Python Library Reference
Release 2.1.2

Guido van Rossum

Fred L. Drake, Jr., editor

January 16, 2002

PythonLabs
E-mail: python-docs@python.org



Copyright(© 2001-2002 Python Software Foundation. All rights reserved.

Copyright(© 2000 BeOpen.com. All rights reserved.

Copyright(© 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright(© 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See the end of this document for complete license and permissions information.



Abstract

Python is an extensible, interpreted, object-oriented programming language. It supports a wide range of applications,
from simple text processing scripts to interactive WWW browsers.

While thePython Reference Manudkscribes the exact syntax and semantics of the language, it does not describe
the standard library that is distributed with the language, and which greatly enhances its immediate usability. This
library contains built-in modules (written in C) that provide access to system functionality such as file /O that would
otherwise be inaccessible to Python programmers, as well as modules written in Python that provide standardized
solutions for many problems that occur in everyday programming. Some of these modules are explicitly designed to
encourage and enhance the portability of Python programs.

This library reference manual documents Python’s standard library, as well as many optional library modules (which

may or may not be available, depending on whether the underlying platform supports them and on the configuration
choices made at compile time). It also documents the standard types of the language and its built-in functions and
exceptions, many of which are not or incompletely documented in the Reference Manual.

This manual assumes basic knowledge about the Python language. For an informal introduction to Python, see the
Python Tutoriaj the Python Reference Manuatmains the highest authority on syntactic and semantic questions.
Finally, the manual entitleBxtending and Embedding the Python Interpretescribes how to add new extensions to
Python and how to embed it in other applications.






CONTENTS

1 Introduction 1

2 Built-in Types, Exceptions and Functions 3
2.1 Built-in TYPES . . . . 3
2.2 BUIlt-INEXCEPLiONS . . . . . o o e e e e 16
2.3 BUilt-in FUNCLONS . . . . . . . L e e e 20

3 Python Runtime Services 29
3.1 sys — System-specific parameters and functions. . . . . . . ... ... o oL 29
3.2 gc — Garbage Collectorinterface. . . . . . . . . . . . .. e 34
3.3 weakref —Weakreferences. . . . . . . . e 35
3.4 fpectl —Floating pointexceptioncontrol . . . . . . . .. .. ... ... ... .. . ... 39
3.5 atexit —Exithandlers. . . . . . . . ... 40
3.6 types —Namesforallbuilt-intypes. . . . . . .. .. 41
3.7 UserDict — Class wrapper for dictionaryobjects . . . . .. ... .. .. ... ... ...... 43
3.8 UserList —Classwrapperforlistobjects . . . .. ... ... .. ... . ... . ... ..... 43
3.9 UserString — Class wrapper forstringobjects. . . . . . .. .. ... ... ... ....... 44
3.10 operator — Standard operatorsasfunctions.. . . .. .. ... ... oL 44
3.11 inspect —Inspectliveobjects. . . . . . . . .. a7
3.12 traceback — Printorretrieve a stacktraceback. . . . . . ... ... o oL 52
3.13 linecache —Randomaccesstotextlines. . . . . .. .. . . ... .. ... . ... ... ... 53
3.14 pickle — Python objectserialization . . . .. .. ... ... .. ... . ... . .. .. 54
3.15 cPickle — Alternate implementation giickle . . . . . .. ... ... oo Lo 59
3.16 copy _reg — Registempickle supportfunctions. . . . .. ... ... .. L. 59
3.17 shelve — Python objectpersistence. . . . . . . . . . . 59
3.18 copy — Shallow and deep copy operations . . . . . . . . . . . . . . . . e 60
3.19 marshal — Alternate Python object serialization. . . . .. ... ... ... ... ........ 61
3.20 warnings —Warningcontrol. . . . . . ... 62
3.21 imp — Accessthémport internals. . . . . . . . .. 64
3.22 code — Interpreterbase classes . . . . . . . . . 67
3.23 codeop — Compile Pythoncode . . . . . . . . . . . . .. . .. e 69
3.24 pprint —Dataprettyprinter . . . . . . . .. e e e e e e e e e 69
3.25 repr — Alternaterepr() implementation. . . . . . .. ... o o 71
3.26 new — Creation of runtime internal objects. . . . . . . . . . . ... .. oo 73
3.27 site — Site-specific configurationhook . . . . . . . . . . ... L 73
3.28 user — User-specific configurationhook . . . . . .. . ... ... . oo 74
3.29 __builtin __ —Built-infunctions. . . . . . ... 75
3.30 __main __ — Top-level scriptenvironment. . . . . . . . .. . ... ... ... 75




4 String Services 77
4.1 string —Commonstringoperations . . . . . . .. .. e e e e 77
4.2 re —Regularexpression operations . . . . . . . ... 80
4.3 struct —Interpretstrings as packed binarydata . . . . ... ... ... L 88
4.4  difflib — Helpers forcomputingdeltas . . . . . .. ... ... . ... . .. .. .. .. 90
45 fpformat — Floating pointconversions. . . . . . . . . . . . e 94
4.6 Stringl0 — Read and write stringsasfiles. . . . ... ... ... ... .. ... ... ... .. 94
4.7 cStringlO  — Faster version oBtringlO . . . . .. 95
4.8 codecs — Codecregistryandbaseclasses. . . . . . ... . ... ..o 95
4.9 unicodedata —Unicode Database. . . . . . . . . . . .. . ... 100
Miscellaneous Services 101
5.1 doctest — Testdocstringsrepresentreality . . . . . . .. ... .. ... ... oL 101
5.2 unittest —Unittestingframework. . . . . . . .. ... ... .. ... 108
5.3 math — Mathematical functions. . . . . . . . . .. . . . 117
5.4 cmath — Mathematical functions for complexnumbers . . . . . . ... ... ... ... .... 119
5.5 random — Generate pseudo-randomnumbers. . . . . . . .. . ... o oL 120
5.6 whrandom — Pseudo-random number generator. . . . . . . . . . . ... 123
5.7 bisect — Array bisection algorithm . . . . . . . . . . ... .. ... 124
5.8 array — Efficientarraysofnumericvalues. . . . ... ... .. ... .. ... .. .. ... .. 125
5.9 ConfigParser — Configurationfileparser. . . . . .. .. ... ... . ... . ... ... ... 127
5.10 fileinput — Iterate over lines from multiple input streams . . . . . ... .. ... ... ... 129
5.11 xreadlines  — Efficientiterationoverafile. . . . . . . .. .. ... . oo oL 131
5.12 calendar — General calendar-related functions. . . . . . .. .. .. ... ... .. 132
5.13 cmd— Support for line-oriented command interpreters. . . . . . . . ... ... .. ... 133
5.14 shlex — Simplelexicalanalysis . . . . . . . . . . . . . . e 134
Generic Operating System Services 137
6.1 o0s —Miscellaneous OSinterfaces . . . . . . . . . . . 137
6.2 os.path — Common pathname manipulations. . . . . ... ... ... ... ... ....... 149
6.3 dircache —Cacheddirectorylistings. . . . . . . . . . . . . . 151
6.4 stat — Interpretingstat() results. . . . . . ... 151
6.5 statcache — Anoptimization ofos.stat() . . . .. .. .. .. L Lo 153
6.6 statvfs — Constants used withs.statvfs() . . . .. . . ... ... .. .. . . 154
6.7 filecmp — File and Directory Comparisons . . . . . . . . o v v i i e e e e 154
6.8 popen2 — Subprocesses with accessiblel/Ostreams. . . . . . .. ... ... ... ...... 156
6.9 time —TimeaccessandConversionsS . . . . . . . . . . . o i i 157
6.10 sched — Eventscheduler. . . . . . . . . e 161
6.11 mutex — Mutual exclusion support. . . . . . . . .. e e 162
6.12 getpass — Portable passwordinput. . . . . . . . . ... 163
6.13 curses — Terminal handling for character-cell displays. . . . . . ... ... ... ... .... 163
6.14 curses.textpad — Text input widget for curses programs . . . . . . . . . ... ... 178
6.15 curses.wrapper  — Terminal handler for curses programs . . . . . . . . .. ... ... ... 179
6.16 curses.ascii — Utilities for ASCll characters . . . . . . . . . . . . 179
6.17 curses.panel — A panel stack extensionforcurses.. . . . . ... ... ... ... ..., 182
6.18 getopt — Parser forcommand lineoptions. . . . . . . .. .. .. .. ... . . o 183
6.19 tempfile — Generate temporaryfilenames. . . . . ... ... ... ... .. . Lo 185
6.20 errno — Standard errnosystemsymbols. . . . . ... oL 185
6.21 glob — UNIX style pathname patternexpansion . . . . . . . . . . ... . . ... 191
6.22 fnmatch — UNix filename patternmatching . . . . . .. ... .. ... ... ... ....... 192
6.23 shutii — High-levelfile operations . . . . . . . . . . . . ... ... 192
6.24 locale — Internationalizationservices . . . . . . . . . ... 194
6.25 gettext — Multilingual internationalization services. . . . . . . . . ... ... .. L. 198




7

10

11

Optional Operating System Services 207
7.1 signal — Sethandlersforasynchronousevents. . . . .. .. .. .. ... . ... ... 207
7.2 socket — Low-level networkinginterface. . . . . .. . . ... oL 209
7.3 select — Waiting for I/O completion. . . . . . . . .. . 214
7.4 thread — Multiple threadsofcontrol. . . . . . . .. ... .. ... ... .. .. ... .. 216
7.5 threading — Higher-level threadinginterface. . . . . .. ... .. .. ... ... ....... 217
7.6 Queue —Asynchronizedqueueclass. . . . . . . . . ... ... e 223
7.7 mmap— Memory-mapped file support . . . .. ... 224
7.8 anydbm — Generic access to DBM-style databases . . . . . . . ... ... .. oL 225
7.9 dumbdbm— Portable DBM implementation . . . . . . . .. .. .. o 226
7.10 dbhash — DBM-style interface to the BSD database libraty. . . . . .. ... ... ... .... 226
7.11 whichdb — Guess which DBM module created adatabase. . . . . . . ... ... .. ..... 228
7.12 bsddb — Interface to Berkeley DB library . . . . . . . . . . 228
7.13 zlib — Compression compatible withzip . . . . . . . . ... 230
7.14 gzip — Support forgzipfiles . . . . . . . L 231
7.15 zipfile — Workwith ZIP archives. . . . . . . . . . . . .. e 232
7.16 readline —GNUreadlineinterface. . . . . . . . . . . . . . e 235
7.17 rlcompleter =~ — Completion function for GNU readline. . . . . .. . ... ... ... ..... 236
Unix Specific Services 239
8.1 posix — The most common POSIXsystemcalls. . . . .. ... ... ... .. .. ....... 239
8.2 pwd—Thepassworddatabase. . . . . . . . . . . . . . ... 240
8.3 grp —Thegroupdatabase . . . . . . . . . . e 241
8.4 crypt —Functiontocheck MiX passwords. . . . . . . . . . ..o 241
8.5 dl —CallCfunctionsinsharedobjects . . . . . . .. ... ... .. .. ... .. ... ..., 242
8.6 dbm— Simple “database” interface. . . . . . . . .. ... . 243
8.7 gdbm— GNU'sreinterpretationofdbm. . . . . . ... ... ... ... 244
8.8 termios —POSIXstylettycontrol. . . . . . . . . . 245
8.9 TERMIOS— Constants used with thermios module . . . . . ... ... ... ... ...... 246
8.10 tty — Terminal controlfunctions. . . . . . . . . . . . . . .. .. 247
8.11 pty — Pseudo-terminal utilities . . . . . . . . . . . .. e 247
8.12 fentl — Thefentl() andioctl() systemcalls. . . . ... ... ... ... ... ... 247
8.13 pipes — Interfaceto shell pipelines . . . . . . . . . . . . 249
8.14 posixfile — File-like objects with locking support . . . . . . ... ... ... ... . ... 250
8.15 resource — Resource usage information. . . . . . .. .. ... L L e 252
8.16 nis — Interfaceto Sun’s NIS (YellowPages) . . . . . . . . . . . . . .. . . .. . .. .. ..., 254
8.17 syslog — UNix sysloglibraryroutines . . . . . . . . . . . . .. . ... . e 255
8.18 commands— Utilities for runningcommands . . . . . . . . .. 255
The Python Debugger 257
9.1 DebuggerCommands . . . . . . . .. e e 258
9.2 How ItWOrks. . . . . . e e 260
The Python Profiler 263
10.1 Introductiontothe profiler . . . . . . . . . . .. 263
10.2 How Is This Profiler Different From The Old Profiler?. . . . . . . . . .. ... ... ... .... 263
10.3 InstantUsers Manual. . . . . . . . . . e e 264
10.4 What Is Deterministic Profiling?. . . . . . . . . . . . . . .. e 266
10.5 Reference Manual . . . . . . . . . . e 266
10.6 LimitationS. . . . o o o v e e e 269
10.7 Calibration. . . . . . . . e 269
10.8 Extensions — Deriving Better Profilers. . . . . . . . . . ... 270
Internet Protocols and Support 275
11.1 webbrowser — Convenient Web-browsercontroller. . . . . .. .. .. ... ... ....... 275




12

13

14

11.2 cgi — Common Gateway Interface support.. . . . . . . . . . . . . e 277

11.3 urlib  — Open arbitrary resourcesby URL . . . . . . . . . .. ... . ... . . ... 283
11.4 urllib2  — extensible library foropeningURLS . . . . . . . . . . ... oo 287
115 httplib  — HTTP protocol client. . . . . . . . . . . . 293
11.6 ftplib —FTP protocolclient. . . . . . . . . . . . . . . e 295
11.7 gopherlib — Gopher protocolclient . . . . . . .. . . ... . . ... .. 298
11.8 poplib —POP3protocolclient. . . . . . . . . . . . . e 298
11.9 imaplib — IMAP4 protocolclient . . . . . . . . . . . 300
11.20nntplib  — NNTP protocol client. . . . . . . . . . . . . 303
11.11smtplib  — SMTP protocol client. . . . . . . . . . . . 306
11.12telnetlib —Telnetclient . . . . . . .. e 309
11.13urlparse  — Parse URLsintocomponents. . . . . . . . . . . . . . i it 312
11.14SocketServer — A framework for networkservers. . . . . . . .. ... oL 313
11.15BaseHTTPServer —Basic HTTP server . . . . . . . . . . i i e et 315
11.16SimpleHTTPServer — Simple HTTP requesthandler . . . . . . .. ... ... ... ... .. 317
11.17CGIHTTPServer — CGl-capable HTTP requesthandler . . . . . .. ... .. .. ... .... 318
11.18Cookie — HTTP state management. . . . . . . . . . . i i i i i e e e e e e 319
11.19asyncore — Asynchronous sockethandler. . . . . . ... .. ... ... ... . ........ 323
Internet Data Handling 327
12.1 formatter — Genericoutputformatting . . . . . . . . . . .. ... ... 327
12.2 rfc822 —Parse RFC822mailheaders. . . . . . . . . . . . ... ... . . ... .. ... 331
12.3 mimetools — Tools for parsing MIME messages . . . . . . . . . . v 334
12.4 MimeWriter — Generic MIME filewriter . . . . . . . . . ... L o 335
12.5 multifile — Support for files containing distinctparts. . . . . .. .. ... ... ... ... . 336
12.6 binhex — Encode and decode binhex4files . . . . . ... ... ... . ... . . . . 338
12.7 uu — Encode and decode uuencodefiles . . . . . . ... L 339
12.8 binascii — Convert between binary amdsCIl . . . . . . . .. 339
12.9 xdrlib —Encode anddecode XDRdata. . . . . . .. . . .. . ... 341
12.10mailcap — Mailcap file handling.. . . . . . . . . . . . . . . . . 343
12.11mimetypes — Map filenamesto MIME types. . . . . . . . . . . . . i 344
12.12base64 — Encode and decode MIME base64 data. . . . . . ... ... ... ... ....... 345
12.13quopri — Encode and decode MIME quoted-printabledata . . . . . ... ... ... ... .. 346
12.14mailbox — Read various mailbox formats . . . . . . .. ... . Lo Lo Lo 346
12.15mhlib — Accessto MH mailboxes . . . . . . . . . . . L 347
12.16 mimify — MIME processingof mailmessages. . . . . . . . . . . . . . . . . . 349
12.17netrc —netrcfile processing. . . . . . . . . . L e e 350
12.18robotparser — Parserforrobots.txt . . . . . . ... o 351
Structured Markup Processing Tools 353
13.1 sgmllib  — Simple SGML parser. . . . . . . . o 0 e e e e 353
13.2 htmllib — AparserforHTMLdocuments . . . . . . . . . . . i v v i i 355
13.3 htmlentitydefs — Definitions of HTML general entities . . . . . . . ... ... ... .... 357
13.4 xml.parsers.expat — Fast XML parsingusingExpat . . . . .. .. ... ... oL 357
13.5 xml.dom — The Document Object Model APL. . . . . . . . . . . ... .. ... .. ... .... 363
13.6 xml.dom.minidom — Lightweight DOM implementation. . . . . ... ... ... ... .... 373
13.7 xml.dom.pulldom  — Support for building partial DOMtrees . . . . . . . ... ... ... .. 377
13.8 xml.sax — Supportfor SAX2 parsers. . . . . . . o o 377
13.9 xml.sax.handler — BaseclassesforSAX handlers . . . . ... ... L. 379
13.10xml.sax.saxutils — SAXUtilities . . . . . .. 383
13.11xml.sax.xmlreader — Interface for XML parsers. . . . . . . . . . .. .o 383
13.12xmllib  — A parserfor XML documents. . . . . . . . . . ... 387
Multimedia Services 391




