Python Frequently Asked Questions
Release 3.10.0rc1

Guido van Rossum
and the Python development team

August 02, 2021

Python Software Foundation
Email: docs@python.org

1.1

1.2

CONTENTS

2 Programming FAQ

2.1

22

1 General Python FAQ 1
General Information e 1
1.1.1 ~ Whatis Python? e 1
1.1.2 What is the Python Software Foundation? 1
1.1.3 Are there copyright restrictions on the use of Python? 1
1.1.4 Why was Python created in the first place? 2
1.1.5 Whatis Pythongood for? 2
1.1.6 How does the Python version numbering scheme work? 2
1.1.7 How do I obtain a copy of the Python source? 3
1.1.8 How do I get documentation on Python? 3
1.1.9 TIve never programmed before. Is there a Python tutorial? 3
1.1.10 Is there a newsgroup or mailing list devoted to Python? 3
1.1.11 How do I get a beta test version of Python? 4
1.1.12 How do I submit bug reports and patches for Python? 4
1.1.13 Are there any published articles about Python that I can reference? 4
1.1.14 Are there any books on Python?. 4
1.1.15 Where in the world is www.python.org located? 4
1.1.16 Whyisitcalled Python? 4
1.1.17 Do I have to like “Monty Python’s Flying Circus™? 5
Pythoninthereal world L 5
1.2.1 Howstableis Python? e 5
1.2.2 How many people are using Python? 5
1.2.3 Have any significant projects been done in Python? 5
1.2.4 What new developments are expected for Python in the future? 5
1.2.5 Isit reasonable to propose incompatible changes to Python? 6
1.2.6 Is Python a good language for beginning programmers? 6

9
General QUESHIONS o i e 9
2.1.1 Is there a source code level debugger with breakpoints, single-stepping, etc.? 9
2.1.2 Are there tools to help find bugs or perform static analysis? 9
2.1.3 How can I create a stand-alone binary from a Python script? 10
2.1.4 Are there coding standards or a style guide for Python programs? 10
Core Language o L e e e e 10
2.2.1 Why am I getting an UnboundLocalError when the variable has avalue? 10
2.2.2 What are the rules for local and global variables in Python? 11
2.2.3 Why do lambdas defined in a loop with different values all return the same result? 12
224 How do I share global variables across modules? 12
2.2.5 What are the “best practices” for using import in a module? 13
2.2.6 Why are default values shared between objects? 14

2.3

24

25

2.6

2.7

227

228

229

2.2.10
22.11
2212
2213
22.14
2.2.15
2.2.16
2.2.17
2.2.18

What is the difference between arguments and parameters?
Why did changing list y’ also change list ‘X7
How do I write a function with output parameters (call by reference)?

How can I find the methods or attributes of an object?
How can my code discover the name of an object?
What'’s up with the comma operator’s precedence?
Is there an equivalent of C’s “?:” ternary operator?
Is it possible to write obfuscated one-liners in Python?
What does the slash(/) in the parameter list of a function mean?

Numbers and Strings o v v o e

2.3.1 How do I specify hexadecimal and octal integers?
232 Whydoes-22//10return -37o e
233 HowdolIconvertastringtoanumber?
234 HowdoIconvertanumbertoastring?
2.3.5 HowdolImodify astringinplace? e
2.3.6 How do I use strings to call functions/methods?
2.3.7 Is there an equivalent to Perl’s chomp() for removing trailing newlines from strings?
2.3.8 Isthere ascanf() or sscanf() equivalent?
2.3.9 What does ‘UnicodeDecodeError’ or ‘UnicodeEncodeError’ error mean?
Performance e
2.4.1 My program is too slow. How do I'speeditup?,
2.4.2 What is the most efficient way to concatenate many strings together?

Sequences (Tuples/Lists) o o i i e e e e e e e e e

251
252
253
254
2.5.5
2.5.6
2.5.7
258
259
2.5.10
2.5.11
Objects
2.6.1
2.6.2
2.6.3
2.6.4
2.6.5
2.6.6
2.6.7
2.6.8
2.69
2.6.10
2.6.11
2.6.12
2.6.13
2.6.14
2.6.15

How do I convert between tuples and lists?
What's a negative index? e e e
How do I iterate over a sequence in reverse order? v v v v v v v ...
How do you remove duplicates fromalist?
How do you remove multiple items fromalist
How do you make an array in Python?,
How do I create a multidimensional list?

Why does a_tuple[i] += [‘item’] raise an exception when the addition works?
I want to do a complicated sort: can you do a Schwartzian Transform in Python?

