source, allowing use of non-Unix forms of # ! cmd. This is intended for a DOS specific
hack only.

-X
Reserved for various implementation-specific options. CPython currently defines the following possible values:

e —X faulthandler toenable faulthandler;

e -X showrefcount to output the total reference count and number of used memory blocks when the
program finishes or after each statement in the interactive interpreter. This only works on debug builds.

e -X tracemalloc to start tracing Python memory allocations using the tracemalloc module. By
default, only the most recent frame is stored in a traceback of a trace. Use -X tracemalloc=NFRAME
to start tracing with a traceback limit of NFRAME frames. See the tracemalloc.start () for more
information.

* —-X importtime to show how long each import takes. It shows module name, cumulative time (including
nested imports) and self time (excluding nested imports). Note that its output may be broken in multi-
threaded application. Typical usage is python3 —-X importtime -c 'import asyncio'. See
also PYTHONPROFILETMPORTTIME.

e —X dev: enable Python Development Mode, introducing additional runtime checks that are too expensive
to be enabled by default.

e —X utf8 enables the Python UTF-8 Mode. -X ut £8=0 explicitly disables Python UTF-8 Mode (even
when it would otherwise activate automatically).

* -X pycache_prefix=PATH enables writing . pyc files to a parallel tree rooted at the given directory
instead of to the code tree. See also PYTHONPYCACHEPREF IX.

* -X warn_default_encodingissues a EncodingWarning when the locale-specific default encod-
ing is used for opening files. See also PYTHONWARNDEFAULTENCODING.

It also allows passing arbitrary values and retrieving them through the sys._xoptions dictionary.
Changed in version 3.2: The —X option was added.
New in version 3.3: The -X faulthandler option.
New in version 3.4: The -X showrefcount and -X tracemalloc options.
New in version 3.6: The -X showalloccount option.
New in version 3.7: The -X importtime, -X devand -X utf8 options.
New in version 3.8: The -X pycache_prefix option. The -X dev option now logs close () exceptions
in io.IOBase destructor.
Changed in version 3.9: Using —X dev option, check encoding and errors arguments on string encoding and
decoding operations.
The -X showalloccount option has been removed.
New in version 3.10: The -X warn_default_encoding option.
Deprecated since version 3.9, removed in version 3.10: The -X oldparser option.
8 Chapter 1. Command line and environment

Python Setup and Usage, Release 3.10.0rc1

1.1.4 Options you shouldn’t use

-J
Reserved for use by Jython.

1.2 Environment variables

These environment variables influence Python’s behavior, they are processed before the command-line switches other
than -E or -I. It is customary that command-line switches override environmental variables where there is a conflict.

PYTHONHOME
Change the location of the standard Python libraries. By default, the libraries are searched in prefix/1ib/
pythonversion and exec_prefix/lib/pythonversion, where prefix and exec_prefix are
installation-dependent directories, both defaulting to /usr/local.

When PYTHONHOME is set to a single directory, its value replaces both prefixand exec_prefix. To specify
different values for these, set PYTHONHOME to prefix: exec_prefix.

PYTHONPATH
Augment the default search path for module files. The format is the same as the shell’s PATH: one or more directory
pathnames separated by os . pathsep (e.g. colons on Unix or semicolons on Windows). Non-existent directories
are silently ignored.

In addition to normal directories, individual PYTHONPATH entries may refer to zipfiles containing pure Python
modules (in either source or compiled form). Extension modules cannot be imported from zipfiles.

The default search path is installation dependent, but generally begins with prefix/lib/pythonversion
(see PYTHONHOME above). It is always appended to PYTHONPATH.

An additional directory will be inserted in the search path in front of PYTHONPATH as described above under
Interface options. The search path can be manipulated from within a Python program as the variable sys .path.

PYTHONPLATLIBDIR
If this is set to a non-empty string, it overrides the sys.platlibdir value.

New in version 3.9.

PYTHONSTARTUP
If this is the name of a readable file, the Python commands in that file are executed before the first prompt is
displayed in interactive mode. The file is executed in the same namespace where interactive commands are executed
so that objects defined or imported in it can be used without qualification in the interactive session. You can also
change the prompts sys.ps1 and sys.ps2 and the hook sys.__interactivehook___in this file.

Raises an auditing event cpython. run_startup with the filename as the argument when called on startup.