15

16

17

18

19

20

14.1 audioop — Manipulaterawaudiodata . . . . . . . . . . .. .. . ... e 391

14.2 imageop — Manipulaterawimagedata. . . . . . . . . . . . ... . e 394
14.3 aifc — Read and write AIFFand AIFCfiles. . . . . . . . . . . .. . .. ... .. . .. .. ... 395
14.4 sunau — Read and write Sun AUfiles . . . . . . . . . .. L 397
14.5 wave — Read and write WAV files. . . . . . . . . . 399
14.6 chunk —Read IFFchunkeddata. . . . . . . . . . . ... .. . . . . 401
14.7 colorsys — Conversions betweencolorsystems. . . . . . .. .. .. ... ... ... .... 402
14.8 rghimg — Read and write “SGIRGB”files . . . . . . . . . .. ... 403
14.9 imghdr — Determine thetypeofanimage . . . . . . . . . . . . o 404
14.10sndhdr — Determine type of soundfile . . . . . . . . . . ... L L 404
Cryptographic Services 407
15.1 md5— MD5 message digest algorithm. . . . . . . . . .. Lo o 407
15.2 sha — SHA message digestalgorithm. . . . . . . . . . . ... . 408
15.3 mpz— GNU arbitrary magnitude integers . . . . . . . . . . . 409
15.4 rotor — Enigma-like encryptionanddecryption. . . ... ... ... ... . ... ... ... 410
Restricted Execution 413
16.1 rexec — Restricted executionframework . . . . . . . . . .. Lo 414
16.2 Bastion — Restrictingaccesstoobjects . . . . .. . . .. .. ... ... .. e 416
Python Language Services 419
17.1 parser — Access Pythonparsetrees. . . . . . . . . . . . . . e 419
17.2 symbol — Constants used with Python parsetrees . . . .. . .. .. ... .. ... ...... 428
17.3 token — Constants used with Python parsetrees . . . . . . . . .. . . .. .. ... .. .... 428
17.4 keyword — Testing for Pythonkeywords . . . . . . . . . . . .. 429
17.5 tokenize — Tokenizerfor Pythonsource. . . . . . . . . . . . . .. . . . ... .. ... 429
17.6 tabnanny — Detection of ambiguousindentation . . . ... ... ... ... ... ....... 430
17.7 pyclbor — Python class browsersupport . . . . . . . . . . ... . 430
17.8 py_compile — Compile Pythonsourcefiles. . . . . .. . .. ... ... . .. . .. ... 431
17.9 compileall =~ — Byte-compile Python libraries . . . . . .. ... ... ... .. ... ... ... 431
17.10dis — Disassembler for Pythonbytecode. . . . . . . . .. . .. .. ... .. ... .. .. ... 432
SGI IRIX Specific Services 441
18.1 al — Audio functionsonthe SGI . . . . . . . . . . . . . ... e 441
18.2 AL — Constants used withthed module . . . . . . . . . .. ... 443
18.3 cd — CD-ROM access on SGISystems . . . . . . . v 0 it i i e e e e e e e e 443
18.4 fl — FORMS library interface for GUl applications. . . . . . . ... .. ... ... ....... 447
18.5 FL — Constantsused withtife module . . . . . . . . . .. .. .. ... . . .. ... 451
18.6 flp — Functions for loading stored FORMS designs. . . . . . . . . .. ... . ... ... ... 452
18.7 fm — Font Managelinterface. . . . . . . . . . . . e 452
18.8 gl — Graphics Libraryinterface . . . . . . . . . . . . e 453
18.9 DEVICE— Constantsused withthlgd module . . . . . . . . ... ... . ... ... ... .... 455
18.10GL— Constants used with ttgd module . . . . . . . . . . . ... oo 455
18.11imgdfile — Support for SGlimglibfiles . . . . . . . . .. ..o 455
18.12jpeg — Read andwrite JPEGfiles. . . . . . . . . . . L 456
SunOS Specific Services 459
19.1 sunaudiodev — AccesstoSunaudiohardware. . . .. .. .. ... ... .. .. ... ... 459
19.2 SUNAUDIODEW- Constants used wittunaudiodev . . . . . . . .. .. ... ... ... .. 460
MS Windows Specific Services 461
20.1 msvcert — Useful routines fromthe MSVC++runtime . . . . . . .. .. .. ... ... ..... 461
20.2 _winreg —WINdows registry aCCesS . . . . . . v v v v v i e e e e e e e 462
20.3 winsound — Sound-playing interface for Windows. . . . . . ... ... .. ... ........ 467




A Undocumented Modules 469

Al Frameworks . . . . . o o e e e e e e 469
A.2 Miscellaneous useful utilities. . . . . . . . . . e 469
A.3 Platform specificmodules . . . . . . . . L 469
A4 Multimedia. . . . . . . e e 470
A5 ODbsolete . . . . . . e e 470
A.6 SGl-specific Extensionmodules. . . . . . . . . . . . .. 471
B Reporting Bugs 473
Module Index 475
Index 479

Vi



CHAPTER
ONE

Introduction

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers and lists.
For these types, the Python language core defines the form of literals and places some constraints on their semantics,
but does not fully define the semantics. (On the other hand, the language core does define syntactic properties like the
spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without the
need of anmport statement. Some of these are defined by the core language, but many are not essential for the core
semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this collection.
Some modules are written in C and built in to the Python interpreter; others are written in Python and imported in
source form. Some modules provide interfaces that are highly specific to Python, like printing a stack trace; some
provide interfaces that are specific to particular operating systems, such as access to specific hardware; others provide
interfaces that are specific to a particular application domain, like the World-Wide Web. Some modules are available
in all versions and ports of Python; others are only available when the underlying system supports or requires them;
yet others are available only when a particular configuration option was chosen at the time when Python was compiled
and installed.

This manual is organized “from the inside out:” it first describes the built-in data types, then the built-in functions and
exceptions, and finally the modules, grouped in chapters of related modules. The ordering of the chapters as well as
the ordering of the modules within each chapter is roughly from most relevant to least important.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored, you
will get a reasonable overview of the available modules and application areas that are supported by the Python library.
Of course, you don’haveto read it like a novel — you can also browse the table of contents (in front of the manual),

or look for a specific function, module or term in the index (in the back). And finally, if you enjoy learning about
random subjects, you choose a random page number (see maddten ) and read a section or two. Regardless of

the order in which you read the sections of this manual, it helps to start with chapter 2, “Built-in Types, Exceptions
and Functions,” as the remainder of the manual assumes familiarity with this material.

Let the show begin!







CHAPTER
TWO

Built-in Types, Exceptions and Functions

Names for built-in exceptions and functions are found in a separate symbol table. This table is searched last when
the interpreter looks up the meaning of a name, so local and global user-defined names can override built-in names.
Built-in types are described together here for easy referénce.

The tables in this chapter document the priorities of operators by listing them in order of ascending priority (within a
table) and grouping operators that have the same priority in the same box. Binary operators of the same priority group
from left to right. (Unary operators group from right to left, but there you have no real choice.) See chapter 5 of the
Python Reference Manufdr the complete picture on operator priorities.

2.1 Built-in Types

The following sections describe the standard types that are built into the interpreter. These are the numeric types,
sequence types, and several others, including types themselves. There is no explicit Boolean type; use integers instead.

Some operations are supported by several object types; in particular, all objects can be compared, tested for truth value,
and converted to a string (with the..* notation). The latter conversion is implicitly used when an object is written
by theprint statement.

2.1.1 Truth Value Testing

Any object can be tested for truth value, for use irfanor while  condition or as operand of the Boolean operations
below. The following values are considered false:

e None

e zero of any numeric type, for exampl,OL, 0.0 , 0] .

e any empty sequence, for examgle,, () ,[] .

e any empty mapping, for examplg, .

e instances of user-defined classes, if the class definesianzero __() or __len __() method, when that

method returns zerd.

All other values are considered true — so objects of many types are always true.
Operations and built-in functions that have a Boolean result always retimnfalse andl for true, unless otherwise
stated. (Important exception: the Boolean operations and ‘and’ always return one of their operands.)

IMost descriptions sorely lack explanations of the exceptions that may be raised — this will be fixed in a future version of this manual.
2Additional information on these special methods may be found ifPtheon Reference Manual




2.1.2 Boolean Operations

These are the Boolean operations, ordered by ascending priority:

Operation | Result Notes
x or y | if xis false, thery, elsex (1)
x and vy | if xis false, therx, elsey (1)
not x if xis false, therl, else0 (2)

Notes:

(1) These only evaluate their second argument if needed for their outcome.

(2) ‘not ' has a lower priority than non-Boolean operatorsnsd a == bis interpreted agot ( a == b), and
a == not bisasyntax error.

2.1.3 Comparisons

Comparison operations are supported by all objects. They all have the same priority (which is higher than that of the
Boolean operations). Comparisons can be chained arbitrarily; for exampley <= zis equivalenttx < y and

y <= z, except thay is evaluated only once (but in both casdEs not evaluated at all whex < y is found to be

false).

This table summarizes the comparison operations:

Operation | Meaning Notes
< strictly less than
<= less than or equal
> strictly greater than
>= greater than or equal
== equal
I= not equal Q)
<> not equal (1)
is object identity
is not negated object identity
Notes:
(1) <> and!= are alternate spellings for the same operator. (I couldn’t choose betwmeand C! :-) = is the

preferred spellings> is obsolescent.

Objects of different types, except different numeric types, never compare equal; such objects are ordered consistently
but arbitrarily (so that sorting a heterogeneous array yields a consistent result). Furthermore, some types (for example,
file objects) support only a degenerate notion of comparison where any two objects of that type are unequal. Again,
such objects are ordered arbitrarily but consistently.

Instances of a class normally compare as non-equal unless the class definesrttpe _() method. Refer to the
Python Reference Manufdr information on the use of this method to effect object comparisons.

Implementation note: Objects of different types except numbers are ordered by their type names; objects of the same
types that don’t support proper comparison are ordered by their address.

Two more operations with the same syntactic priority, “and ‘not in ’, are supported only by sequence types
(below).

4 Chapter 2. Built-in Types, Exceptions and Functions



2.1.4 Numeric Types

There are four numeric typeglain integers long integers floating point humbersand complex numbers Plain
integers (also just calleititegers are implemented usinigng in C, which gives them at least 32 bits of precision.
Long integers have unlimited precision. Floating point numbers are implementeddaibte in C. All bets on
their precision are off unless you happen to know the machine you are working with.

Complex numbers have a real and imaginary part, which are both implementediosislg in C. To extract these
parts from a complex numbeyusezreal andzimag .

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned integer literals
(including hex and octal numbers) yield plain integers. Integer literals with'aor “ | * suffix yield long integers '

is preferred becausdl ' looks too much like eleven!). Numeric literals containing a decimal point or an exponent
sign yield floating point numbers. Appendinjg ‘or ‘J’ to a numeric literal yields a complex number.

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric types,
the operand with the “smaller” type is converted to that of the other, where plain integer is smaller than long integer is
smaller than floating point is smaller than complex. Comparisons between numbers of mixed type use the Same rule.
The functionsnt() ,long() ,float() ,andcomplex() can be used to coerce numbers to a specific type.

All numeric types support the following operations, sorted by ascending priority (operations in the same box have the
same priority; all numeric operations have a higher priority than comparison operations):

Operation Result Notes
X +y sum ofx andy
X -y difference ofx andy
X *y product ofx andy
x/y guotient ofx andy Q)
X %y remainder ok / vy
- X X negated
+X x unchanged
abs( x) absolute value or magnitude »f
int( x) X converted to integer (2)
long( X) x converted to long integer (2)
float( X) x converted to floating point
complex( re, im) | a complex number with real pas, imaginary parim. im defaults to zero.
c.conjugate() conjugate of the complex number
divmod( X, V) thepair(x / 'y, X %Y) 3)
pow( X, ) x to the powery
X ¥y x to the powery

Notes:

(1) For (plain or long) integer division, the result is an integer. The result is always rounded towards minus infinity:
1/2is 0, (-1)/2is -1, 1/(-2) is -1, and (-1)/(-2) is 0. Note that the result is a long integer if either operand is a long
integer, regardless of the numeric value.

(2) Conversion from floating point to (long or plain) integer may round or truncate as in C; see furftdian(s
andceil()  inthemath module for well-defined conversions.

(3) See section 2.3, “Built-in Functions,” for a full description.

Bit-string Operations on Integer Types

3As a consequence, the Ifdt, 2] is considered equal {d.0, 2.0] , and similar for tuples.

2.1. Built-in Types 5



Plain and long integer types support additional operations that make sense only for bit-strings. Negative numbers
are treated as their 2's complement value (for long integers, this assumes a sufficiently large number of bits that no

overflow occurs during the operation).

The priorities of the binary bit-wise operations are all lower than the numeric operations and higher than the compar-
isons; the unary operatiofi * has the same priority as the other unary numeric operatietigfid ‘- ).

This table lists the bit-string operations sorted in ascending priority (operations in the same box have the same priority):

Operation | Result Notes
X|y bitwise or of x andy
X"y bitwise exclusive oof x andy
X &y bitwiseandof x andy
X << n | xshifted left byn bits 1), (2)
X >> n | xshifted right byn bits (1), (3)
X the bits ofx inverted

Notes:

(1) Negative shift counts are illegal and causéaueError
(2) A left shift by n bits is equivalent to multiplication bgow(2,

(3) A right shift by n bits is equivalent to division bgow(2,

2.1.5 Sequence Types

to be raised.

n) without overflow check.

n) without overflow check.

There are six sequence types: strings, Unicode strings, lists, tuples, buffers, and xrange objects.

Strings literals are written in single or double quotegzzy’

, "frobozz"

. See chapter 2 of theython Reference

Manual for more about string literals. Unicode strings are much like strings, but are specified in the syntax using

a preceedingu’ character: u’abc’
commasija, b, c]

, u"def"

. Lists are constructed with square brackets, separating items with
. Tuples are constructed by the comma operator (not within square brackets), with or without

enclosing parentheses, but an empty tuple must have the enclosing parenthesgsbe.g., or() . A single item
. Buffers are not directly supported by Python syntax, but can be created

tuple must have a trailing comma, e.@l,)
. XRanges objects are similar to buffers in that there is no specific syntax to
create them, but they are created usingxtamge()

by calling the builtin functiorbuffer()

Sequence types support the following operations. Tihe and ‘not in

function.