What is delegation? e e
How do I call a method defined in a base class from a derived class that extends it?
How can I organize my code to make it easier to change the base class?
How do I create static class data and static class methods?
How can I overload constructors (or methods) in Python?
I try to use __spam and I get an error about _SomeClassName__spam.
My class defines __del__ but it is not called when I delete the object.

22

277.1 Howdolcreatea.pycfile? e
2.7.2 How do I find the current module name?
2.7.3 How can I have modules that mutually import each other?

274 __import_ (‘x.y.z’) returns <module x>;howdoIgetz?
2.7.5 When I edit an imported module and reimport it, the changes don’t show up. Why does this
happen? e e

3 Design and History FAQ

3.1
3.2
33
34
3.5
3.6
3.7

3.8

39

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28

Why are floating-point calculations so inaccurate? oL
Why are Python strings immutable? L

Why can’t [use an assignment in an eXpression? oL e e e e e e e
Why does Python use methods for some functionality (e.g. list.index()) but functions for other (e.g.

Ien(liSt))? . . . o e e e e e e e e e e e e
Why is join() a string method instead of a list or tuple method?
How fast are exceptions? e e
Why isn’t there a switch or case statement in Python? oL 0.
Can’t you emulate threads in the interpreter instead of relying on an OS-specific thread implementation?

Can Python be compiled to machine code, C or some other language?
How does Python manage memory? e e
Why doesn’t CPython use a more traditional garbage collection scheme?
Why isn’t all memory freed when CPython exits?,

How are lists implemented in CPython?,
How are dictionaries implemented in CPython?
Why must dictionary keys be immutable? 000 0oL
Why doesn’t list.sort() return the sorted list?
How do you specify and enforce an interface spec in Python?

Why can’t raw strings (r-strings) end with a backslash?00
Why doesn’t Python have a “with” statement for attribute assignments?
Why don’t generators support the with statement? oL

4 Library and Extension FAQ

4.1

4.2

4.3

General Library QUestions e e e e e e
4.1.1 How do I find a module or application to perform task X?
4.1.2 Where is the math.py (socket.py, regex.py, etc.) source file?
4.1.3 How do I make a Python script executable on Unix?
4.1.4 Is there a curses/termcap package for Python?00 0oL,
4.1.5 Is there an equivalent to C’s onexit() in Python?
4.1.6 Why don’t my signal handlers work? oo
Commontasks L
4.2.1 How do I test a Python program or component?
4.2.2 How do I create documentation from doc strings?,
423 HowdoIgetasingle keypressatatime?
Threads e e
43.1 HowdoIprogram using threads? e
4.3.2 None of my threads seem torun: why? e
4.3.3 How do I parcel out work among a bunch of worker threads?

40

41
41
41
42
42
42
43

43
44
44
45
45
45
46
46
46
47
47
47
47
48
49
49
50
50
51
52
52
52

55
55
55
55
55
56
56
56
57
57
57
57
58
58
58
59

4.3.4 What kinds of global value mutation are thread-safe? 60

4.3.5 Can’t we getrid of the Global Interpreter Lock? 60
4.4 Inputand OULPUL L L e e e e e e e e e e e e 61
44.1 How doI delete a file? (And other file questions...) 61
442 Howdolcopyafile? e 61
443 HowdoIread (or write) binary data? L 62
444 Tcan’t seem to use os.read() on a pipe created with os.popen(); why? 62
4.4.5 How doIaccess the serial (RS232) port? it 62
4.4.6 Why doesn’t closing sys.stdout (stdin, stderr) really close it? 62
4.5 Network/Internet Programming oL Lo 63
4.5.1 What WWW tools are there for Python?, 63
4.5.2 How can I mimic CGI form submission (METHOD=POST)? 63
4.5.3 What module should I use to help with generating HTML? 64
454 How doIsend mail from a Python script? 64
4.5.5 How do I avoid blocking in the connect() method of a socket? 64
4.6 Databases e e e 65
4.6.1 Are there any interfaces to database packages in Python? 65
4.6.2 How do you implement persistent objects in Python? 65
47 Mathematicsand Numerics oo e 65
4.77.1 How do I generate random numbers in Python? 65
Extending/Embedding FAQ 67
5.1 Canlcreate my own functionsin C? e e 67
5.2 Canlcreate my own functions in C++? L o 67
5.3 Writing C is hard; are there any alternatives? 67
5.4 How can I execute arbitrary Python statements from C? 67
5.5 How can I evaluate an arbitrary Python expression from C? 68
5.6 How do I extract C values from a Pythonobject? 68
5.7 How do I use Py_BuildValue() to create a tuple of arbitrary length? 68
5.8 HowdoIcall anobject’s method from C? 68
5.9 How do I catch the output from PyErr_Print() (or anything that prints to stdout/stderr)? 69
5.10 How do I access a module written in Python from C? 69
5.11 How do Linterface to C++ objects from Python? 70
5.12 Tadded a module using the Setup file and the make fails; why? 70
5.13 HowdolIdebuganextension? e 70
5.14 I want to compile a Python module on my Linux system, but some files are missing. Why? 70
5.15 How do I tell “incomplete input” from “invalid input”™? oL, 71
5.16 How do I find undefined g++ symbols __builtin_new or __pure_virtual? 73
5.17 Can I create an object class with some methods implemented in C and others in Python (e.g. through
INheritance)? e 73
Python on Windows FAQ 75
6.1 How do I run a Python program under Windows? 75
6.2 How do I make Python scripts executable? oL 0oL 76
6.3 Why does Python sometimes take so long tostart? Lo 76
6.4 How do I make an executable from a Python script?, 76
6.5 Isa~*.pydfilethesameasaDLL? 77
6.6 How can I embed Python into a Windows application? 77
6.7 How do I keep editors from inserting tabs into my Python source? 78
6.8 How do I check for a keypress without blocking? 78
Graphic User Interface FAQ 79
7.1 General GUL QUESHIONS o ot v it e e e e e e e e e e e e 79
7.2 What platform-independent GUI toolkits exist for Python? 79