PYTHONOPTIMIZE
If this is set to a non-empty string it is equivalent to specifying the —O option. If set to an integer, it is equivalent
to specifying —O multiple times.

PYTHONBREAKPOINT
If this is set, it names a callable using dotted-path notation. The module containing the callable will be imported and
then the callable will be run by the default implementation of sys.breakpointhook () which itself is called
by built-in breakpoint (). If not set, or set to the empty string, it is equivalent to the value “pdb.set_trace”.
Setting this to the string “0” causes the default implementation of sys.breakpointhook () to do nothing but
return immediately.

New in version 3.7.

1.2. Environment variables 9

http://www.jython.org/

Python Setup and Usage, Release 3.10.0rc1

PYTHONDEBUG
If this is set to a non-empty string it is equivalent to specifying the —d option. If set to an integer, it is equivalent
to specifying —d multiple times.

PYTHONINSPECT
If this is set to a non-empty string it is equivalent to specifying the —1i option.

This variable can also be modified by Python code using os . environ to force inspect mode on program termi-
nation.

PYTHONUNBUFFERED
If this is set to a non-empty string it is equivalent to specifying the —u option.

PYTHONVERBOSE
If this is set to a non-empty string it is equivalent to specifying the —v option. If set to an integer, it is equivalent
to specifying —v multiple times.

PYTHONCASEOK
If this is set, Python ignores case in import statements. This only works on Windows and OS X.

PYTHONDONTWRITEBYTECODE
If this is set to a non-empty string, Python won’t try to write . pyc files on the import of source modules. This is
equivalent to specifying the —B option.

PYTHONPYCACHEPREFIX
If this is set, Python will write .pyc files in a mirror directory tree at this path, instead of in __pycache_
directories within the source tree. This is equivalent to specifying the —X pycache_prefix=PATH option.

New in version 3.8.

PYTHONHASHSEED
If this variable is not set or set to random, a random value is used to seed the hashes of str and bytes objects.

If PYTHONHASHSEED is set to an integer value, it is used as a fixed seed for generating the hash() of the types
covered by the hash randomization.

Its purpose is to allow repeatable hashing, such as for selftests for the interpreter itself, or to allow a cluster of
python processes to share hash values.

The integer must be a decimal number in the range [0,4294967295]. Specifying the value O will disable hash
randomization.

New in version 3.2.3.

PYTHONIOENCODING
If this is set before running the interpreter, it overrides the encoding used for stdin/stdout/stderr, in the syntax
encodingname:errorhandler. Both the encodingname and the : errorhandler parts are optional
and have the same meaning as in str.encode ().

For stderr, the : errorhandler part is ignored; the handler will always be 'backslashreplace’.
Changed in version 3.4: The encodingname part is now optional.

Changed in version 3.6: On Windows, the encoding specified by this variable is ignored for interactive console
buffers unless PYTHONLEGACYWINDOWSSTDIO1is also specified. Files and pipes redirected through the standard
streams are not affected.

PYTHONNOUSERSITE
If this is set, Python won’t add the user site-packages directorytosys.path.

See also:

PEP 370 — Per user site-packages directory

10 Chapter 1. Command line and environment

https://www.python.org/dev/peps/pep-0370

Python Setup and Usage, Release 3.10.0rc1

PYTHONUSERBASE

Defines the user base directory, which is used to compute the path of the user site-packages
directory and Distutils installation paths for python setup.py install --user.

See also:

PEP 370 — Per user site-packages directory

PYTHONEXECUTABLE

If this environment variable is set, sys.argv [0] will be set to its value instead of the value got through the C
runtime. Only works on Mac OS X.

PYTHONWARNINGS

This is equivalent to the —I7 option. If set to a comma separated string, it is equivalent to specifying —w multiple
times, with filters later in the list taking precedence over those earlier in the list.

The simplest settings apply a particular action unconditionally to all warnings emitted by a process (even those that
are otherwise ignored by default):

Warn once per call location
Convert to exceptions

Warn every time

Warn once per calling module
Warn once per Python process
Never warn

See warning-filter and describing-warning-filters for more details.

PYTHONFAULTHANDLER

If this environment variable is set to a non-empty string, faulthandler.enable () is called at startup: install
a handler for SIGSEGV, SIGFPE, SIGABRT, SIGBUS and SIGILL signals to dump the Python traceback. This
is equivalent to —X faulthandler option.