" operations have the same priorities as the

comparison operations. The’‘and *’ operations have the same priority as the corresponding numeric operétions.

This table lists the sequence operations sorted in ascending priority (operations in the same box have the same priority).
In the tables andt are sequences of the same typd;andj are integers:

Operation

Result

Notes

X in s
X notin s

1 if an item ofsis equal tax, else0
0 if an item ofsis equal tox, elsel

s+t

s* nn*s

the concatenation afandt
n copies ofs concatenated

1)

s il
i ]

i'th item of s, origin O
slice ofsfromi toj

(2)
(2, )

len( s)
min( s)
max( s)

length ofs
smallest item o6
largest item of

4They must have since the parser can't tell the type of the operands.

Chapter 2.

Built-in Types, Exceptions and Functions



Notes:

(1) Values ofn less tharD are treated a8 (which yields an empty sequence of the same typ®.as

(2) If i orj is negative, the index is relative to the end of the string,le@( s) + iorlen( s) + |is substituted.
But note thatO is still .

(3) The slice ofsfromi toj is defined as the sequence of items with inkexich that <= k < j. If i orj is greater
thanlen( s), uselen( 9). If i is omitted, us®. If j is omitted, usden( ). If i is greater than or equal {p
the slice is empty.

String Methods

These are the string methods which both 8-bit strings and Unicode objects support:

capitalize 0
Return a copy of the string with only its first character capitalized.

center (width)
Return centered in a string of lengthdth. Padding is done using spaces.

count ( sut{, start[, end]])
Return the number of occurrences of substsngin string § start end . Optional argumentstart andend
are interpreted as in slice notation.

encode ( [encodingi,errors] ])
Return an encoded version of the string. Default encoding is the current default string enardimg may
be given to set a different error handling scheme. The defau#irforsis 'strict’ , meaning that encoding
errors raise &alueError . Other possible values alignore’ and’replace’ . New inversion 2.0.

endswith  ( suffi>{, start[, end]])
Return true if the string ends with the specifiadfix otherwise return false. With optionstlart, test beginning
at that position. With optionand stop comparing at that position.

expandtabs ( [tabsizd)
Return a copy of the string where all tab characters are expanded using spéatesizés not given, a tab size
of 8 characters is assumed.

find ( sut{, starl[, end] ] )
Return the lowest index in the string where substsabis found, such thadubis contained in the rangstart,
end. Optional argumentstartandendare interpreted as in slice notation. Retetnif subis not found.

index ( sut{, starl[, end]])
Like find() , but raisevalueError  when the substring is not found.

isalnum ()
Return true if all characters in the string are alphanumeric and there is at least one character, false otherwise.

isalpha ()

Return true if all characters in the string are alphabetic and there is at least one character, false otherwise.
isdigit ()

Return true if there are only digit characters, false otherwise.
islower ()

Return true if all cased characters in the string are lowercase and there is at least one cased character, false
otherwise.

isspace ()
Return true if there are only whitespace characters in the string and the string is not empty, false otherwise.

2.1. Built-in Types 7



istitle

0

Return true if the string is a titlecased string, i.e. uppercase characters may only follow uncased characters and
lowercase characters only cased ones. Return false otherwise.

isupper ()

Return true if all cased characters in the string are uppercase and there is at least one cased character, false
otherwise.

join (seq
Return a string which is the concatenation of the strings in the seqseqcéhe separator between elements is
the string providing this method.

ljust (width)
Return the string left justified in a string of lengthdth. Padding is done using spaces. The original string is
returned ifwidthis less tharden( s) .

lower ()
Return a copy of the string converted to lowercase.

Istrip ()

Return a copy of the string with leading whitespace removed.

replace ( old, nevx[, maxsplit])

rfind

Return a copy of the string with all occurrences of substoiyreplaced bynew If the optional argument
maxsplitis given, only the firsmaxsplitoccurrences are replaced.

( sub[,start [,end] ] )
Return the highest index in the string where substsinigis found, such thatubis contained within s[start,end].
Optional argumentstart andendare interpreted as in slice notation. Retetnon failure.

rindex (sul, starf, end]])

rjust

rstrip

split

Like rfind() but raises/alueError  when the substringubis not found.

(width)
Return the string right justified in a string of lengtidth. Padding is done using spaces. The original string is
returned ifwidthis less tharden( s) .

0

Return a copy of the string with trailing whitespace removed.

( [sep[,maxspii] ])
Return a list of the words in the string, usiegpas the delimiter string. Ifnaxsplitis given, at mosmaxsplit

splits are done. Iepis not specified oNone, any whitespace string is a separator.

splitlines ( [keepend]s)

Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the resulting
list unlesskeependss given and true.

startswith ( prefix[, starl{, end] ] )

strip

Return true if string starts with therefix otherwise return false. With optionatart, test string beginning at
that position. With optionaénd stop comparing string at that position.

0

Return a copy of the string with leading and trailing whitespace removed.

swapcase ()

title

Return a copy of the string with uppercase characters converted to lowercase and vice versa.

0

Return a titlecased version of, i.e. words start with uppercase characters, all remaining cased characters are
lowercase.

translate (table[, deletechari)

Chapter 2. Built-in Types, Exceptions and Functions



Return a copy of the string where all characters occurring in the optional arguleletécharsare removed,
and the remaining characters have been mapped through the given translation table, which must be a string of
length 256.

upper ()
Return a copy of the string converted to uppercase.

String Formatting Operations

String and Unicode objects have one unique built-in operatiorfdperator (modulo). Giveformat %valuegwhere
formatis a string or Unicode objectypconversion specifications fiormatare replaced with zero or more elements
of values The effect is similar to the usingprintf() in the C language. liormatis a Unicode object, or if any of
the objects being converted using #sconversion are Unicode objects, the result will be a Unicode object as well.

If formatrequires a single argumentaluesmay be a single non-tuple object. Otherwise valuesmust be a tuple
with exactly the number of items specified by the format string, or a single mapping object (for example, a dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur in this
order:

1. The % character, which marks the start of the specifier.

2. Mapping key value (optional), consisting of an identifier in parentheses (for exaisgieename) ).
3. Conversion flags (optional), which affect the result of some conversion types.
4

. Minimum field width (optional). If specified as ah’(asterisk), the actual width is read from the next element
of the tuple invalues and the object to convert comes after the minimum field width and optional precision.

5. Precision (optional), given as a’‘ (dot) followed by the precision. If specified as’*(an asterisk), the actual
width is read from the next element of the tuplevadues and the value to convert comes after the precision.

6. Length modifier (optional).

7. Conversion type.

If the right argument is a dictionary (or any kind of mapping), then the formats in the stiiisthave a parenthesized
key into that dictionary inserted immediately after tB&character, and each format formats the corresponding entry
from the mapping. For example:

>>> count = 2

>>> language = 'Python’

>>> print '%(language)s has %(count)03d quote types.” % vars()
Python has 002 quote types.

In this case nd specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag | Meaning

‘# | The value conversion will use the “alternate form” (where defined below).

‘0’ | The conversion will be zero padded.

‘-’ | The converted value is left adjusted (overridey.!

‘' | (aspace) A blank should be left before a positive number (or empty string) produced by a signed conversion.
‘+’ | Asign character ¢’ or ‘- ") will precede the conversion (overrides a "space” flag).

5A tuple object in this case should be a singleton.

2.1. Built-in Types 9



The length modifier may ble, | , andL may be present, but are ignored as they are not necessary for Python.

The conversion types are:

Conversion | Meaning
‘d’ Signed integer decimal.
i’ Signed integer decimal.
‘0’ Unsigned octal.
‘u’ Unsigned decimal.
‘X’ Unsigned hexidecimal (lowercase).
‘X Unsigned hexidecimal (uppercase).
‘e’ Floating point exponential format (lowercase).
‘E Floating point exponential format (uppercase).
‘“fr Floating point decimal format.
‘F Floating point decimal format.
‘g’ Same ase’ if exponent is greater than -4 or less than precisibnptherwise.
‘G Same asE'’ if exponent is greater than -4 or less than precisiéhptherwise.
‘c’ Single character (accepts integer or single character string).
‘r’ String (converts any python object usirepr() ).
‘s’ String (converts any python object usisty() ).
‘0% No argument is converted, results in% tharacter in the result. (The complete specificatiov)

Since Python strings have an explicit lendg¥bs conversions do not assume tA&@t  is the end of the string.

For safety reasons, floating point precisions are clipped t&/&G;onversions for numbers whose absolute value is
over 1e25 are replaced Bygconversion$. All other errors raise exceptions.

Additional string operations are defined in standard modirleg  and in built-in modulee .

XRange Type

The xrange type is an immutable sequence which is commonly used for looping. The advantage of the xrange type is
that an xrange object will always take the same amount of memory, no matter the size of the range it represents. There
are no consistent performance advantages.

XRange objects behave like tuples, and offer a single method:

tolist ()
Return a list object which represents the same values as the xrange object.

Mutable Sequence Types

List objects support additional operations that allow in-place modification of the object. These operations would be
supported by other mutable sequence types (when added to the language) as well. Strings and tuples are immutable
sequence types and such objects cannot be modified once created. The following operations are defined on mutable
sequence types (whexas an arbitrary object):

6These numbers are fairly arbitrary. They are intended to avoid printing endless strings of meaningless digits without hampering correct use and
without having to know the exact precision of floating point values on a particular machine.

10 Chapter 2. Built-in Types, Exceptions and Functions



Operation Result Notes
gi] = x itemi of sis replaced by
gi:j] = t slice ofsfromi to is replaced by
del di:j] sameas i:j] = []
s.append( x) same ag{len( s)len( 9] = [ X )
s.extend( X) same agllen( s)len( 9] = X (2)
scount( X) return number of's for whichg[ i] == x
sindex( X) return smallest such thaq i] == x 3)
sinsert( i, X) sameasi:i] = [ x] ifi >= 0
s.pop( [i]) sameax = di]; del g i]; return X (4)
s.remove( X) same aslel ¢ sindex( X)] 3
s.reverse() reverses the items afin place (5)
s.sort( [cmpfund) sort the items o§in place (5), (6)

Notes:

(1) The C implementation of Python has historically accepted multiple parameters and implicitly joined them into a
tuple; this no longer works in Python 2.0. Use of this misfeature has been deprecated since Python 1.4.

(2) Raises an exception whenis not a list object. Thextend() method is experimental and not supported by
mutable sequence types other than lists.

(3) RaisesvalueError  whenxis not found ins.

(4) Thepop() method is only supported by the list and array types. The optional argurdefaults to-1 , so that
by default the last item is removed and returned.

(5) Thesort() andreverse() methods modify the list in place for economy of space when sorting or reversing
a large list. They don't return the sorted or reversed list to remind you of this side effect.

(6) Thesort() method takes an optional argument specifying a comparison function of two arguments (list items)
which should returnl , 0 or 1 depending on whether the first argument is considered smaller than, equal to, or
larger than the second argument. Note that this slows the sorting process down considerably; e.g. to sort a list
in reverse order it is much faster to use calls to the metBod$) andreverse()  than to use the built-in
functionsort()  with a comparison function that reverses the ordering of the elements.

2.1.6 Mapping Types

A mappingobject maps values of one type (the key type) to arbitrary objects. Mappings are mutable objects. There
is currently only one standard mapping type, thetionary. A dictionary’s keys are almost arbitrary values. The

only types of values not acceptable as keys are values containing lists or dictionaries or other mutable types that are
compared by value rather than by object identity. Numeric types used for keys obey the normal rules for numeric
comparison: if two numbers compare equal (A.@nd1.0 ) then they can be used interchangeably to index the same
dictionary entry.

Dictionaries are created by placing a comma-separated lidtepf value pairs within braces, for example:
{jack’: 4098, ’'sjoerd: 4127} or{4098: ’jack’, 4127: ’sjoerd’}

The following operations are defined on mappings (wleeaadb are mappingsk is a key, andr andx are arbitrary
objects):

2.1. Built-in Types 11



Operation Result Notes
len( a) the number of items ia
al K] the item ofa with key k Q)
akl = v seta[ K] tov
del a[ k] removea k] froma D)
a.clear() remove all items frona
a.copy() a (shallow) copy of
a.has _key( K) 1if ahas a ke, else0
a.items() a copy ofa’s list of (key, value pairs (2)
a.keys() a copy ofa’s list of keys (2)
a.update( b) for k in b.keys(): ak] = DblK] 3)
a.values() a copy ofa’s list of values 2)
a.get( k[, x|) a[ K] if ahas _key( k), elsex 4)
a.setdefault( K|, x]) al K] if ahas _key( k), elsex (also setting it)| (5)
a.popitem() remove and return an arbitrargefy, value pair (6)

Notes:

(1) Raises &eyError exception ifk is not in the map.

(2) Keys and values are listed in random orderkéf/s() andvalues() are called with no intervening modifi-
cations to the dictionary, the two lists will directly correspond. This allows the creatibmaltie key) pairs
usingmap() : ‘pairs = map(None, a.values(), a.keys())

(3) b must be of the same type as

(4) Never raises an exceptionkfis not in the map, instead it returrsx is optional; wherx is not provided and is
not in the mapNone is returned.

(5) setdefault() is like get() , except that ik is missing X is both returned and inserted into the dictionary as
the value ok.

(6) popitem() is useful to destructively iterate over a dictionary, as often used in set algorithms.

2.1.7 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

Modules

The only special operation on a module is attribute acaassiame wheremis a module anshameaccesses a name
defined inm's symbol table. Module attributes can be assigned to. (Note thatpert statement is not, strictly
speaking, an operation on a module objéaotport  foo does not require a module object nanfiedto exist, rather
it requires an (externafefinitionfor a module nametbo somewhere.)

A special member of every module is dict __. This is the dictionary containing the module’s symbol table.
Modifying this dictionary will actually change the module’s symbol table, but direct assignment to thiet __
attribute is not possible (i.e., you can write __dict __['a] = 1 , which definean.a to bel, but you can’t
writem. __dict __ = {} .

Modules built into the interpreter are written like thismodule ’'sys’ (built-in)> . If loaded from a file,
they are written asmodule 'os’ from ’/usr/local/lib/python2.1/0s.pyc’>

Classes and Class Instances

See chapters 3 and 7 of tRgthon Reference Manutdr these.

12 Chapter 2. Built-in Types, Exceptions and Functions



Functions

Function objects are created by function definitions. The only operation on a function object is to call it:
fund argument-lis} .

There are really two flavors of function objects: built-in functions and user-defined functions. Both support the same
operation (to call the function), but the implementation is different, hence the different object types.

The implementation adds two special read-only attribufefsinc _code is a function'scode objecisee below)
andf.func _globals is the dictionary used as the function’s global namespace (this is the same aslict
wheremis the module in which the functidhwas defined).

Function objects also support getting and setting arbitrary attributes, which can be used to, e.g. attach metadata to
functions. Regular attribute dot-notation is used to get and set such attriblgesthat the current implementation

only supports function attributes on functions written in Python. Function attributes on built-ins may be supported in
the future.

Functions have another special attribite__dict __ (a.k.a.f.func _dict ) which contains the namespace used
to support function attributes._dict __ can be accessed directly, set to a dictionary objedtlare. It can also be
deleted (but the following two lines are equivalent):

del func.__dict__
func.__dict__ = None

Methods

Methods are functions that are called using the attribute notation. There are two flavors: built-in methods (such as
append() on lists) and class instance methods. Built-in methods are described with the types that support them.