T2.1 TKINEr . . . o o e e e e e e e e e e e e e 79

722 WXWIAEEIS . . . o e e e e e e e e e e e e e 79
723 QU o e e e 79
T24 Gtk . . oo e e e e 80
725 Kivy . o o 80
7.2.6 FLTK . . . o e 80
7277 0penGL e e e e e e e e 80
7.3 What platform-specific GUI toolkits exist for Python?, 80
7.4 TKinter QUESLIONS L e e e e e e e e e e e e e 80
7.4.1 HowdoIfreeze Tkinter applications? i 80
7.4.2 CanI have Tk events handled while waiting for /O? 81
7.4.3 Ican’t get key bindings to work in Tkinter: why? 81
8 “Why is Python Installed on my Computer?” FAQ 83
8.1 Whatis Python? e 83
8.2 Why is Python installed on my machine? L 83
83 Canldelete Python? e 83
A Glossary 85
B About these documents 99
B.1 Contributors to the Python Documentation 99
C History and License 101
C.1 Historyof thesoftware e e 101
C.2 Terms and conditions for accessing or otherwise using Python 102
C.2.1 PSF LICENSE AGREEMENT FOR PYTHON 3.10.0rcl 102
C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON2.0 103
C.2.3 CNRILICENSE AGREEMENT FOR PYTHON 1.6.1 104
C.24 CWILICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2 105
C.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.10.0rcl DOCUMENTA-
TION . . e e 105
C.3 Licenses and Acknowledgements for Incorporated Software 106
C3.1 Mersenne TWIStEr oo v ittt e e e e e e e 106
C.3.2 Sockets e e e e e e 107
C.3.3 Asynchronous socket ServiCes o v v it v ittt e e e 107
C34 Cookie management i e e e e e e e e e e e e e 108
C.3.5 EXecution traCing v v v v v i e 108
C.3.6 UUencode and UUdecode functionst i .. 109
C.3.7 XML Remote Procedure Calls e 109
C.3.8 test_epoll e e e e e 110
C39 Selectkqueue e e 110
C3.10 SipHash24 e e 111
C3.11 strtodanddtoa. L e e e 111
C3.12 OpenSSL o o e 112
C3U3 expat. . . . o v e e e e e e e e e e 114
C3.14 Lbfli o e 115
C3.05 zlib . . . e e 115
C3.16 cfuhash e 116
C3.07 Hbmpdec e e e e e e e e e 116
C3.18 W3C CIANLEStSUIE . . o v v v v v o o e 117
D Copyright 119
Index 121

Vi

CHAPTER
ONE

GENERAL PYTHON FAQ

1.1 General Information

1.1.1 What is Python?

Python is an interpreted, interactive, object-oriented programming language. It incorporates modules, exceptions, dy-
namic typing, very high level dynamic data types, and classes. It supports multiple programming paradigms beyond
object-oriented programming, such as procedural and functional programming. Python combines remarkable power with
very clear syntax. It has interfaces to many system calls and libraries, as well as to various window systems, and is exten-
sible in C or C++. It is also usable as an extension language for applications that need a programmable interface. Finally,
Python is portable: it runs on many Unix variants including Linux and macOS, and on Windows.

To find out more, start with tutorial-index. The Beginner’s Guide to Python links to other introductory tutorials and
resources for learning Python.

1.1.2 What is the Python Software Foundation?

The Python Software Foundation is an independent non-profit organization that holds the copyright on Python versions
2.1 and newer. The PSF’s mission is to advance open source technology related to the Python programming language and
to publicize the use of Python. The PSF’s home page is at https://www.python.org/psf/.