New in version 3.3.

PYTHONTRACEMALLOC

If this environment variable is set to a non-empty string, start tracing Python memory allocations using the t race—
malloc module. The value of the variable is the maximum number of frames stored in a traceback of a trace. For
example, PYTHONTRACEMALLOC=1 stores only the most recent frame. See the t racemalloc.start () for
more information.

New in version 3.4.

PYTHONPROFILEIMPORTTIME

If this environment variable is set to a non-empty string, Python will show how long each import takes. This is
exactly equivalent to setting ~X importtime on the command line.

New in version 3.7.

PYTHONASYNCIODEBUG

If this environment variable is set to a non-empty string, enable the debug mode of the asyncio module.

New in version 3.4.

PYTHONMALLOC

Set the Python memory allocators and/or install debug hooks.
Set the family of memory allocators used by Python:
* default: use the default memory allocators.

e malloc: use the malloc () function of the C library for all domains (PYMEM_DOMAIN_RAW,
PYMEM_DOMAIN_MEM, PYMEM_DOMAIN_OBJ).

1.2,

Environment variables 11

https://www.python.org/dev/peps/pep-0370

Python Setup and Usage, Release 3.10.0rc1

* pymalloc: use the pymalloc allocator for PYMEM_DOMAIN_MEM and PYMEM_DOMAIN_OBJ domains
and use the malloc () function for the PYMEM_DOMAIN_RAW domain.

Install debug hooks:

¢ debug: install debug hooks on top of the default memory allocators.

* malloc_debug: same as malloc but also install debug hooks.

* pymalloc_debug: same as pymalloc but also install debug hooks.
Changed in version 3.7: Added the "default" allocator.

New in version 3.6.

PYTHONMALLOCSTATS

If set to a non-empty string, Python will print statistics of the pymalloc memory allocator every time a new pymalloc
object arena is created, and on shutdown.

This variable is ignored if the PYTHONMALLOC environment variable is used to force the malloc () allocator
of the C library, or if Python is configured without pymalloc support.

Changed in version 3.6: This variable can now also be used on Python compiled in release mode. It now has no
effect if set to an empty string.

PYTHONLEGACYWINDOWSFSENCODING

If set to a non-empty string, the default filesystem encoding and error handler mode will revert to their pre-3.6
values of ‘mbcs’ and ‘replace’, respectively. Otherwise, the new defaults ‘utf-8” and ‘surrogatepass’ are used.

This may also be enabled at runtime with sys._enablelegacywindowsfsencoding ().
Availability: Windows.

New in version 3.6: See PEP 529 for more details.

PYTHONLEGACYWINDOWSSTDIO

If set to a non-empty string, does not use the new console reader and writer. This means that Unicode characters
will be encoded according to the active console code page, rather than using utf-8.

This variable is ignored if the standard streams are redirected (to files or pipes) rather than referring to console
buffers.

Auvailability: Windows.

New in version 3.6.

PYTHONCOERCECLOCALE

If set to the value 0, causes the main Python command line application to skip coercing the legacy ASCII-based C
and POSIX locales to a more capable UTF-8 based alternative.

If this variable is not set (or is set to a value other than 0), the LC_ALL locale override environment variable is
also not set, and the current locale reported for the LC_CTYPE category is either the default C locale, or else the
explicitly ASCII-based POSIX locale, then the Python CLI will attempt to configure the following locales for the
LC_CTYPE category in the order listed before loading the interpreter runtime:

¢ C.UTF-8
e C.utf8
e UTF-8

If setting one of these locale categories succeeds, then the LC_CTYPE environment variable will also be set ac-
cordingly in the current process environment before the Python runtime is initialized. This ensures that in addition
to being seen by both the interpreter itself and other locale-aware components running in the same process (such
as the GNU readline library), the updated setting is also seen in subprocesses (regardless of whether or not

12

Chapter 1. Command line and environment

https://www.python.org/dev/peps/pep-0529

Python Setup and Usage, Release 3.10.0rc1

those processes are running a Python interpreter), as well as in operations that query the environment rather than
the current C locale (such as Python’s own 1locale.getdefaultlocale ()).