The implementation adds two special read-only attributes to class instance methimals_self is the object on
which the method operates, andim _func is the function implementing the method. Callimgarg-1, arg-2,
.., arg-n) is completely equivalent to calling.im _func( m.im _self, arg-1, arg-2, ..., arg-n.

Class instance methods are eitheundor unboundreferring to whether the method was accessed through an instance
or a class, respectively. When a method is unboundmitsself attribute will beNone and if called, an explicit

self object must be passed as the first argument. In this saffe, must be an instance of the unbound method’s
class (or a subclass of that class), otherwiSg@eError is raised.

Like function objects, methods objects support getting arbitrary attributes. However, since method attributes are
actually stored on the underlying function object (mgeth.im _func ), setting method attributes on either bound or
unbound methods is disallowed. Attempting to set a method attribute resul®y/jpe&rror being raised. In order

to set a method attribute, you need to explicitly set it on the underlying function object:

class C:
def method(self):
pass

c=C(
c.method.im_func.whoami = 'my name is ¢’

See thePython Reference Manufdr more information.

2.1. Built-in Types 13



Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such as a func-
tion body. They differ from function objects because they don’t contain a reference to their global execution envi-
ronment. Code objects are returned by the buitempile()  function and can be extracted from function objects
through theifunc _code attribute.

A code object can be executed or evaluated by passing it (instead of a source stringgtedhstatement or the
built-in eval()  function.

See thePython Reference Manufdr more information.

Type Objects
Type objects represent the various object types. An object’s type is accessed by the built-in fiypetfpn . There
are no special operations on types. The standard mdyhis defines names for all standard built-in types.

Types are written like thisctype ’'int’>

The Null Object
This object is returned by functions that don’t explicitly return a value. It supports no special operations. There is
exactly one null object, namédione (a built-in name).

It is written asNone.

The Ellipsis Object

This object is used by extended slice notation (sedPytbon Reference Manyallt supports no special operations.
There is exactly one ellipsis object, nanteéldpsis (a built-in name).

It is written asEllipsis

File Objects

File objects are implemented using G&lio package and can be created with the built-in functpen() de-
scribed in section 2.3, “Built-in Functions.” They are also returned by some other built-in functions and methods, e.g.,
os.popen() andos.fdopen() and themakefile() method of socket objects.

When a file operation fails for an I/0O-related reason, the excep@&mror is raised. This includes situations where
the operation is not defined for some reason, $igek() on a tty device or writing a file opened for reading.

Files have the following methods:

close ()
Close the file. A closed file cannot be read or written anymore. Any operation which requires that the file be
open will raise &/alueError  after the file has been closed. Callidigse()  more than once is allowed.

flush ()
Flush the internal buffer, liketdio s fflush() . This may be a no-op on some file-like objects.

isatty ()
Return true if the file is connected to a tty(-like) device, else faléete: If a file-like object is not associated
with a real file, this method shouttbt be implemented.

fileno ()
Return the integer “file descriptor” that is used by the underlying implementation to request I/O operations from

14 Chapter 2. Built-in Types, Exceptions and Functions



the operating system. This can be useful for other, lower level interfaces that use file descriptors, e.g. module
fentl  oros.read()  and friendsNote: File-like objects which do not have a real file descriptor shawltd
provide this method!

read ([size])
Read at mossizebytes from the file (less if the read hi&®F before obtainingizebytes). If thesizeargument
is negative or omitted, read all data urgibr is reached. The bytes are returned as a string object. An empty
string is returned whesoF is encountered immediately. (For certain files, like ttys, it makes sense to continue
reading after amoOFis hit.) Note that this method may call the underlying C funcfi@ad() = more than once
in an effort to acquire as close sizebytes as possible.

readline  ( [size])
Read one entire line from the file. A trailing newline character is kept in the $tmg may be absent when a
file ends with an incomplete line). If tr@zeargument is present and non-negative, it is a maximum byte count
(including the trailing newline) and an incomplete line may be returned. An empty string is returned¢aien
is hit immediately. Note: Unlikestdio 's fgets() , the returned string contains null characteéY@’( ) if
they occurred in the input.

readlines  ( [sizehinr])
Read untilEoF using readline() and return a list containing the lines thus read. If the opti@mehint
argument is present, instead of reading ug &, whole lines totalling approximatelsizehintbytes (possibly
after rounding up to an internal buffer size) are read. Objects implementing a file-like interface may choose to
ignoresizehintif it cannot be implemented, or cannot be implemented efficiently.

xreadlines ()
Equivalent toxreadlines.xreadlines( file) . (See thexreadlines module for more information.)
New in version 2.1.

seek ( offse{, Whencd)
Set the file’s current position, likstdio 's fseek() . Thewhenceargument is optional and defaults @
(absolute file positioning); other values drdseek relative to the current position) abdseek relative to the
file’s end). There is no return value. Note that if the file is opened for appending (l@oder 'a+’ ), any
seek() operations will be undone at the next write. If the file is only opened for writing in append mode
(mode’a’ ), this method is essentially a no-op, but it remains useful for files opened in append mode with
reading enabled (moda+’ ).

tell ()
Return the file’s current position, likedio s ftell()

truncate  ( [size])
Truncate the file’s size. If the optionaizeargument present, the file is truncated to (at most) that size. The
size defaults to the current position. Availability of this function depends on the operating system version (for
example, not all Blix versions support this operation).

write (' str)
Write a string to the file. There is no return value. Note: Due to buffering, the string may not actually show up
in the file until theflush()  orclose() method is called.

writelines (list)
Write a list of strings to the file. There is no return value. (The name is intended to meztdhnes() ;
writelines() does not add line separators.)

File objects also offer a number of other interesting attributes. These are not required for file-like objects, but should
be implemented if they make sense for the particular object.

closed
Boolean indicating the current state of the file object. This is a read-only attributeldbe()  method

"The advantage of leaving the newline on is that an empty string can be returned t@ areaithout being ambiguous. Another advantage is
that (in cases where it might matter, e.g. if you want to make an exact copy of a file while scanning its lines) you can tell whether the last line of a
file ended in a newline or not (yes this happens!).

2.1. Built-in Types 15



changes the value. It may not be available on all file-like objects.

mode
The 1/0 mode for the file. If the file was created using ¢pen() built-in function, this will be the value of
themodeparameter. This is a read-only attribute and may not be present on all file-like objects.

name
If the file object was created usirapen() , the name of the file. Otherwise, some string that indicates the
source of the file object, of the fornx...> . This is a read-only attribute and may not be present on all
file-like objects.

softspace
Boolean that indicates whether a space character needs to be printed before another value wherptising the
statement. Classes that are trying to simulate a file object should also have a vedfidpace  attribute,
which should be initialized to zero. This will be automatic for most classes implemented in Python (care may
be needed for objects that override attribute access); types implemented in C will have to provide a writable
softspace  attribute. Note: This attribute is not used to control thint  statement, but to allow the
implementation oprint  to keep track of its internal state.

Internal Objects

See thePython Reference Manu#dr this information. It describes stack frame objects, traceback objects, and slice
objects.

2.1.8 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant:

__dict __
A dictionary or other mapping object used to store an object’s (writable) attributes.

__methods __
List of the methods of many built-in object types, e[f., __methods __ yields['append’, 'count’,
'index’, ‘insert’, 'pop’, 'remove’, 'reverse’, 'sort’] . This usually does not need to
be explicitly provided by the object.
__members__
Similar to __methods __, but lists data attributes. This usually does not need to be explicitly provided by the
object.
__class __

The class to which a class instance belongs.

__bases __
The tuple of base classes of a class object.

2.2 Built-in Exceptions

Exceptions can be class objects or string objects. Though most exceptions have been string objects in past versions of
Python, in Python 1.5 and newer versions, all standard exceptions have been converted to class objects, and users are
encouraged to do the same. The exceptions are defined in the nesdefations . This module never needs to be
imported explicitly: the exceptions are provided in the built-in namespace.

Two distinct string objects with the same value are considered different exceptions. This is done to force programmers
to use exception names rather than their string value when specifying exception handlers. The string value of all built-

16 Chapter 2. Built-in Types, Exceptions and Functions



in exceptions is their name, but this is not a requirement for user-defined exceptions or exceptions defined by library
modules.

For class exceptions, intay statement with amxcept clause that mentions a particular class, that clause also
handles any exception classes derived from that class (but not exception classes fronit wehibdrived). Two
exception classes that are not related via subclassing are never equivalent, even if they have the same name.

The built-in exceptions listed below can be generated by the interpreter or built-in functions. Except where mentioned,
they have an “associated value” indicating the detailed cause of the error. This may be a string or a tuple containing
several items of information (e.g., an error code and a string explaining the code). The associated value is the second
argument to theaise statement. For string exceptions, the associated value itself will be stored in the variable
named as the second argument ofdkeept clause (if any). For class exceptions, that variable receives the exception
instance. If the exception class is derived from the standard rootElasption , the associated value is present as

the exception instance&gs attribute, and possibly on other attributes as well.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an error condition
“just like” the situation in which the interpreter raises the same exception; but beware that there is nothing to prevent
user code from raising an inappropriate error.

The following exceptions are only used as base classes for other exceptions.

exceptionException
The root class for exceptions. All built-in exceptions are derived from this class. All user-defined exceptions
should also be derived from this class, but this is not (yet) enforcedsiffje function, when applied to an
instance of this class (or most derived classes) returns the string value of the argument or arguments, or an empty
string if no arguments were given to the constructor. When used as a sequence, this accesses the arguments given
to the constructor (handy for backward compatibility with old code). The arguments are also available on the
instance’sargs attribute, as a tuple.

exceptionStandardError
The base class for all built-in exceptions exc8gstemExit . StandardError itself is derived from the
root classException

exceptionArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic @verfiowError
ZeroDivisionError , FloatingPointError

exceptionLookupError
The base class for the exceptions that are raised when a key or index used on a mapping or sequence is invalid:
IndexError , KeyError . This can be raised directly tsys.setdefaultencoding()

exceptionEnvironmentError
The base class for exceptions that can occur outside the Python syStermror , OSError . When exceptions
of this type are created with a 2-tuple, the first item is available on the instasrcets attribute (it is assumed
to be an error number), and the second item is available osttbror  attribute (it is usually the associated
error message). The tuple itself is also available oratigs attribute. New in version 1.5.2.

When anEnvironmentError exception is instantiated with a 3-tuple, the first two items are available as
above, while the third item is available on tlilename  attribute. However, for backwards compatibility, the
args attribute contains only a 2-tuple of the first two constructor arguments.

Thefilename  attribute iSNone when this exception is created with other than 3 argumentsefifhe and
strerror attributes are alsblone when the instance was created with other than 2 or 3 arguments. In this
last caseargs contains the verbatim constructor arguments as a tuple.

The following exceptions are the exceptions that are actually raised.

exceptionAssertionError
Raised when anssert statement fails.

exceptionAttributeError
Raised when an attribute reference or assignment fails. (When an object does not support attribute references or

2.2. Built-in Exceptions 17



attribute assignments at allypeError is raised.)

exceptionEOFError
Raised when one of the built-in functionsgut()  or raw _input() ) hits an end-of-file conditiong0OF)
without reading any data. (N.B.: thead() andreadline() methods of file objects return an empty string
when they hiteoF.)

exceptionFloatingPointError
Raised when a floating point operation fails. This exception is always defined, but can only be raised when
Python is configured with thewith-fpectl option, or theWANTSIGFPE_HANDLERsymbol is defined in the
‘config.h’ file.

exceptionlOError
Raised when an I/O operation (such g&imt  statement, the built-iopen() function or a method of a file
object) fails for an I/O-related reason, e.g., “file not found” or “disk full”.

This class is derived froenvironmentError . See the discussion above for more information on exception
instance attributes.

exceptionimportError
Raised when aimport statement fails to find the module definition or whefnian ... import fails to
find a name that is to be imported.

exceptionindexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the allowed
range; if an index is not a plain integdiypeError s raised.)

exceptionKeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

exceptionKeyboardinterrupt
Raised when the user hits the interrupt key (norm@&lpntrol-C  or DEL). During execution, a check for
interrupts is made regularly. Interrupts typed when a built-in fundtipat()  orraw _input() ) is waiting
for input also raise this exception.

exceptionMemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by deleting some objects).
The associated value is a string indicating what kind of (internal) operation ran out of memory. Note that because
of the underlying memory management architecture (@doc()  function), the interpreter may not always
be able to completely recover from this situation; it nevertheless raises an exception so that a stack traceback
can be printed, in case a run-away program was the cause.

exceptionNameError
Raised when a local or global name is not found. This applies only to unqualified names. The associated value
is the name that could not be found.

exceptionNotimplementedError
This exception is derived frorRuntimeError . In user defined base classes, abstract methods should raise
this exception when they require derived classes to override the method. New in version 1.5.2.

exceptionOSError
This class is derived froenvironmentError and is used primarily as thies module’sos.error  excep-
tion. SeeEnvironmentError above for a description of the possible associated values. New in version
1.5.2.

exceptionOverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot occur for long
integers (which would rather raiddemoryError than give up). Because of the lack of standardization of
floating point exception handling in C, most floating point operations also aren’t checked. For plain integers,
all operations that can overflow are checked except left shift, where typical applications prefer to drop bits than
raise an exception.

18 Chapter 2. Built-in Types, Exceptions and Functions



exceptionRuntimeError
Raised when an error is detected that doesn't fall in any of the other categories. The associated value is a
string indicating what precisely went wrong. (This exception is mostly a relic from a previous version of the
interpreter,; it is not used very much any more.)

exceptionSyntaxError
Raised when the parser encounters a syntax error. This may occuriinpant statement, in amexec
statement, in a call to the built-in functi@val() orinput() , or when reading the initial script or standard
input (also interactively).

When class exceptions are used, instances of this class have atttfilutase , lineno , offset and

text for easier access to the details; for string exceptions, the associated value is usually a tuple of the form
(message, (filename, lineno, offset, text)) . For class exceptionstr()  returns only the
message.

exceptionSystemError
Raised when the interpreter finds an internal error, but the situation does not look so serious to cause it to
abandon all hope. The associated value is a string indicating what went wrong (in low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the version string

of the Python interpreteisys.version ; it is also printed at the start of an interactive Python session), the
exact error message (the exception’s associated value) and if possible the source of the program that triggered
the error.

exceptionSystemExit

This exception is raised by thys.exit() function. When it is not handled, the Python interpreter exits; no
stack traceback is printed. If the associated value is a plain integer, it specifies the system exit status (passed to
C'sexit()  function); if it is None, the exit status is zero; if it has another type (such as a string), the object’s
value is printed and the exit status is one.

Instances have an attributede which is set to the proposed exit status or error message (defaulthgyie).
Also, this exception derives directly froBixception and notStandardError , since it is not technically
an error.

A call to sys.exit() is translated into an exception so that clean-up handferally clauses otry
statements) can be executed, and so that a debugger can execute a script without running the risk of losing
control. Theos. _exit()  function can be used if it is absolutely positively necessary to exit immediately
(e.g., after dork()  in the child process).

exceptionTypeError
Raised when a built-in operation or function is applied to an object of inappropriate type. The associated value
is a string giving details about the type mismatch.

exceptionUnboundLocalError
Raised when a reference is made to a local variable in a function or method, but no value has been bound to that
variable. This is a subclass BameError . New in version 2.0.

exceptionUnicodeError
Raised when a Unicode-related encoding or decoding error occurs. It is a subcladgedrror . New in
version 2.0.

exceptionValueError
Raised when a built-in operation or function receives an argument that has the right type but an inappropriate
value, and the situation is not described by a more precise exception sinctegError

exceptionWindowsError
Raised when a Windows-specific error occurs or when the error number does not corresporedriman

value. Theerrno andstrerror values are created from the return values of@etLastError() and
FormatMessage() functions from the Windows Platform API. This is a subclas©O&Error . New in
version 2.0.

exceptionZeroDivisionError

2.2. Built-in Exceptions 19



Raised when the second argument of a division or modulo operation is zero. The associated value is a string
indicating the type of the operands and the operation.