Donations to the PSF are tax-exempt in the US. If you use Python and find it helpful, please contribute via the PSF
donation page.

1.1.3 Are there copyright restrictions on the use of Python?

You can do anything you want with the source, as long as you leave the copyrights in and display those copyrights in any
documentation about Python that you produce. If you honor the copyright rules, it’'s OK to use Python for commercial
use, to sell copies of Python in source or binary form (modified or unmodified), or to sell products that incorporate Python
in some form. We would still like to know about all commercial use of Python, of course.

See the PSF license page to find further explanations and a link to the full text of the license.

The Python logo is trademarked, and in certain cases permission is required to use it. Consult the Trademark Usage
Policy for more information.

https://wiki.python.org/moin/BeginnersGuide
https://www.python.org/psf/
https://www.python.org/psf/donations/
https://www.python.org/psf/donations/
https://www.python.org/psf/license/
https://www.python.org/psf/trademarks/
https://www.python.org/psf/trademarks/

Python Frequently Asked Questions, Release 3.10.0rc1

1.1.4 Why was Python created in the first place?

Here’s a very brief summary of what started it all, written by Guido van Rossum:

I had extensive experience with implementing an interpreted language in the ABC group at CWI, and from
working with this group I had learned a lot about language design. This is the origin of many Python fea-
tures, including the use of indentation for statement grouping and the inclusion of very-high-level data types
(although the details are all different in Python).

I had a number of gripes about the ABC language, but also liked many of its features. It was impossible to
extend the ABC language (or its implementation) to remedy my complaints — in fact its lack of extensibility
was one of its biggest problems. I had some experience with using Modula-2+ and talked with the designers
of Modula-3 and read the Modula-3 report. Modula-3 is the origin of the syntax and semantics used for
exceptions, and some other Python features.

I was working in the Amoeba distributed operating system group at CWI. We needed a better way to do
system administration than by writing either C programs or Bourne shell scripts, since Amoeba had its own
system call interface which wasn’t easily accessible from the Bourne shell. My experience with error handling
in Amoeba made me acutely aware of the importance of exceptions as a programming language feature.

It occurred to me that a scripting language with a syntax like ABC but with access to the Amoeba system
calls would fill the need. I realized that it would be foolish to write an Amoeba-specific language, so I decided
that I needed a language that was generally extensible.

During the 1989 Christmas holidays, I had a lot of time on my hand, so I decided to give it a try. During
the next year, while still mostly working on it in my own time, Python was used in the Amoeba project with
increasing success, and the feedback from colleagues made me add many early improvements.

In February 1991, after just over a year of development, I decided to post to USENET. The rest is in the
Misc/HISTORY file.

1.1.5 What is Python good for?

Python is a high-level general-purpose programming language that can be applied to many different classes of problems.

The language comes with a large standard library that covers areas such as string processing (regular expressions, Uni-
code, calculating differences between files), internet protocols (HTTP, FTP, SMTP, XML-RPC, POP, IMAP, CGI pro-
gramming), software engineering (unit testing, logging, profiling, parsing Python code), and operating system interfaces
(system calls, filesystems, TCP/IP sockets). Look at the table of contents for library-index to get an idea of what’s avail-
able. A wide variety of third-party extensions are also available. Consult the Python Package Index to find packages of
interest to you.

1.1.6 How does the Python version numbering scheme work?

Python versions are numbered A.B.C or A.B. A is the major version number — it is only incremented for really major
changes in the language. B is the minor version number, incremented for less earth-shattering changes. C is the micro-level
— it is incremented for each bugfix release. See PEP 6 for more information about bugfix releases.

Not all releases are bugfix releases. In the run-up to a new major release, a series of development releases are made,
denoted as alpha, beta, or release candidate. Alphas are early releases in which interfaces aren’t yet finalized; it’s not
unexpected to see an interface change between two alpha releases. Betas are more stable, preserving existing interfaces
but possibly adding new modules, and release candidates are frozen, making no changes except as needed to fix critical
bugs.

Alpha, beta and release candidate versions have an additional suffix. The suffix for an alpha version is “aN” for some small
number N, the suffix for a beta version is “bN” for some small number N, and the suffix for a release candidate version

2 Chapter 1. General Python FAQ

https://pypi.org
https://www.python.org/dev/peps/pep-0006

Python Frequently Asked Questions, Release 3.10.0rc1

is “rcN” for some small number N. In other words, all versions labeled 2.0aN precede the versions labeled 2.0bN, which
precede versions labeled 2.0rcN, and those precede 2.0.