Configuring one of these locales (either explicitly or via the above implicit locale coercion) automatically enables
the surrogateescape error handler for sys.stdin and sys.stdout (sys.stderr continues to use
backslashreplace as it does in any other locale). This stream handling behavior can be overridden using
PYTHONIOENCODING as usual.

For debugging purposes, setting PYTHONCOERCECLOCALE=warn will cause Python to emit warning messages
on stderr if either the locale coercion activates, or else if a locale that would have triggered coercion is still active
when the Python runtime is initialized.

Also note that even when locale coercion is disabled, or when it fails to find a suitable target locale, PYTHONUTF 8
will still activate by default in legacy ASCII-based locales. Both features must be disabled in order to force the
interpreter to use ASCIT instead of UTF -8 for system interfaces.

Availability: *nix.
New in version 3.7: See PEP 538 for more details.

PYTHONDEVMODE
If this environment variable is set to a non-empty string, enable Python Development Mode, introducing additional
runtime checks that are too expensive to be enabled by default.

New in version 3.7.

PYTHONUTF8
If set to 1, enable the Python UTF-8 Mode.

If set to 0, disable the Python UTF-8 Mode.
Setting any other non-empty string causes an error during interpreter initialisation.
New in version 3.7.

PYTHONWARNDEFAULTENCODING
If this environment variable is set to a non-empty string, issue a EncodingWarning when the locale-specific
default encoding is used.

See io-encoding-warning for details.

New in version 3.10.

1.2.1 Debug-mode variables
PYTHONTHREADDEBUG
If set, Python will print threading debug info.
Need a debug build of Python.

PYTHONDUMPREF'S
If set, Python will dump objects and reference counts still alive after shutting down the interpreter.

Need Python configured with the ——with—-trace—-refs build option.

1.2. Environment variables 13

https://www.python.org/dev/peps/pep-0538

Python Setup and Usage, Release 3.10.0rc1

14 Chapter 1. Command line and environment

CHAPTER
TWO

USING PYTHON ON UNIX PLATFORMS

2.1 Getting and installing the latest version of Python

2.1.1 On Linux

Python comes preinstalled on most Linux distributions, and is available as a package on all others. However there are
certain features you might want to use that are not available on your distro’s package. You can easily compile the latest
version of Python from source.

In the event that Python doesn’t come preinstalled and isn’t in the repositories as well, you can easily make packages for
your own distro. Have a look at the following links:

See also:
https://www.debian.org/doc/manuals/maint-guide/first.en.html for Debian users
https://en.opensuse.org/Portal:Packaging for OpenSuse users

https://docs-old.fedoraproject.org/en-US/Fedora_Draft_Documentation/0.1/html/RPM_Guide/ch-creating-rpms.html
for Fedora users

http://www.slackbook.org/html/package-management-making-packages.html for Slackware users

2.1.2 On FreeBSD and OpenBSD

* FreeBSD users, to add the package use:

pkg install python3

¢ OpenBSD users, to add the package use:

pkg_add -r python

pkg_add ftp://ftp.openbsd.org/pub/OpenBSD/4.2/packages/<insert your architecture.
—here>/python-<version>.tgz

For example 1386 users get the 2.5.1 version of Python using:

pkg_add ftp://ftp.openbsd.org/pub/OpenBSD/4.2/packages/i386/python-2.5.1p2.tgz

15

https://www.debian.org/doc/manuals/maint-guide/first.en.html
https://en.opensuse.org/Portal:Packaging
https://docs-old.fedoraproject.org/en-US/Fedora_Draft_Documentation/0.1/html/RPM_Guide/ch-creating-rpms.html
http://www.slackbook.org/html/package-management-making-packages.html

Python Setup and Usage, Release 3.10.0rc1

2.1.3 On OpenSolaris

You can get Python from OpenCSW. Various versions of Python are available and can be installed with e.g. pkgutil
-1 python27.

2.2 Building Python

If you want to compile CPython yourself, first thing you should do is get the source. You can download either the latest
release’s source or just grab a fresh clone. (If you want to contribute patches, you will need a clone.)

The build process consists of the usual commands:

./configure
make
make install

Configuration options and caveats for specific Unix platforms are extensively documented in the README .rst file in the
root of the Python source tree.

Warning: make install canoverwrite or masquerade the python3 binary. make altinstall is therefore
recommended instead of make install since it only installs exec_prefix/bin/pythonversion.