The following exceptions are used as warning categories; seedimengs module for more information.

exceptionWarning
Base class for warning categories.

exceptionUserWarning
Base class for warnings generated by user code.

exceptionDeprecationWarning
Base class for warnings about deprecated features.

exceptionSyntaxWarning
Base class for warnings about dubious syntax

exceptionRuntimeWarning
Base class for warnings about dubious runtime behavior.

2.3 Built-in Functions

The Python interpreter has a number of functions built into it that are always available. They are listed here in
alphabetical order.

—_import  __( name[, globals[, Iocali, fromlist]]] )
This function is invoked by thenport statement. It mainly exists so that you can replace it with another func-
tion that has a compatible interface, in order to change the semanticsiofghg statement. For examples
of why and how you would do this, see the standard library modhtesks andrexec . See also the built-in
moduleimp, which defines some useful operations out of which you can build your_awmport __()

function.

For example, the statemenimport spam ’ results in the following call: __import __('spam’,
globals(), locals(), [I) ; the statement ffom spam.ham import eggs ' results in
‘__import __('spam.ham’, globals(), locals(), ['eggs’) . Note that even though

locals() and['eggs’] are passed in as arguments, thémport __() function does not set the local
variable nameckggs ; this is done by subsequent code that is generated for the import statement. (In fact,
the standard implementation does not uséoitals argument at all, and uses @fobalsonly to determine the
package context of thenport  statement.)

When thenamevariable is of the fornpackage.module , normally, the top-level package (the name up till the
first dot) is returnedpotthe module named bhyame However, when a non-empigomlistargument is given, the
module named bypameis returned. This is done for compatibility with the bytecode generated for the different
kinds of import statement; when usingnport spam.ham.eggs ’, the top-level packagepam must be
placed in the importing namespace, but when usfngmt spam.ham import eggs ', the spam.ham
subpackage must be used to find dggs variable. As a workaround for this behavior, ugtattr() to
extract the desired components. For example, you could define the following helper:

import string

def my_import(name):
mod = __import__(name)
components = string.split(name, .")
for comp in components[1:]:
mod = getattr(mod, comp)
return mod

20 Chapter 2. Built-in Types, Exceptions and Functions



abs (x)
Return the absolute value of a number. The argument may be a plain or long integer or a floating point number.
If the argument is a complex number, its magnitude is returned.

apply (function, arg%, keywordﬁ)
Thefunctionargument must be a callable object (a user-defined or built-in function or method, or a class object)
and theargs argument must be a sequence (if it is not a tuple, the sequence is first converted to a tuple). The
functionis called withargsas the argument list; the number of arguments is the the length of the tuple. (This is
different from just callingund args) , since in that case there is always exactly one argument.) If the optional
keywordsargument is present, it must be a dictionary whose keys are strings. It specifies keyword arguments to
be added to the end of the the argument list.

buffer ( objec{, offse[, size] ])
Theobjectargument must be an object that supports the buffer call interface (such as strings, arrays, and buffers).
A new buffer object will be created which referencesdhgectargument. The buffer object will be a slice from
the beginning obbject(or from the specifiedffse). The slice will extend to the end abject(or will have a
length given by thaizeargument).

callable (objec)
Return true if theobjectargument appears callable, false if not. If this returns true, it is still possible that a call
fails, but if it is false, callingobjectwill never succeed. Note that classes are callable (calling a class returns a
new instance); class instances are callable if they havecall __() method.

chr (i)
Return a string of one character whosgci code is the integer e.g.,chr(97)  returns the stringp’ . This
is the inverse obrd() . The argument must be in the range [0..255], inclusiedueError  will be raised if
i is outside that range.

cmp( X, )
Compare the two objectsandy and return an integer according to the outcome. The return value is negative if
X <y, zeroifx == yand strictly positive ifx > .

coerce (X,Y)
Return a tuple consisting of the two numeric arguments converted to a common type, using the same rules as
used by arithmetic operations.

compile ( string, filename, king
Compile thestringinto a code object. Code objects can be executed Bxaa statement or evaluated by a call
toeval() . Thefilenameargument should give the file from which the code was read; passstgng>’
if it wasn't read from a file. Th&ind argument specifies what kind of code must be compiled,; it cédaxas’
if string consists of a sequence of statemefggal’ if it consists of a single expression, @ingle’ if
it consists of a single interactive statement (in the latter case, expression statements that evaluate to something
else tharNone will printed).

complex (real[, imag])
Create a complex number with the vaheal + imagfj or convert a string or number to a complex number. Each
argument may be any numeric type (including complexjmiéigis omitted, it defaults to zero and the function
serves as a humeric conversion function lik) , long() andfloat() ; in this case it also accepts a
string argument which should be a valid complex number.

delattr  ( object, namg
This is a relative oetattr() . The arguments are an object and a string. The string must be the name of one
of the object’s attributes. The function deletes the named attribute, provided the object allows it. For example,
delattr( %, ' foobar) is equivalenttalel x. foobar.

dir ( [object])
Without arguments, return the list of names in the current local symbol table. With an argument, attempts
to return a list of valid attribute for that object. This information is gleaned from the objectfict __,
__methods __and__members__ attributes, if defined. The list is not necessarily complete; e.g., for classes,

2.3. Built-in Functions 21



attributes defined in base classes are not included, and for class instances, methods are not included. The
resulting list is sorted alphabetically. For example:

>>> import sys

>>> dir()

['sys’]

>>> dir(sys)

[argv’, ’'exit’, 'modules’, 'path’, 'stderr’, ’stdin’, 'stdout’]

divmod (a, b)

eval

Take two numbers as arguments and return a pair of numbers consisting of their quotient and remainder when
using long division. With mixed operand types, the rules for binary arithmetic operators apply. For plain and
long integers, the result is the same(as/ b, a % b). For floating point numbers the result(iig, a %

b) , whereq is usuallymath.floor( a / b) but may be 1 less than that. Inany casé b + a % bis

very close ta, if a % bis non-zero it has the same signaend0 <= abs( a % b) < abs( b).

( expressio[1, gIobaIs[, Iocals] ] )

The arguments are a string and two optional dictionaries.ekpeessiorargument is parsed and evaluated as a
Python expression (technically speaking, a condition list) usinglthtgalsandlocalsdictionaries as global and
local name space. If tHecalsdictionary is omitted it defaults to thgdobalsdictionary. If both dictionaries are
omitted, the expression is executed in the environment wéneaie is called. The return value is the result of
the evaluated expression. Syntax errors are reported as exceptions. Example:

>>> x = 1
>>> print eval(x+1’)
2

This function can also be used to execute arbitrary code objects (e.g. createchpye() ). In this case
pass a code object instead of a string. The code object must have been compiled’paabing to thekind
argument.

Hints: dynamic execution of statements is supported byettex statement. Execution of statements from
a file is supported by thexecfile() function. Theglobals() andlocals() functions returns the
current global and local dictionary, respectively, which may be useful to pass around for esalfy or
execfile()

execfile  ( file[, globals[, Iocals]])

filter

float

This function is similar to thexec statement, but parses a file instead of a string. It is different from the
import  statement in that it does not use the module administration — it reads the file unconditionally and does
not create a new modufe.

The arguments are a file name and two optional dictionaries. The file is parsed and evaluated as a sequence of
Python statements (similarly to a module) using ghebalsandlocals dictionaries as global and local names-

pace. If thdocalsdictionary is omitted it defaults to thrglobalsdictionary. If both dictionaries are omitted, the
expression is executed in the environment whexecfile() is called. The return value NMone.

( function, lis)
Construct a list from those elementslist for which functionreturns true. list is a string or a tuple, the result
also has that type; otherwise it is always a listfufctionis None, the identity function is assumed, i.e. all
elements ofist that are false (zero or empty) are removed.

(%)
Convert a string or a number to floating point. If the argument is a string, it must contain a possibly signed dec-
imal or floating point number, possibly embedded in whitespace; this behaves idensitalgoatof( X) .

Otherwise, the argument may be a plain or long integer or a floating point number, and a floating point number
with the same value (within Python’s floating point precision) is returned.

8|t is used relatively rarely so does not warrant being made into a statement.

22

Chapter 2. Built-in Types, Exceptions and Functions



Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying C
library. The specific set of strings accepted which cause these values to be returned depends entirely on the C
library and is known to vary.

getattr  ( object, nam[a, default])
Return the value of the named attributedaject namemust be a string. If the string is the name of one
of the object’s attributes, the result is the value of that attribute. For examglattr(x, 'foobar’)

is equivalent tax.foobar . If the named attribute does not exiggfaultis returned if provided, otherwise
AttributeError is raised.
globals ()

Return a dictionary representing the current global symbol table. This is always the dictionary of the current
module (inside a function or method, this is the module where it is defined, not the module from which it is
called).

hasattr ( object, namp
The arguments are an object and a string. The result is 1 if the string is the name of one of the object’s attributes,
0 if not. (This is implemented by callingetattr(  object nameg and seeing whether it raises an exception
or not.)

hash ( objec)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly compare
dictionary keys during a dictionary lookup. Numeric values that compare equal have the same hash value (even
if they are of different types, e.g. 1 and 1.0).

hex ( x)
Convert an integer number (of any size) to a hexadecimal string. The result is a valid Python expression. Note:
this always yields an unsigned literal, e.g. on a 32-bit macHie&(-1) yields 'Oxffffffff’ . When

evaluated on a machine with the same word size, this literal is evaluated as -1; at a different word size, it may
turn up as a large positive number or raiseCarerflowError exception.

id ( objec)
Return the ‘identity’ of an object. This is an integer (or long integer) which is guaranteed to be unique and
constant for this object during its lifetime. Two objects whose lifetimes are disjunct may have thégpme
value. (Implementation note: this is the address of the object.)

input ( [prompt])
Equivalent toeval(raw _input( prompd) . Warning: This function is not safe from user errors! It expects
a valid Python expression as input; if the input is not syntactically val®iraxError  will be raised. Other
exceptions may be raised if there is an error during evaluation. (On the other hand, sometimes this is exactly
what you need when writing a quick script for expert use.)

If the readline  module was loaded, thenput()  will use it to provide elaborate line editing and history
features.

Consider using theaw _input()  function for general input from users.

int (X[, radix])
Convert a string or number to a plain integer. If the argument is a string, it must contain a possibly signed
decimal number representable as a Python integer, possibly embedded in whitespace; this behaves identical to
string.atoi( x[, radix]) . Theradix parameter gives the base for the conversion and may be any integer
in the range [2, 36], or zero. Hadix is zero, the proper radix is guessed based on the contents of string; the
interpretation is the same as for integer literalsatfix is specified ana is not a stringTypeError is raised.
Otherwise, the argument may be a plain or long integer or a floating point number. Conversion of floating point
numbers to integers is defined by the C semantics; normally the conversion truncates towatds zero.

intern (' string)
Enterstring in the table of “interned” strings and return the interned string — whidtriag itself or a copy.
Interning strings is useful to gain a little performance on dictionary lookup — if the keys in a dictionary are

9This is ugly — the language definition should require truncation towards zero.

2.3. Built-in Functions 23



interned, and the lookup key is interned, the key comparisons (after hashing) can be done by a pointer compare
instead of a string compare. Normally, the names used in Python programs are automatically interned, and the
dictionaries used to hold module, class or instance attributes have interned keys. Interned strings are immortal
(i.e. never get garbage collected).

isinstance  ( object, clasy
Return true if theobjectargument is an instance of tledassargument, or of a (direct or indirect) subclass
thereof. Also return true i€lassis a type object andbjectis an object of that type. Ibbjectis not a class
instance or a object of the given type, the function always returns falstadsis neither a class object nor a
type object, al'ypeError exception is raised.

issubclass ( classl, classp
Return true ifclasslis a subclass (direct or indirect) ofass2 A class is considered a subclass of itself. If either
argument is not a class objectTgpeError exception is raised.

len (9
Return the length (the number of items) of an object. The argument may be a sequence (string, tuple or list) or
a mapping (dictionary).

list (sequence
Return a list whose items are the same and in the same ordegasncs items. Ifsequencés already a list,
a copy is made and returned, similardgequende] . For instancelist('abc’) returns returng'a’,
b, ¢ andlist( (1, 2, 3) ) returns[l, 2, 3]

locals ()
Return a dictionary representing the current local symbol tAldgning: The contents of this dictionary should
not be modified; changes may not affect the values of local variables used by the interpreter.

long (x[, radix])
Convert a string or number to a long integer. If the argument is a string, it must contain a possibly signed number
of arbitrary size, possibly embedded in whitespace; this behaves identisting.atol( X) . Theradix
argument is interpreted in the same way asifitf) , and may only be given whexis a string. Otherwise,
the argument may be a plain or long integer or a floating point number, and a long integer with the same value
is returned. Conversion of floating point numbers to integers is defined by the C semantics; see the description
of int()

map( function, list, ..)
Apply functionto every item oflist and return a list of the results. If additioniédt arguments are passed,
functionmust take that many arguments and is applied to the items of all lists in parallel; if a list is shorter than
another it is assumed to be extended wWitne items. Iffunctionis None, the identity function is assumed,; if
there are multiple list argumentsiap() returns a list consisting of tuples containing the corresponding items
from all lists (i.e. a kind of transpose operation). Tis¢ arguments may be any kind of sequence; the result is
always a list.

max( s[, args...])
With a single argumenrd, return the largest item of a non-empty sequence (e.g., a string, tuple or list). With
more than one argument, return the largest of the arguments.

min ( s[, args...])
With a single argumerg, return the smallest item of a non-empty sequence (e.g., a string, tuple or list). With
more than one argument, return the smallest of the arguments.

oct (x)
Convert an integer number (of any size) to an octal string. The result is a valid Python expression. Note:
this always yields an unsigned literal, e.g. on a 32-bit mactoo&;1) vyields’'037777777777 . When
evaluated on a machine with the same word size, this literal is evaluated as -1; at a different word size, it may
turn up as a large positive number or raiseCarerflowError exception.

open ( filename{, mode[, bufsizd])
Return a new file object (described earlier under Built-in Types). The first two arguments are the same as for

24 Chapter 2. Built-in Types, Exceptions and Functions



stdio 'sfopen() : filenameis the file name to be openemhodeindicates how the file is to be opened:
for reading,w’ for writing (truncating an existing file), arid’ opens it for appending (which @omeUnix
systems means thall writes append to the end of the file, regardless of the current seek position).

Modes’r+' ,'w+’ and’'a+’ open the file for updating (note that+' truncates the file). Appentd’ to
the mode to open the file in binary mode, on systems that differentiate between binary and text files (else it is
ignored). If the file cannot be opend@Error s raised.