You may also find version numbers with a “+” suffix, e.g. “2.2+”. These are unreleased versions, built directly from the
CPython development repository. In practice, after a final minor release is made, the version is incremented to the next
minor version, which becomes the “a0” version, e.g. “2.4a0”.

See also the documentation for sys.version, sys.hexversion,and sys.version_info.

1.1.7 How do | obtain a copy of the Python source?
The latest Python source distribution is always available from python.org, at https://www.python.org/downloads/. The
latest development sources can be obtained at https://github.com/python/cpython/.

The source distribution is a gzipped tar file containing the complete C source, Sphinx-formatted documentation, Python
library modules, example programs, and several useful pieces of freely distributable software. The source will compile
and run out of the box on most UNIX platforms.

Consult the Getting Started section of the Python Developer’s Guide for more information on getting the source code and
compiling it.

1.1.8 How do | get documentation on Python?
The standard documentation for the current stable version of Python is available at https://docs.python.org/3/. PDF, plain
text, and downloadable HTML versions are also available at https://docs.python.org/3/download.html.

The documentation is written in reStructuredText and processed by the Sphinx documentation tool. The reStructuredText
source for the documentation is part of the Python source distribution.

1.1.9 I've never programmed before. Is there a Python tutorial?

There are numerous tutorials and books available. The standard documentation includes tutorial-index.

Consult the Beginner’s Guide to find information for beginning Python programmers, including lists of tutorials.

1.1.10 Is there a newsgroup or mailing list devoted to Python?

There is a newsgroup, comp . lang.python, and a mailing list, python-list. The newsgroup and mailing list are gate-
wayed into each other — if you can read news it’s unnecessary to subscribe to the mailing list. comp. lang.pythonis
high-traffic, receiving hundreds of postings every day, and Usenet readers are often more able to cope with this volume.

Announcements of new software releases and events can be found in comp.lang.python.announce, a low-traffic moderated
list that receives about five postings per day. It’s available as the python-announce mailing list.

More info about other mailing lists and newsgroups can be found at https://www.python.org/community/lists/.

1.1. General Information 3

https://www.python.org/downloads/
https://github.com/python/cpython/
https://devguide.python.org/setup/
https://docs.python.org/3/
https://docs.python.org/3/download.html
http://sphinx-doc.org/
https://wiki.python.org/moin/BeginnersGuide
https://mail.python.org/mailman/listinfo/python-list
https://mail.python.org/mailman/listinfo/python-announce-list
https://www.python.org/community/lists/

Python Frequently Asked Questions, Release 3.10.0rc1

1.1.11 How do | get a beta test version of Python?

Alpha and beta releases are available from https://www.python.org/downloads/. All releases are announced on the
comp.lang.python and comp.lang.python.announce newsgroups and on the Python home page at https://www.python.org/;
an RSS feed of news is available.

You can also access the development version of Python through Git. See The Python Developer’s Guide for details.

1.1.12 How do | submit bug reports and patches for Python?

To report a bug or submit a patch, please use the Roundup installation at https://bugs.python.org/.

You must have a Roundup account to report bugs; this makes it possible for us to contact you if we have follow-up
questions. It will also enable Roundup to send you updates as we act on your bug. If you had previously used SourceForge
to report bugs to Python, you can obtain your Roundup password through Roundup’s password reset procedure.

For more information on how Python is developed, consult the Python Developer’s Guide.

1.1.13 Are there any published articles about Python that | can reference?

It’s probably best to cite your favorite book about Python.
The very first article about Python was written in 1991 and is now quite outdated.

Guido van Rossum and Jelke de Boer, “Interactively Testing Remote Servers Using the Python Programming
Language”, CWI Quarterly, Volume 4, Issue 4 (December 1991), Amsterdam, pp 283-303.

1.1.14 Are there any books on Python?

Yes, there are many, and more are being published. See the python.org wiki at https://wiki.python.org/moin/PythonBooks
for a list.

You can also search online bookstores for “Python” and filter out the Monty Python references; or perhaps search for
“Python” and “language”.

1.1.15 Where in the world is www.python.org located?

The Python project’s infrastructure is located all over the world and is managed by the Python Infrastructure Team. Details
here.

1.1.16 Why is it called Python?

When he began implementing Python, Guido van Rossum was also reading the published scripts from “Monty Python’s
Flying Circus”, a BBC comedy series from the 1970s. Van Rossum thought he needed a name that was short, unique, and
slightly mysterious, so he decided to call the language Python.