2.3 Python-related paths and files

These are subject to difference depending on local installation conventions; prefix (${prefix})andexec_prefix
(${exec_prefix}) are installation-dependent and should be interpreted as for GNU software; they may be the same.

For example, on most Linux systems, the default for both is /usr.

File/directory Meaning

exec_prefix/bin/python3 Recommended location of the interpreter.
prefix/lib/pythonversion, Recommended locations of the directories containing the standard
exec_prefix/lib/pythonversion | modules.

prefix/include/pythonversion, Recommended locations of the directories containing the include
exec_prefix/include/ files needed for developing Python extensions and embedding the in-
pythonversion terpreter.

2.4 Miscellaneous

To easily use Python scripts on Unix, you need to make them executable, e.g. with

’$ chmod +x script

and put an appropriate Shebang line at the top of the script. A good choice is usually

’#]/usr/bin/env python3

16 Chapter 2. Using Python on Unix platforms

https://www.opencsw.org/
https://www.python.org/downloads/source/
https://devguide.python.org/setup/#getting-the-source-code
https://github.com/python/cpython/tree/3.10/README.rst

Python Setup and Usage, Release 3.10.0rc1

which searches for the Python interpreter in the whole PATH. However, some Unices may not have the env command,
so you may need to hardcode /usr/bin/python3 as the interpreter path.

To use shell commands in your Python scripts, look at the subprocess module.

2.5 Custom OpenSSL

1. To use your vendor’s OpenSSL configuration and system trust store, locate the directory with openssl.cnf file
or symlink in /etc. On most distribution the file is either in /etc/ssl or /etc/pki/tls. The directory
should also contain a cert . pem file and/or a cert s directory.

$ find /etc/ —-name openssl.cnf -printf "$h\n"
/etc/ssl

2. Download, build, and install OpenSSL. Make sure youuse install_swandnotinstall. The install_sw
target does not override openssl.cnf.

$ curl -O https://www.openssl.org/source/openssl-VERSION.tar.gz
$ tar xzf openssl-VERSION
$ pushd openssl-VERSION
$./config \
——prefix=/usr/local/custom-openssl \
——openssldir=/etc/ssl

$ make -jl1 depend
$ make -3j8

$ make install_sw
$ popd

3. Build Python with custom OpenSSL (see the configure —with-openssl and —with-openssl-rpath options)

$ pushd python-3.x.x

$./configure -C \
—--with-openssl=/usr/local/custom-openssl \
—-—with-openssl-rpath=auto \
——-prefix=/usr/local/python-3.x.x

$ make -38

$ make altinstall

Note: Patch releases of OpenSSL have a backwards compatible ABI. You don’t need to recompile Python to update
OpenSSL. It’s sufficient to replace the custom OpenSSL installation with a newer version.

2.5. Custom OpenSSL 17

Python Setup and Usage, Release 3.10.0rc1

18 Chapter 2. Using Python on Unix platforms

CHAPTER
THREE

CONFIGURE PYTHON

3.1 Configure Options

Listall . /configure script options using:

./configure --help

See also the Misc/SpecialBuilds.txt in the Python source distribution.

3.1.1 General Options

——enable-loadable-sqglite—extensions
Support loadable extensions in the _sglite extension module (default is no).

See the sglite3.Connection.enable_load_extension () method of the sqlite3 module.
New in version 3.6.

——disable-ipv6
Disable IPv6 support (enabled by default if supported), see the socket module.

——enable-big-digits=[15]|30]
Define the size in bits of Python int digits: 15 or 30 bits.

By default, the number of bits is selected depending on sizeof (void*): 30 bits if void* size is 64-bit or
larger, 15 bits otherwise.

Define the PYLONG_BITS_IN DIGIT to 15 or 30.
See sys.int_info.bits_per_digit.
——with-cxx-main

—--with-cxx-main=COMPILER
Compile the Python main () function and link Python executable with C++ compiler: $CXX, or COMPILER if
specified.

—-with-suffix=SUFFIX
Set the Python executable suffix to SUFFIX.

The default suffix is . exe on Windows and macOS (python.exe executable), and an empty string on other
platforms (python executable).

—--with-tzpath=<1list of absolute paths separated by pathsep>
Select the default time zone search path for zoneinfo.TZP