If modeis omitted, it defaults t&r' . When opening a binary file, you should appéind to themodevalue

for improved portability. (It's useful even on systems which don't treat binary and text files differently, where

it serves as documentation.) The optiobafsizeargument specifies the file’'s desired buffer size: 0 means
unbuffered, 1 means line buffered, any other positive value means use a buffer of (approximately) that size. A
negativebufsizemeans to use the system default, which is usually line buffered for for tty devices and fully
buffered for other files. If omitted, the system default is used.

ord (¢)
Return theascii value of a string of one character or a Unicode character. &dy’a’) returns the integer
97, ord(uw’
u2020’) returns8224 . This is the inverse ofhr() for strings and ofinichr()  for Unicode characters.
pow(x, Y[, z])

Returnx to the powery; if zis present, returix to the powery, moduloz (computed more efficiently than
pow(x, Yy) % 2. The arguments must have numeric types. With mixed operand types, the rules for binary
arithmetic operators apply. The effective operand type is also the type of the result; if the result is not expressible
in this type, the function raises an exception; epgw(2, -1) orpow(2, 35000) is not allowed.

range ( [start,] stop{, step])
This is a versatile function to create lists containing arithmetic progressions. It is most often tmmedlaops.
The arguments must be plain integers. If gtepargument is omitted, it defaults th. If the start argument
is omitted, it defaults t@. The full form returns a list of plain integefsstart, start + step start + 2
* step ..] . If stepis positive, the last element is the largetdrt + i * stepless tharstop if stepis
negative, the last element is the largsttrt + i * stepgreater tharstop stepmust not be zero (or else
ValueError s raised). Example:

>>> range(10)

[0, 1, 2, 3, 4,5, 6,7, 8 9]
>>> range(1, 11)

1, 2, 3, 4, 5, 6, 7, 8 9, 10]
>>> range(0, 30, 5)

[0, 5, 10, 15, 20, 25]

>>> range(0, 10, 3)

[0, 3, 6, 9]

>>> range(0, -10, -1)

[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> range(0)

I

>>> range(1, 0)

I

raw _input ([prompt])
If the promptargument is present, it is written to standard output without a trailing newline. The function then
reads a line from input, converts it to a string (stripping a trailing newline), and returns that. &dirés read,
EOFError israised. Example:

10specifying a buffer size currently has no effect on systems that don'tgetvbuf() . The interface to specify the buffer size is not done
using a method that calietvbuf() , because that may dump core when called after any 1/O has been performed, and there’s no reliable way to
determine whether this is the case.

2.3. Built-in Functions 25



>>> s = raw_input(’--> )

--> Monty Python’s Flying Circus
>>> S

"Monty Python’s Flying Circus"

If the readline  module was loaded, theraw _input()  will use it to provide elaborate line editing and
history features.

reduce (function, sequem{einitializer])
Apply function of two arguments cumulatively to the items squencefrom left to right, so as to reduce
the sequence to a single value. For exampmeluce(lambda x, y: x+y, [1, 2, 3, 4, 5])
calculateq(((1+2)+3)+4)+5) . If the optionalinitializer is present, it is placed before the items of the
sequence in the calculation, and serves as a default when the sequence is empty.

reload ( modulg
Re-parse and re-initialize an already impornteddule The argument must be a module object, so it must have
been successfully imported before. This is useful if you have edited the module source file using an external
editor and want to try out the new version without leaving the Python interpreter. The return value is the module
object (i.e. the same as theoduleargument).

There are a number of caveats:

If a module is syntactically correct but its initialization fails, the firsport statement for it does not bind
its name locally, but does store a (partially initialized) module objesygimodules . To reload the module
you must firsimport it again (this will bind the name to the partially initialized module object) before you
canreload() it.

When a module is reloaded, its dictionary (containing the module’s global variables) is retained. Redefinitions
of names will override the old definitions, so this is generally not a problem. If the new version of a module
does not define a name that was defined by the old version, the old definition remains. This feature can be used
to the module’s advantage if it maintains a global table or cache of objects — wigh atatement it can test

for the table’s presence and skip its initialization if desired.

It is legal though generally not very useful to reload built-in or dynamically loaded modules, excepysfor

__main __and__builtin ~ __. In many cases, however, extension modules are not designed to be initialized
more than once, and may fail in arbitrary ways when reloaded.
If a module imports objects from another module usiram ... import ..., callingreload() for the

other module does not redefine the objects imported from it — one way around this is to re-exefugmthe
statement, another is to ugeport and qualified namesr(odulenamg instead.

If a module instantiates instances of a class, reloading the module that defines the class does not affect the
method definitions of the instances — they continue to use the old class definition. The same is true for derived
classes.

repr (objec)
Return a string containing a printable representation of an object. This is the same value yielded by conversions
(reverse quotes). It is sometimes useful to be able to access this operation as an ordinary function. For many
types, this function makes an attempt to return a string that would yield an object with the same value when
passed t@val()

round (x[, n])
Return the floating point valuerounded ton digits after the decimal point. H is omitted, it defaults to zero.
The result is a floating point number. Values are rounded to the closest multiple of 10 to the powen;nifinus
two multiples are equally close, rounding is done away from 0 (soregnd(0.5) is 1.0 andround(-
0.5) is-1.0 ).

setattr  ( object, name, valye
This is the counterpart gfetattr() . The arguments are an object, a string and an arbitrary value. The string
may name an existing attribute or a new attribute. The function assigns the value to the attribute, provided the
object allows it. For exampleetattr( %, ' foobar, 123) is equivalent tox. foobar = 123.

26 Chapter 2. Built-in Types, Exceptions and Functions



slice  ( [start,] stor{, step])
Return a slice object representing the set of indices specifiedrimye( start, stop step . Thestartand
steparguments default to None. Slice objects have read-only data attrittaies , stop andstep which
merely return the argument values (or their default). They have no other explicit functionality; however they
are used by Numerical Python and other third party extensions. Slice objects are also generated when extended
indexing syntax is used, e.g. fa[start:stop:step] " or ‘a[start:stop, i] .

str ( objec)
Return a string containing a nicely printable representation of an object. For strings, this returns the string
itself. The difference witliepr( objec) is thatstr( objec) does not always attempt to return a string that is
acceptable teval() ; its goal is to return a printable string.

tuple (sequence
Return a tuple whose items are the same and in the same ordegasncs items. If sequenceés already
a tuple, it is returned unchanged. For instartagle('abc’) returns returng’a’, 'b’, 'c’) and
tuple([1, 2, 3]) returns(1, 2, 3)

type (objecd
Return the type of anbject The return value is a type object. The standard motjydes defines names for
all built-in types. For instance:

>>> import types
>>> jf type(X) == types.StringType: print "It's a string"

unichr (i)
Return the Unicode string of one character whose Unicode code is the integgrunichr(97) returns the
stringu’a’ . This is the inverse ofrd() for Unicode strings. The argument must be in the range [0..65535],
inclusive.ValueError is raised otherwise. New in version 2.0.

unicode ( string[, encodin&, errors] ])
Decodesstring using the codec foencoding Error handling is done according éorors. The default behavior
is to decode UTF-8 in strict mode, meaning that encoding errors YakeeError . See also theodecs
module. New in version 2.0.

vars ([object])
Without arguments, return a dictionary corresponding to the current local symbol table. With a module, class
or class instance object as argument (or anything else that hasliat __ attribute), returns a dictionary
corresponding to the object’s symbol table. The returned dictionary should not be modified: the effects on the
corresponding symbol table are undefiriéd.

xrange ( [start,] stor{, step])
This function is very similar t#ange() , but returns an “xrange object” instead of a list. This is an opaque
sequence type which yields the same values as the corresponding list, without actually storing them all si-
multaneously. The advantagexfange() overrange() is minimal (sincexrange() still has to create
the values when asked for them) except when a very large range is used on a memory-starved machine (e.g.
MS-DOS) or when all of the range’s elements are never used (e.g. when the loop is usually terminated with
break ).

zip (seql,.)
This function returns a list of tuples, where each tuple contains-theslement from each of the argument
sequences. At least one sequence is required, otherWiggekrror is raised. The returned list is truncated
in length to the length of the shortest argument sequence. When there are multiple argument sequences which
are all of the same lengthip() is similar tomap() with an initial argument oNone. With a single sequence
argument, it returns a list of 1-tuples. New in version 2.0.

1n the current implementation, local variable bindings cannot normally be affected this way, but variables retrieved from other scopes (e.g.
modules) can be. This may change.

2.3. Built-in Functions 27



28



CHAPTER
THREE

Python Runtime Services

The modules described in this chapter provide a wide range of services related to the Python interpreter and its inter-
action with its environment. Here’s an overview:

sys
gc
weakref
fpectl
atexit
types
UserDict
UserList
UserString
operator
inspect
traceback
linecache
pickle
cPickle

copy _reg
shelve

copy
marshal
warnings
imp
code
codeop
pprint
repr
new

site

user
__builtin
__main __

Access system-specific parameters and functions.
Interface to the cycle-detecting garbage collector.

Support for weak references and weak dictionaries.
Provide control for floating point exception handling.
Register and execute cleanup functions.

Names for all built-in types.

Class wrapper for dictionary objects.

Class wrapper for list objects.

Class wrapper for string objects.

All Python’s standard operators as built-in functions.
Extract information and source code from live objects.
Print or retrieve a stack traceback.

This module provides random access to individual lines from text files.
Convert Python objects to streams of bytes and back.
Faster version gpickle , but not subclassable.
Registempickle  support functions.

Python object persistence.

Shallow and deep copy operations.

Convert Python objects to streams of bytes and back (with different constraints).
Issue warning messages and control their disposition.
Access the implementation of timaport  statement.

Base classes for interactive Python interpreters.

Compile (possibly incomplete) Python code.

Data pretty printer.

Alternaterepr()  implementation with size limits.

Interface to the creation of runtime implementation objects.
A standard way to reference site-specific modules.

A standard way to reference user-specific modules.

The set of built-in functions.

The environment where the top-level script is run.

3.1 sys — System-specific parameters and functions

This module provides access to some variables used or maintained by the interpreter and to functions that interact
strongly with the interpreter. It is always available.

argv

29



The list of command line arguments passed to a Python saigiv[0]  is the script name (it is operating
system dependent whether this is a full pathname or not). If the command was executed usingth@and
line option to the interpreteargv[0] is set to the stringc’ . If no script name was passed to the Python
interpreterargv has zero length.

byteorder
An indicator of the native byte order. This will have the valbig'  on big-endian (most-signigicant byte first)
platforms, andlittle’ on little-endian (least-significant byte first) platforms. New in version 2.0.

builtin ~ _module _names
A tuple of strings giving the names of all modules that are compiled into this Python interpreter. (This informa-
tion is not available in any other way wodules.keys() only lists the imported modules.)

copyright
A string containing the copyright pertaining to the Python interpreter.
dilhandle
Integer specifying the handle of the Python DLL. Availability: Windows.
displayhook (value
If valueis notNone, this function prints it tesys.stdout  , and saves itin_builtin ~ __. _.

sys.displayhook is called on the result of evaluating an expression entered in an interactive Python
session. The display of these values can be customized by assigning another one-argument function to
sys.displayhook

excepthook (type, value, tracebagk
This function prints out a given traceback and exceptiosywstderr

When an exception is raised and uncaught, the interpreter oalexcepthook with three arguments,

the exception class, exception instance, and a traceback object. In an interactive session this happens just
before control is returned to the prompt; in a Python program this happens just before the program exits.
The handling of such top-level exceptions can be customized by assigning another three-argument function
to sys.excepthook

__displayhook __

__excepthook _
These objects contain the original valuesdidplayhook  andexcepthook at the start of the program.
They are saved so thdisplayhook  andexcepthook can be restored in case they happen to get replaced
with broken objects.

exc _info ()
This function returns a tuple of three values that give information about the exception that is currently being
handled. The information returned is specific both to the current thread and to the current stack frame. If the
current stack frame is not handling an exception, the information is taken from the calling stack frame, or its
caller, and so on until a stack frame is found that is handling an exception. Here, “handling an exception” is
defined as “executing or having executed an except clause.” For any stack frame, only information about the
most recently handled exception is accessible.

If no exception is being handled anywhere on the stack, a tuple containingNloree values is returned.
Otherwise, the values returned drgpe valug tracebach . Their meaning istypegets the exception type

of the exception being handled (a string or class obja@)ie gets the exception parameter (#ssociated
valueor the second argumenttaise , which is always a class instance if the exception type is a class object);
tracebackgets a traceback object (see the Reference Manual) which encapsulates the call stack at the point
where the exception originally occurred.

Warning: assigning thdracebackreturn value to a local variable in a function that is handling an exception

will cause a circular reference. This will prevent anything referenced by a local variable in the same function
or by the traceback from being garbage collected. Since most functions don't need access to the traceback, the
best solution is to use something likgctype, value = sys.exc _info()[:2] to extract only the
exception type and value. If you do need the traceback, make sure to delete it after use (best dotrg with a

30 Chapter 3. Python Runtime Services



finally statement) or to caéixc _info()  in a function that does not itself handle an exception.

exc _type
exc _value
exc _traceback
Deprecated since release 1.&lseexc _info()  instead.

Since they are global variables, they are not specific to the current thread, so their use is not safe in a multi-
threaded program. When no exception is being handigd, type is set toNone and the other two are

undefined.

exec _prefix
A string giving the site-specific directory prefix where the platform-dependent Python files are installed; by
default, this is alsd/usr/local’ . This can be set at build time with theexec-prefixargument to the
configure script. Specifically, all configuration files (e.g. theohfig.h' header file) are installed in the di-
rectoryexec _prefix + '/lib/python versioriconfig’ , and shared library modules are installed in
exec _prefix + ’/lib/python versiorlib-dynload’ , Whereversionis equal toversion[:3]

executable

A string giving the name of the executable binary for the Python interpreter, on systems where this makes sense.

exit ( [arg])
Exit from Python. This is implemented by raising tBgstemExit exception, so cleanup actions specified by
finally clauses ofry statements are honored, and it is possible to intercept the exit attempt at an outer level.
The optional argumeratrg can be an integer giving the exit status (defaulting to zero), or another type of object.
If it is an integer, zero is considered “successful termination” and any nonzero value is considered “abnormal
termination” by shells and the like. Most systems require it to be in the range 0-127, and produce undefined
results otherwise. Some systems have a convention for assigning specific meanings to specific exit codes, but
these are generally underdeveloped; Unix programs generally use 2 for command line syntax errors and 1 for
all other kind of errors. If another type of object is pasd¢dne is equivalent to passing zero, and any other
object is printed teys.stderr and results in an exit code of 1. In particulgys.exit("some error
message") is a quick way to exit a program when an error occurs.

exitfunc
This value is not actually defined by the module, but can be set by the user (or by a program) to specify a clean-
up action at program exit. When set, it should be a parameterless function. This function will be called when
the interpreter exits. Only one function may be installed in this way; to allow multiple functions which will be
called at termination, use tlegexit  module. Note: the exit function is not called when the program is killed
by a signal, when a Python fatal internal error is detected, or wken exit() s called.

getdefaultencoding 0
Return the name of the current default string encoding used by the Unicode implementation. New in version
2.0.

getrefcount  ( objec)
Return the reference count of tldject The count returned is generally one higher than you might expect,
because it includes the (temporary) reference as an argumgettrégcount()

getrecursionlimit 0
Return the current value of the recursion limit, the maximum depth of the Python interpreter stack. This limit
prevents infinite recursion from causing an overflow of the C stack and crashing Python. It can be set by
setrecursionlimit()

_getframe ( [depth])
Return a frame object from the call stack. If optional intedepthis given, return the frame object that many
calls below the top of the stack. If that is deeper than the call siéakieError s raised. The default for
depthis zero, returning the frame at the top of the call stack.

This function should be used for internal and specialized purposes only.

hexversion

3.1. sys — System-specific parameters and functions 31



The version number encoded as a single integer. This is guaranteed to increase with each version, including
proper support for non-production releases. For example, to test that the Python interpreter is at least version
1.5.2, use:

if sys.hexversion >= 0x010502FO:
# use some advanced feature

else:
# use an alternative implementation or warn the user

This is called hexversion ' since it only really looks meaningful when viewed as the result of passing it to
the built-inhex() function. Theversion _info value may be used for a more human-friendly encoding of
the same information. New in version 1.5.2.

last _type

last _value

last _traceback
These three variables are not always defined; they are set when an exception is not handled and the interpreter
prints an error message and a stack traceback. Their intended use is to allow an interactive user to import a
debugger module and engage in post-mortem debugging without having to re-execute the command that caused
the error. (Typical use isrport pdb; pdb.pm() ' to enter the post-mortem debugger; see the chapter
“The Python Debugger” for more information.)