4 Chapter 1. General Python FAQ

https://www.python.org/downloads/
https://www.python.org/
https://devguide.python.org/
https://bugs.python.org/
https://bugs.python.org/user?@template=forgotten
https://devguide.python.org/
https://wiki.python.org/moin/PythonBooks
http://infra.psf.io
https://en.wikipedia.org/wiki/Monty_Python
https://en.wikipedia.org/wiki/Monty_Python

Python Frequently Asked Questions, Release 3.10.0rc1

1.1.17 Do | have to like “Monty Python’s Flying Circus”?

No, but it helps. :)

1.2 Python in the real world

1.2.1 How stable is Python?

Very stable. New, stable releases have been coming out roughly every 6 to 18 months since 1991, and this seems likely
to continue. As of version 3.9, Python will have a major new release every 12 months (PEP 602).

The developers issue “bugfix” releases of older versions, so the stability of existing releases gradually improves. Bugfix
releases, indicated by a third component of the version number (e.g. 3.5.3, 3.6.2), are managed for stability; only fixes
for known problems are included in a bugfix release, and it’s guaranteed that interfaces will remain the same throughout
a series of bugfix releases.

The latest stable releases can always be found on the Python download page. There are two production-ready versions of
Python: 2.x and 3.x. The recommended version is 3.x, which is supported by most widely used libraries. Although 2.x is
still widely used, it is not maintained anymore.

1.2.2 How many people are using Python?

There are probably millions of users, though it’s difficult to obtain an exact count.

Python is available for free download, so there are no sales figures, and it’s available from many different sites and packaged
with many Linux distributions, so download statistics don’t tell the whole story either.

The comp.lang.python newsgroup is very active, but not all Python users post to the group or even read it.

1.2.3 Have any significant projects been done in Python?
See https://www.python.org/about/success for a list of projects that use Python. Consulting the proceedings for past
Python conferences will reveal contributions from many different companies and organizations.

High-profile Python projects include the Mailman mailing list manager and the Zope application server. Several Linux
distributions, most notably Red Hat, have written part or all of their installer and system administration software in Python.
Companies that use Python internally include Google, Yahoo, and Lucasfilm Ltd.

1.2.4 What new developments are expected for Python in the future?

See https://www.python.org/dev/peps/ for the Python Enhancement Proposals (PEPs). PEPs are design documents de-
scribing a suggested new feature for Python, providing a concise technical specification and a rationale. Look for a PEP
titled “Python X.Y Release Schedule”, where X.Y is a version that hasn’t been publicly released yet.

New development is discussed on the python-dev mailing list.

1.2. Python in the real world 5

https://www.python.org/dev/peps/pep-0602
https://www.python.org/downloads/
https://www.python.org/dev/peps/pep-0373/
https://www.python.org/about/success
https://www.python.org/community/workshops/
https://www.python.org/community/workshops/
http://www.list.org
http://www.zope.org
https://www.redhat.com
https://www.python.org/dev/peps/
https://mail.python.org/mailman/listinfo/python-dev/

Python Frequently Asked Questions, Release 3.10.0rc1

1.2.5 Is it reasonable to propose incompatible changes to Python?

In general, no. There are already millions of lines of Python code around the world, so any change in the language that
invalidates more than a very small fraction of existing programs has to be frowned upon. Even if you can provide a
conversion program, there’s still the problem of updating all documentation; many books have been written about Python,
and we don’t want to invalidate them all at a single stroke.

Providing a gradual upgrade path is necessary if a feature has to be changed. PEP 5 describes the procedure followed
for introducing backward-incompatible changes while minimizing disruption for users.

1.2.6 Is Python a good language for beginning programmers?

Yes.

It is still common to start students with a procedural and statically typed language such as Pascal, C, or a subset of C++
or Java. Students may be better served by learning Python as their first language. Python has a very simple and consistent
syntax and a large standard library and, most importantly, using Python in a beginning programming course lets students
concentrate on important programming skills such as problem decomposition and data type design. With Python, students
can be quickly introduced to basic concepts such as loops and procedures. They can probably even work with user-defined
objects in their very first course.

For a student who has never programmed before, using a statically typed language seems unnatural. It presents additional
complexity that the student must master and slows the pace of the course. The students are trying to learn to think like
a computer, decompose problems, design consistent interfaces, and encapsulate data. While learning to use a statically
typed language is important in the long term, it is not necessarily the best topic to address in the students’ first programming
course.

Many other aspects of Python make it a good first language. Like Java, Python has a large standard library so that
students can be assigned programming projects very early in the course that do something. Assignments aren’t restricted
to the standard four-function calculator and check balancing programs. By using the standard library, students can gain
the satisfaction of working on realistic applications as they learn the fundamentals of programming. Using the standard
library also teaches students about code reuse. Third-party modules such as PyGame are also helpful in extending the
students’ reach.