The meaning of the variables is the same as that of the return valuegfoninfo()  above. (Since there is
only one interactive thread, thread-safety is not a concern for these variables, unéke fdype etc.)

maxint
The largest positive integer supported by Python’s regular integer type. This is at least 2**31-1. The largest
negative integer ismaxint-1  —the asymmetry results from the use of 2's complement binary arithmetic.
modules

This is a dictionary that maps module names to modules which have already been loaded. This can be manip-
ulated to force reloading of modules and other tricks. Note that removing a module from this dictionaty is
the same as callinggload()  on the corresponding module object.

path
A list of strings that specifies the search path for modules. Initialized from the environment variable PYTHON-
PATH, or an installation-dependent default.

The first item of this listpath[0] , is the directory containing the script that was used to invoke the Python

interpreter. If the script directory is not available (e.g. if the interpreter is invoked interactively or if the script is
read from standard inpupath[0] is the empty string, which directs Python to search modules in the current
directory first. Notice that the script directory is inserbedorethe entries inserted as a result of PYTHONPATH.

platform
This string contains a platform identifier, e:.gunos5’ or’linuxl’ . This can be used to append platform-
specific components feath , for instance.

prefix
A string giving the site-specific directory prefix where the platform independent Python files are installed,;
by default, this is the strindustr/local’ . This can be set at build time with theprefix argument to
the configure script. The main collection of Python library modules is installed in the diregboefix
+ ’llib/python versiori while the platform independent header files (all excephfig.h’) are stored in
prefix + ’/include/python version , whereversionis equal toversion|:3]

psil
ps2
Strings specifying the primary and secondary prompt of the interpreter. These are only defined if the interpreter

32 Chapter 3. Python Runtime Services



is in interactive mode. Their initial values in this case a®z> and’... . If a non-string object is
assigned to either variable, gfr()  is re-evaluated each time the interpreter prepares to read a new interactive
command; this can be used to implement a dynamic prompt.

setcheckinterval (interval)
Setthe interpreter’s “check interval”. This integer value determines how often the interpreter checks for periodic
things such as thread switches and signal handlers. The defaQltiseaning the check is performed every 10
Python virtual instructions. Setting it to a larger value may increase performance for programs using threads.
Setting it to a valuez= 0 checks every virtual instruction, maximizing responsiveness as well as overhead.

setdefaultencoding (nameg
Set the current default string encoding used by the Unicode implementatialamiédoes not match any
available encodind,ookupError is raised. This function is only intended to be used bydie module
implementation and, where needed ditgcustomize . Once used by theite  module, it is removed from
thesys module’s namespace. New in version 2.0.

setprofile ( profilefung
Set the system’s profile function, which allows you to implement a Python source code profiler in Python.
See the chapter on the Python Profiler. The system’s profile function is called similarly to the system’s trace
function (seesettrace() ), butitisn’t called for each executed line of code (only on call and return and when
an exception occurs). Also, its return value is not used, so it can just fsame.

setrecursionlimit (limit)
Set the maximum depth of the Python interpreter stackmd. This limit prevents infinite recursion from
causing an overflow of the C stack and crashing Python.

The highest possible limitis platform-dependent. A user may need to set the limit higher when she has a program
that requires deep recursion and a platform that supports a higher limit. This should be done with care, because
a too-high limit can lead to a crash.

settrace (tracefung
Set the system’s trace function, which allows you to implement a Python source code debugger in Python. See
section “How It Works” in the chapter on the Python Debugger.

stdin
stdout
stderr
File objects corresponding to the interpreter’s standard input, output and error stre@tims. is used for
all interpreter input except for scripts but including calldriput()  andraw _input() . stdout is used
for the output ofprint  and expression statements and for the prompisamit()  andraw _input()
The interpreter's own prompts and (almost all of) its error messages gioéor . stdout andstderr
needn’t be built-in file objects: any object is acceptable as long as it ha#te) method that takes a
string argument. (Changing these objects doesn’t affect the standard 1/0O streams of processes executed by
os.popen() ,os.system() ortheexec*() family of functions intheos module.)

__stdin __

__stdout

__stderr  __
These objects contain the original valuesstfin , stderr andstdout at the start of the program. They
are used during finalization, and could be useful to restore the actual files to known working file objects in case
they have been overwritten with a broken object.

tracebacklimit
When this variable is set to an integer value, it determines the maximum number of levels of traceback infor-
mation printed when an unhandled exception occurs. The defal008. When set to O or less, all traceback
information is suppressed and only the exception type and value are printed.

version
A string containing the version number of the Python interpreter plus additional information on the build num-

3.1. sys — System-specific parameters and functions 33



ber and compiler used. It has a value of the formersion (# build_number build_date build_time)
[ compilef’ . The first three characters are used to identify the version in the installation directories (where
appropriate on each platform). An example:

>>> import sys

>>> gys.version

'1.5.2 (#0 Apr 13 1999, 10:51:12) [MSC 32 bit (Intel)]

version _info
A tuple containing the five components of the version numiyegjor, minor, micro, releaselevelandserial. All
values excepteleaseleveare integers; the release levelatpha’ ,’beta’ ,’candidate’ , orfinal’
Theversion _info value corresponding to the Python version 2.®is 0, 0, ‘final’, 0) . New
in version 2.0.

winver
The version number used to form registry keys on Windows platforms. This is stored as string resource 1000 in
the Python DLL. The value is normally the first three charactereddion . Itis provided in thesys module
for informational purposes; modifying this value has no effect on the registry keys used by Python. Availability:
Windows.

3.2 gc — Garbage Collector interface

The gc module is only available if the interpreter was built with the optional cyclic garbage detector (enabled by
default). If this was not enabled, &mportError  is raised by attempts to import this module.

This module provides an interface to the optional garbage collector. It provides the ability to disable the collector, tune
the collection frequency, and set debugging options. It also provides access to unreachable objects that the collector
found but cannot free. Since the collector supplements the reference counting already used in Python, you can disable
the collector if you are sure your program does not create reference cycles. Automatic collection can be disabled by
callinggc.disable() . To debug a leaking program cajt.set _debug(gc.DEBUG _LEAK).

Thegc module provides the following functions:

enable ()
Enable automatic garbage collection.

disable ()
Disable automatic garbage collection.

isenabled ()
Returns true if automatic collection is enabled.

collect ()
Run a full collection. All generations are examined and the number of unreachable objects found is returned.

set _debug ( flag9
Set the garbage collection debugging flags. Debugging information will be writeyststderr . See below
for a list of debugging flags which can be combined using bit operations to control debugging.

get _debug ()
Return the debugging flags currently set.

set _threshold ( threshold(f, threshold{, thresholdj ] )
Set the garbage collection thresholds (the collection frequency). Stttegholdo zero disables collection.

The GC classifies objects into three generations depending on how many collection sweeps they have survived.
New objects are placed in the youngest generation (gene@tidhan object survives a collection it is moved

into the next older generation. Since generafiois the oldest generation, objects in that generation remain
there after a collection. In order to decide when to run, the collector keeps track of the number object allocations

34 Chapter 3. Python Runtime Services



and deallocations since the last collection. When the number of allocations minus the number of deallocations
exceedshresholdQ collection starts. Initially only generatidhis examined. If generatiobhas been examined

more thanthreshold1times since generatioh has been examined, then generatiois examined as well.
Similarly, threshold2controls the number of collections of generatibbefore collecting generatidh

get _threshold ()
Return the current collection thresholds as a tuplétbfesholdQ threshold]l threshold? .

The following variable is provided for read-only access:

garbage
A list of objects which the collector found to be unreachable but could not be freed (uncollectable objects).
Objects that have_del __() methods and create part of a reference cycle cause the entire reference cycle to
be uncollectable. IDEBUGSAVEALLIs set, then all unreachable objects will be added to this list rather than
freed.

The following constants are provided for use wsttt _debug() :

DEBUGSTATS
Print statistics during collection. This information can be useful when tuning the collection frequency.

DEBUGCOLLECTABLE
Print information on collectable objects found.

DEBUGUNCOLLECTABLE
Print information of uncollectable objects found (objects which are not reachable but cannot be freed by the
collector). These objects will be added to tegbage list.

DEBUGINSTANCES
WhenDEBUGCOLLECTABLEr DEBUGUNCOLLECTABLIS set, print information about instance objects
found.

DEBUGOBJECTS
WhenDEBUGCOLLECTABLBrDEBUGUNCOLLECTABLIE set, print information about objects other than
instance objects found.

DEBUGSAVEALL
When set, all unreachable objects found will be appendegdtioagerather than being freed. This can be useful
for debugging a leaking program.

DEBUGLEAK
The debugging flags necessary for the collector to print information about a leaking program (equal to
DEBUGCOLLECTABLE | DEBUGUNCOLLECTABLE | DEBUGNSTANCES | DEBUGOBJECTS
| DEBUG_SAVEALL.

3.3 weakref — Weak references

New in version 2.1.
Theweakref module allows the Python programmer to crea&ak referencet® objects.
XXX — need to say more here!

Not all objects can be weakly referenced; those objects which do include class instances, functions written in Python
(but not in C), and methods (both bound and unbound). Extension types can easily be made to support weak references;
see section 3.3.3, “Weak References in Extension Types,” for more information.

ref (objec{, callback])
Return a weak reference tabject If callbackis provided, it will be called when the object is about to be
finalized; the weak reference object will be passed as the only parameter to the callback; the referent will no

3.3. weakref — Weak references 35



longer be available. The original object can be retrieved by calling the reference object, if the referent is still
alive.

It is allowable for many weak references to be constructed for the same object. Callbacks registered for each
weak reference will be called from the most recently registered callback to the oldest registered callback.

Exceptions raised by the callback will be noted on the standard error output, but cannot be propagated; they are
handled in exactly the same way as exceptions raised from an ohjectd __() method.

Weak references are hashable if tigectis hashable. They will maintain their hash value even afteotiject
was deleted. lhash() is called the first time only after thebjectwas deleted, the call will raiSEypeError

Weak references support test for equality, but not ordering. Ibtijectis still alive, to references are equal
if the objects are equal (regardless of ttadlback. If the objecthas been deleted, they are equal iff they are
identical.

proxy (objec{, caIIback])
Return a proxy tmbjectwhich uses a weak reference. This supports use of the proxy in most contexts instead
of requiring the explicit dereferencing used with weak reference objects. The returned object will have a type
of eitherProxyType or CallableProxyType , depending on wheth@bjectis callable. Proxy objects are
not hashable regardless of the referent; this avoids a number of problems related to their fundamentally mutable
nature, and prevent their use as dictionary kegdlbackis the same as the parameter of the same name to the
ref() function.

getweakrefcount  ( objec)
Return the number of weak references and proxies which refsbjéxt

getweakrefs  ( objec)
Return a list of all weak reference and proxy objects which refebject

classWeakKeyDictionary ([dict])
Mapping class that references keys weakly. Entries in the dictionary will be discarded when there is no longer a
strong reference to the key. This can be used to associate additional data with an object owned by other parts of
an application without adding attributes to those objects. This can be especially useful with objects that override
attribute accesses.

classWeakValueDictionary ( [dict])
Mapping class that references values weakly. Entries in the dictionary will be discarded when no strong refer-
ence to the value exists anymore.

ReferenceType
The type object for weak references objects.

ProxyType
The type object for proxies of objects which are not callable.

CallableProxyType
The type object for proxies of callable objects.

ProxyTypes
Sequence containing all the type objects for proxies. This can make it simpler to test if an object is a proxy
without being dependent on naming both proxy types.

exceptionReferenceError
Exception raised when a proxy object is used but the underlying object has been collected.

See Also:

PEP 0205, Weak Referencés
The proposal and rationale for this feature, including links to earlier implementations and information about
similar features in other languages.

36 Chapter 3. Python Runtime Services



3.3.1 Weak Reference Objects

Weak reference objects have no attributes or methods, but do allow the referent to be obtained, if it still exists, by
calling it:

>>> import weakref
>>> class Object:

pass
>>> 0 = Object()
>>> r = weakref.ref(o)

>>> 02 = 1()
>>> 0 is 02

If the referent no longer exists, calling the reference object reNome:

>>> del o, 02
>>> print r()
None

Testing that a weak reference object is still live should be done using the expresfsget() is not None
Normally, application code that needs to use a reference object should follow this pattern:

o = ref.get()
if o is None:

# referent has been garbage collected

print "Object has been allocated; can't frobnicate."
else:

print "Object is still live!"

0.do_something_useful()

Using a separate test for “liveness” creates race conditions in threaded applications; another thread can cause a weak
reference to become invalidated before tfet() method is called; the idiom shown above is safe in threaded
applications as well as single-threaded applications.

3.3.2 Example

This simple example shows how an application can use objects IDs to retrieve objects that it has seen before. The IDs
of the objects can then be used in other data structures without forcing the objects to remain alive, but the objects can
still be retrieved by ID if they do.

3.3. weakref — Weak references 37



import weakref
_id2obj_dict = weakref.WeakValueDictionary()

def remember(obj):
_id2obj_dict[id(obj)] = obj

def id2obij(id):
return _id2obj_dict.get(id)

3.3.3 Weak References in Extension Types

One of the goals of the implementation is to allow any type to participate in the weak reference mechanism without
incurring the overhead on those objects which do not benefit by weak referencing (such as numbers).

For an object to be weakly referencable, the extension must inclBg®bject * field in the instance structure for

the use of the weak reference mechanism; it must be initializ&tUol by the object’s constructor. It must also set
thetp _weaklistoffset field of the corresponding type object to the offset of the field. For example, the instance
type is defined with the following structure:

typedef struct {
PyObject_ HEAD

PyClassObject *in_class; /* The class object */
PyObiject *in_dict; /* A dictionary */
PyObject *in_weakreflist; /* List of weak references */

} PylnstanceObject;

The statically-declared type object for instances is defined this way:

PyTypeObject Pylnstance_Type = {
PyObject HEAD_INIT(&PyType_Type)
0,
"instance”,

/* Lots of stuff omitted for brevity... */

offsetof(PylnstanceObject, in_weakreflist) /* tp_weaklistoffset */

The only further addition is that the destructor needs to call the weak reference manager to clear any weak references.
This should be done before any other parts of the destruction have occurred:

38 Chapter 3. Python Runtime Services



static void
instance_dealloc(PylnstanceObject *inst)

[* Allocate tempories if needed, but do not begin
destruction just yet.
*/

PyObject_ClearWeakRefs((PyObject *) inst);

[* Proceed with object destuction normally. */

3.4 fpectl — Floating point exception control

Most computers carry out floating point operations in conformance with the so-called IEEE-754 standard. On any real
computer, some floating point operations produce results that cannot be expressed as a normal floating point value.
For example, try

>>> jmport math

>>> math.exp(1000)

inf

>>> math.exp(1000) / math.exp(1000)
nan

(The example above will work on many platforms. DEC Alpha may be one exception.) "Inf" is a special, non-numeric
value in IEEE-754 that stands for "infinity”, and "nan” means "not a number.” Note that, other than the non-numeric
results, nothing special happened when you asked Python to carry out those calculations. That is in fact the default
behaviour prescribed in the IEEE-754 standard, and if it works for you, stop reading now.

In some circumstances, it would be better to raise an exception and stop processing at the point where the faulty
operation was attempted. Tlgectl module is for use in that situation. It provides control over floating point
units from several hardware manufacturers, allowing the user to turn on the generdiliF6fE whenever any of

the IEEE-754 exceptions Division by Zero, Overflow, or Invalid Operation occurs. In tandem with a pair of wrapper
macros that are inserted into the C code comprising your python sySIG®PE is trapped and converted into the
PythonFloatingPointError exception.

Thefpectl module defines the following functions and may raise the given exception:

turnon _sigfpe ()
Turn on the generation &IGFPE, and set up an appropriate signal handler.

turnoff  _sigfpe ()
Reset default handling of floating point exceptions.

exceptionFloatingPointError
After turnon _sigfpe() has been executed, a floating point operation that raises one of the IEEE-754 ex-
ceptions Division by Zero, Overflow, or Invalid operation will in turn raise this standard Python exception.

3.4.1 Example

The following example demonstrates how to start up and test operation fpeitte  module.