Python’s interactive interpreter enables students to test language features while they’re programming. They can keep a
window with the interpreter running while they enter their program’s source in another window. If they can’t remember
the methods for a list, they can do something like this:

>>> L = []

>>> dir (L)

['_add__ "', '__class__ ', '_ _contains__ ', '__delattr__ ', '__delitem__ "',
' dir__ ', '__doc__', '_eq ', '__format__', '__ge ',

' __getattribute__', '__getitem ', '__gt__ ', '__hash__', '__iadd__"',
' dimul_ ', '__init_ ', '__iter_ ', '_le_ ', '_len_ ', '__1t_ "',

' mul_ ', '_ne_ ', '_new__', '_ _reduce__ ', '_ reduce_ex__ ',

' _repr__ ', '__reversed__', '_rmul__', '__setattr_ ', '__setitem__ ',
' _sizeof_ ', '__str__', '__subclasshook__"', 'append', 'clear',

'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove',

'reverse', 'sort']

>>> [d for d in dir (L) if '__ ' not in d]

["append', 'clear', 'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove',
—'reverse', 'sort']

>>> help (L.append)
Help on built-in function append:

(continues on next page)

6 Chapter 1. General Python FAQ

https://www.python.org/dev/peps/pep-0005

Python Frequently Asked Questions, Release 3.10.0rc1

(continued from previous page)

append (...)
L.append (object) —-> None —-- append object to end

>>> L.append (1)
>>> L,
(1]

With the interpreter, documentation is never far from the student as they are programming.

There are also good IDEs for Python. IDLE is a cross-platform IDE for Python that is written in Python using Tkinter.
PythonWin is a Windows-specific IDE. Emacs users will be happy to know that there is a very good Python mode for
Emacs. All of these programming environments provide syntax highlighting, auto-indenting, and access to the interactive
interpreter while coding. Consult the Python wiki for a full list of Python editing environments.

If you want to discuss Python’s use in education, you may be interested in joining the edu-sig mailing list.

1.2. Python in the real world 7

https://wiki.python.org/moin/PythonEditors
https://www.python.org/community/sigs/current/edu-sig

Python Frequently Asked Questions, Release 3.10.0rc1

8 Chapter 1. General Python FAQ

CHAPTER
TWO

PROGRAMMING FAQ

2.1 General Questions

2.1.1 Isthere a source code level debugger with breakpoints, single-stepping, etc.?

Yes.

Several debuggers for Python are described below, and the built-in function breakpoint () allows you to drop into
any of them.

The pdb module is a simple but adequate console-mode debugger for Python. It is part of the standard Python library,
and is documented in the Library Reference Manual. You can also write your own debugger by using
the code for pdb as an example.

The IDLE interactive development environment, which is part of the standard Python distribution (normally available as
Tools/scripts/idle), includes a graphical debugger.

PythonWin is a Python IDE that includes a GUI debugger based on pdb. The PythonWin debugger colors breakpoints
and has quite a few cool features such as debugging non-PythonWin programs. PythonWin is available as part of pywin32
project and as a part of the ActivePython distribution.

Eric is an IDE built on PyQt and the Scintilla editing component.
trepan3k is a gdb-like debugger.
Visual Studio Code is an IDE with debugging tools that integrates with version-control software.
There are a number of commercial Python IDEs that include graphical debuggers. They include:
* Wing IDE
e Komodo IDE
e PyCharm

2.1.2 Are there tools to help find bugs or perform static analysis?

Yes.
Pylint and Pyflakes do basic checking that will help you catch bugs sooner.

Static type checkers such as Mypy, Pyre, and Pytype can check type hints in Python source code.

https://github.com/mhammond/pywin32
https://www.activestate.com/products/python/
http://eric-ide.python-projects.org/
https://github.com/rocky/python3-trepan/
https://code.visualstudio.com/
https://wingware.com/
https://www.activestate.com/products/komodo-ide/
https://www.jetbrains.com/pycharm/
https://www.pylint.org/
https://github.com/PyCQA/pyflakes
http://mypy-lang.org/
https://pyre-check.org/
https://github.com/google/pytype

Python Frequently Asked Questions, Release 3.10.0rc1

2.1.3 How can | create a stand-alone binary from a Python script?

You don’t need the ability to compile Python to C code if all you want is a stand-alone program that users can download
and run without having to install the Python distribution first. There are a number of tools that determine the set of
modules required by a program and bind these modules together with a Python binary to produce a single executable.

One is to use the freeze tool, which is included in the Python source tree as Tools/freeze. It converts Python byte
code to C arrays; a C compiler you can embed all your modules into a new program, which is then linked with the standard
Python modules.

It works by scanning your source recursively for import statements (in both forms) and looking for the modules in the
standard Python path as well as in the source directory (for built-in modules). It then turns the bytecode for modules
written in Python into C code (array initializers that can be turned into code objects using the marshal module) and
creates a custom-made config file that only contains those built-in modules which are actually used in the program. It then
compiles the generated C code and links it with the rest of the Python interpreter to form a self-contained binary which
acts exactly like your script.

The following packages can help with the creation of console and GUI executables:
* Nuitka (Cross-platform)
* Pylnstaller (Cross-platform)
* PyOxidizer (Cross-platform)
¢ cx_Freeze (Cross-platform)
e py2app (macOS only)
* py2exe (Windows only)

2.1.4 Are there coding standards or a style guide for Python programs?

Yes. The coding style required for standard library modules is documented as PEP 8.

2.2 Core Language

2.2.1 Why am | getting an UnboundLocalError when the variable has a value?

It can be a surprise to get the UnboundLocalError in previously working code when it is modified by adding an assignment
statement somewhere in the body of a function.

This code:

>>> x = 10

>>> def bar():
print (x)

>>> bar ()

10

works, but this code:

>>> x = 10

>>> def fool():
print (x)
x += 1

10 Chapter 2. Programming FAQ

https://nuitka.net/
http://www.pyinstaller.org/
https://pyoxidizer.readthedocs.io/en/stable/
https://marcelotduarte.github.io/cx_Freeze/
https://github.com/ronaldoussoren/py2app
http://www.py2exe.org/
https://www.python.org/dev/peps/pep-0008

Python Frequently Asked Questions, Release 3.10.0rc1

results in an UnboundLocalError:

>>> foo ()
Traceback (most recent call last):

UnboundLocalError: local variable 'x' referenced before assignment

This is because when you make an assignment to a variable in a scope, that variable becomes local to that scope and
shadows any similarly named variable in the outer scope. Since the last statement in foo assigns a new value to x, the
compiler recognizes it as a local variable. Consequently when the earlier print (x) attempts to print the uninitialized
local variable and an error results.

In the example above you can access the outer scope variable by declaring it global:

>>> x = 10

>>> def foobar():
global x
print (x)

C x += 1

>>> foobar ()

10

This explicit declaration is required in order to remind you that (unlike the superficially analogous situation with class and
instance variables) you are actually modifying the value of the variable in the outer scope:

>>> print (x)
11

You can do a similar thing in a nested scope using the nonlocal keyword:

>>> def foo():

x = 10
def bar():
nonlocal x
print (x)
X += 1
bar ()
print (x)
>>> foo ()
10
11

2.2.2 What are the rules for local and global variables in Python?

In Python, variables that are only referenced inside a function are implicitly global. If a variable is assigned a value
anywhere within the function’s body, it’s assumed to be a local unless explicitly declared as global.

Though a bit surprising at first, a moment’s consideration explains this. On one hand, requiring global for assigned
variables provides a bar against unintended side-effects. On the other hand, if global was required for all global
references, you'd be using global all the time. You'd have to declare as global every reference to a built-in function
or to a component of an imported module. This clutter would defeat the usefulness of the global declaration for
identifying side-effects.

2.2. Core Language 11

Python Frequently Asked Questions, Release 3.10.0rc1

2.2.3 Why do lambdas defined in a loop with different values all return the same
result?

Assume you use a for loop to define a few different lambdas (or even plain functions), e.g.:

>>> squares = []
>>> for x in range(5):
squares.append (lambda: x**2)

This gives you a list that contains 5 lambdas that calculate x* *2. You might expect that, when called, they would return,
respectively, 0, 1, 4, 9, and 1 6. However, when you actually try you will see that they all return 1 6:

>>> squares[2] ()
16
>>> squares[4] ()
16

This happens because x is not local to the lambdas, but is defined in the outer scope, and it is accessed when the lambda
is called — not when it is defined. At the end of the loop, the value of x is 4, so all the functions now return 4* *2, i.e.
16. You can also verify this by changing the value of x and see how the results of the lambdas change:

>>> x = 8
>>> squares[2] ()
64

In order to avoid this, you need to save the values in variables local to the lambdas, so that they don’t rely on the value of
the global x:

>>> squares = []
>>> for x in range(5):
squares.append (lambda n=x: n**2)

Here, n=x creates a new variable n local to the lambda and computed when the lambda is defined so that it has the same
value that x had at that point in the loop. This means that the value of n will be O in the first lambda, 1 in the second, 2
in the third, and so on. Therefore each lambda will now return the correct result:

>>> squares|[2] ()
4

>>> squares[4] ()
16

Note that this behaviour is not peculiar to lambdas, but applies to regular functions too.

2.2.4 How do | share global variables across modules?

The canonical way to share information across modules within a single program is to create a special module (often called
config or cfg). Just import the config module in all modules of your application; the module then becomes available as
a global name. Because there is only one instance of each module, any changes made to the module object get reflect