3.4. fpectl — Floating point exception control 39



>>> import fpectl

>>> import fpetest

>>> fpectl.turnon_sigfpe()
>>> fpetest.test()

overflow PASS
FloatingPointError: Overflow

div by 0 PASS

FloatingPointError: Division by zero
[ more output from test elided ]

>>> jmport math

>>> math.exp(1000)

Traceback (most recent call last):
File "<stdin>", line 1, in ?

FloatingPointError: in math_1

3.4.2 Limitations and other considerations

Setting up a given processor to trap IEEE-754 floating point errors currently requires custom code on a per-architecture
basis. You may have to modifpectl  to control your particular hardware.

Conversion of an IEEE-754 exception to a Python exception requires that the wrapper macros
PyFPE_START_PROTECTand PyFPE_END PROTECTbe inserted into your code in an appropriate fash-
ion. Python itself has been modified to supportfipectt  module, but many other codes of interest to numerical
analysts have not.

Thefpectl module is not thread-safe.
See Also:

Some files in the source distribution may be interesting in learning more about how this module operates. The include
file ‘Include/pyfpe.h’ discusses the implementation of this module at some lengtfodules/fpetestmodule.c’ gives
several examples of use. Many additional examples can be fourbjexcts/floatobject.c’.

3.5 atexit — Exit handlers

New in version 2.0.

Theatexit module defines a single function to register cleanup functions. Functions thus registered are automati-
cally executed upon normal interpreter termination.

Note: the functions registered via this module are not called when the program is killed by a signal, when a Python
fatal internal error is detected, or whes. _exit() is called.

This is an alternate interface to the functionality provided bysygexitfunc variable.

Note: This module is unlikely to work correctly when used with other code thatsgstexitfunc . In partic-
ular, other core Python modules are free to asxit  without the programmer’s knowledge. Authors who use
sys.exitfunc should convert their code to usgexit instead. The simplest way to convert code that sets
sys.exitfunc is to importatexit ~ and register the function that had been bounsymexitfunc

register  ( func[, *args[, **kargs] ] )
Registerfuncas a function to be executed at termination. Any optional arguments that are to be pdssed to
must be passed as argumentsdgister()

At normal program termination (for instance sijs.exit() is called or the main module’s execution com-

40 Chapter 3. Python Runtime Services



pletes), all functions registered are called in last in, first out order. The assumption is that lower level modules
will normally be imported before higher level modules and thus must be cleaned up later.

See Also:

Modulereadline  (section 7.16):
Useful example ofitexit  to read and writeeadline  history files.

3.5.1 atexit Example

The following simple example demonstrates how a module can initialize a counter from a file when it is imported
and save the counter's updated value automatically when the program terminates without relying on the application
making an explicit call into this module at termination.

try:

_count = int(open("/tmp/counter").read())
except IOError:

_count = 0

def incrcounter(n):
global _count
_count = _count + n

def savecounter():
open("/tmp/counter”, "w").write("%d" % _count)

import atexit
atexit.register(savecounter)

3.6 types — Names for all built-in types

This module defines names for all object types that are used by the standard Python interpreter, but not for the types
defined by various extension modules. It is safe to freet types import * ' — the module does not export
any names besides the ones listed here. New names exported by future versions of this module will allygred in *

Typical use is for functions that do different things depending on their argument types, like the following:

from types import *
def delete(list, item):
if type(item) is IntType:
del list[item]
else:
list.remove(item)

The module defines the following names:

NoneType
The type ofNone.

TypeType
The type of type objects (such as returnedype() ).

IntType
The type of integers (e.d.).

3.6. types — Names for all built-in types 41



LongType
The type of long integers (e.gL).

FloatType

The type of floating point numbers (e.4.0 ).
ComplexType

The type of complex numbers (e p.0j ).
StringType

The type of character strings (e!§pam’ ).
UnicodeType

The type of Unicode character strings (euspam’ ).
TupleType

The type of tuples (e.d1, 2, 3, 'Spam’) ).
ListType

The type of lists (e.g[0, 1, 2, 3] ).
DictType

The type of dictionaries (e.g'Bacon”. 1, 'Ham’ 0} ).
DictionaryType

An alternate name fdDictType
FunctionType

The type of user-defined functions and lambdas.
LambdaType

An alternate name fdfunctionType
CodeType

The type for code objects such as returnec¢bmpile()
ClassType

The type of user-defined classes.
InstanceType

The type of instances of user-defined classes.
MethodType

The type of methods of user-defined class instances.
UnboundMethodType

An alternate name fdvlethodType .

BuiltinFunctionType
The type of built-in functions likéen()  or sys.exit()

BuiltinMethodType
An alternate name fdBuiltinFunction

ModuleType
The type of modules.

FileType
The type of open file objects suchsgs.stdout

XRangeType
The type of range objects returnedxnange()

SliceType
The type of objects returned Isjice()

42 Chapter 3. Python Runtime Services



EllipsisType
The type ofEllipsis

TracebackType
The type of traceback objects such as foundyis.exc _traceback

FrameType
The type of frame objects such as foundbrtb _frame if tb is a traceback object.

BufferType
The type of buffer objects created by theffer() function.

3.7 UserDict — Class wrapper for dictionary objects

This module defines a class that acts as a wrapper around dictionary objects. It is a useful base class for your own
dictionary-like classes, which can inherit from them and override existing methods or add new ones. In this way one
can add new behaviors to dictionaries.

TheUserDict module defines thElserDict class:

classUserDict ([initialdata])
Class that simulates a dictionary. The instance’s contents are kept in a regular dictionary, which is accessible
via thedata attribute ofUserDict instances. Ifnitialdata is provided,data is initialized with its contents;
note that a reference toitialdata will not be kept, allowing it be used used for other purposes.

In addition to supporting the methods and operations of mappings (see section2séf)ict instances provide
the following attribute:

data
A real dictionary used to store the contents oftheerDict  class.

3.8 UserList — Class wrapper for list objects

This module defines a class that acts as a wrapper around list objects. It is a useful base class for your own list-like
classes, which can inherit from them and override existing methods or add new ones. In this way one can add new
behaviors to lists.

TheUserList module defines thElserList class:

classUserList  ( [Iist])
Class that simulates a list. The instance’s contents are kept in a regular list, which is accessiblelaia the
attribute ofUserList  instances. The instance’s contents are initially set to a copigtofdefaulting to the
empty list[] . list can be either a regular Python list, or an instancedssdrList  (or a subclass).

In addition to supporting the methods and operations of mutable sequences (see sectiodsedlL &t instances
provide the following attribute:

data
A real Python list object used to store the contents oldberList class.

Subclassing requirements: Subclasses dflserList  are expect to offer a constructor which can be called with

either no arguments or one argument. List operations which return a new sequence attempt to create an instance of the
actual implementation class. To do so, it assumes that the constructor can be called with a single parameter, which is
a sequence object used as a data source.

If a derived class does not wish to comply with this requirement, all of the special methods supported by this class will
need to be overridden; please consult the sources for information about the methods which need to be provided in that
case.

3.7. UserDict — Class wrapper for dictionary objects 43



Changed in version 2.0: Python versions 1.5.2 and 1.6 also required that the constructor be callable with no parameters,
and offer a mutabldata attribute. Earlier versions of Python did not attempt to create instances of the derived class.

3.9 UserString — Class wrapper for string objects

This module defines a class that acts as a wrapper around string objects. It is a useful base class for your own string-
like classes, which can inherit from them and override existing methods or add new ones. In this way one can add new
behaviors to strings.

It should be noted that these classes are highly inefficient compared to real string or Unicode objects; this is especially
the case foMutableString

TheUserString  module defines the following classes:

classUserString ([sequenc})
Class that simulates a string or a Unicode string object. The instance’s content is kept in a regular string or
Unicode string object, which is accessible via ttaga attribute ofUserString  instances. The instance’s
contents are initially set to a copy séquencesequencean be either a regular Python string or Unicode string,
an instance ofJserString  (or a subclass) or an arbitrary sequence which can be converted into a string using
the built-instr()  function.

classMutableString ([sequenc})
This class is derived from thdserString  above and redefines strings to tpeitable Mutable strings can't
be used as dictionary keys, because dictionaries reguiraitableobjects as keys. The main intention of this
class is to serve as an educational example for inheritance and necessity to remove (overridedshe__()
method in order to trap attempts to use a mutable object as dictionary key, which would be otherwise very error
prone and hard to track down.

In addition to supporting the methods and operations of string and Unicode objects (see section 2.1.5, “String Meth-
ods”),UserString  instances provide the following attribute:

data
A real Python string or Unicode object used to store the content diseeString  class.

3.10 operator — Standard operators as functions.

Theoperator module exports a set of functions implemented in C corresponding to the intrinsic operators of Python.
For examplepperator.add(x, Y) is equivalent to the expressiorty . The function names are those used for
special class methods; variants without leading and trailing are also provided for convenience.

Theoperator module defines the following functions:

add(a, b
__add__(a,b
Returna + b, for a andb numbers.

sub (a, b)
__sub__(a,b
Returna- b.

mul ( a, b)
__mul__(a,b
Returna* b, for a andb numbers.

div (a, b)

_div __(a,b
Returna/ b.

44 Chapter 3. Python Runtime Services



mod( a, b)
__mod__(a, b
Returna %b.

neg( o)
__neg__(0)
Returno negated.

pos (0)
__pos__(0)
Returno positive.

abs(0)
__abs__(0)
Return the absolute value of

inv (0)

invert (0)

__inv __(0)

__invert __(0)
Return the bitwise inverse of the numlzefThe name@vert() and__invert __ () were added in Python
2.0.

Ishift (&, b)
__Ishift  __(a, b
Returna shifted left byb.

rshift  (a, b
__rshift  __(a, b
Returna shifted right byb.

and_(a, b
__and__(a,b
Return the bitwise and af andb.

or _(a,h
_or__(ab
Return the bitwise or of andb.

xor (a, b)
__xor __(a,b
Return the bitwise exclusive or afandb.

not _( o)

__not __(0)
Return the outcome afot o. (Note that there is na_not __() method for object instances; only the inter-
preter core defines this operation.)

truth (o)
Returnl if ois true, and O otherwise.

concat (a,b)
__concat __(a,b
Returna + b for a andb sequences.

repeat (a, b
__repeat __(a,b
Returna* b whereais a sequence artis an integer.

contains (a,b)
__contains __(a,b

3.10. operator — Standard operators as functions. 45



Return the outcome of the tdsin a. Note the reversed operands. The nameontains __() was added
in Python 2.0.

sequencelncludes  (..)
Deprecated since release 2.Qsecontains() instead.

Alias for contains()

countOf (a,b)
Return the number of occurrencestah a.

indexOf (a, b
Return the index of the first of occurrenceloih a.

getitem (a,b)
__getitem __(a, b
Return the value o at indexb.

setitem (a,b,Q
__setitem __(a,b,9
Set the value oh at indexb to c.

delitem (a, b
__delitem __(a,b
Remove the value daf at indexb.

getslice (a,b,9
__getslice __(a,b,9
Return the slice o& from indexb to indexc-1 .

setslice (a,b,c,y
__setslice __(a,b,c,V
Set the slice o& from indexb to indexc-1 to the sequence

delslice (a, b, 9
__delslice __(a,b,9
Delete the slice of from indexb to indexc-1 .

The operator  also defines a few predicates to test the type of objddtste: Be careful not to misinterpret the
results of these functions; onigCallable() has any measure of reliability with instance objects. For example:

>>> class C:
pass

>>> jmport operator

>>> 0 = C()

>>> operator.isMappingType(0)
1

isCallable  (0)
Deprecated since release 2.Qse thecallable() built-in function instead.

Returns true if the objectcan be called like a function, otherwise it returns false. True is returned for functions,
bound and unbound methods, class objects, and instance objects which suppodahe __() method.

isMappingType (0)
Returns true if the objea supports the mapping interface. This is true for dictionaries and all instance objects.
Warning: There is no reliable way to test if an instance supports the complete mapping protocol since the
interface itself is ill-defined. This makes this test less useful than it otherwise might be.

isNumberType (0)

46 Chapter 3. Python Runtime Services



Returns true if the objeat represents a number. This is true for all numeric types implemented in C, and for
all instance objectsWarning: There is no reliable way to test if an instance supports the complete numeric
interface since the interface itself is ill-defined. This makes this test less useful than it otherwise might be.

isSequenceType (0)
Returns true if the objea supports the sequence protocol. This returns true for all objects which define se-
quence methods in C, and for all instance objestfarning: There is no reliable way to test if an instance
supports the complete sequence interface since the interface itself is ill-defined. This makes this test less useful
than it otherwise might be.

Example: Build a dictionary that maps the ordinals fr@rto 256 to their character equivalents.

>>> import operator

>>>d = {}

>>> keys = range(256)

>>> vals = map(chr, keys)

>>> map(operator.setitem, [d]*len(keys), keys, vals)

3.10.1 Mapping Operators to Functions

This table shows how abstract operations correspond to operator symbols in the Python syntax and the functions in the
operator module.

Operation Syntax Function
Addition a+b add( a, b)
Concatenation seql + seq2 | concat( seql seq3l
Containment Test 0 in seq contains( seq O0)
Division al b div( a, b)
Bitwise And a&hb and_(a, h)
Bitwise Exclusive Or a"~ b xor( a, b)
Bitwise Inversion " a invert( a)
Bitwise Or al| b or _(a b)
Indexed Assignment okl = v setitem( o, k, V)
Indexed Deletion del o K] delitem( o, Kk)
Indexing o[ K] getitem( o, K)
Left Shift a<<b Ishiftf( a, b)
Modulo a%b mod(a, b)
Multiplication a*b mul( a, b)
Negation (Arithmetic) - a neg( a)
Negation (Logical) not a not _(a)
Right Shift a>>b rshift( a, b)
Sequence Repitition seq * i repeat( seq i)
Slice Assignment seq i: j] =values| setslice( seq i, j, valueg
Slice Deletion del seqi:j] delslice( seq i, j)
Slicing seq i j] getslice( seq i, j)
String Formatting s%o mod(s, 0)
Subtraction a-»b sub( a, b)
Truth Test 0 truth( o)

3.11 inspect — Inspect live objects

3.11. inspect — Inspect live objects a7



New in version 2.1.

Theinspect module provides several useful functions to help get information about live objects such as modules,
classes, methods, functions, tracebacks, frame objects, and code objects. For example, it can help you examine the
contents of a class, retrieve the source code of a method, extract and format the argument list for a function, or get all
the information you need to display a detailed traceback.

There are four main kinds of services provided by this module: type checking, getting source code, inspecting classes
and functions, and examining the interpreter stack.

3.11.1 Types and members

Thegetmembers() function retrieves the members of an object such as a class or module. The nine functions whose
names begin with “is” are mainly provided as convenient choices for the second argurgetrhembers() . They
also help you determine when you can expect to find the following special attributes:

48 Chapter 3. Python Runtime Services



Type Attribute Description
module | __doc__ documentation string
__file__ filename (missing for built-in modules)
class __doc__ documentation string
__module__ name of module in which this class was defined
method | __doc__ documentation string
__name__ name with which this method was defined
im_class class object in which this method belongs
im_func function object containing implementation of method
im_self instance to which this method is bound,None
function | __doc__ documentation string
__hame__ name with which this function was defined
func_code code object containing compiled function bytecode
func_defaults tuple of any default values for arguments
func_doc (same as_doc__)
func_globals global namespace in which this function was defined
func_name (same as__name__)
traceback| tb_frame frame object at this level
th_lasti index of last attempted instruction in bytecode
tb_lineno current line number in Python source code
tb_next next inner traceback object (called by this level)
frame | f_back next outer frame object (this frame’s caller)
f_builtins built-in namespace seen by this frame
f_code code object being executed in this frame
f_exc_traceback| traceback if raised in this frame, blone
f_exc_type exception type if raised in this frame, Nione
f_exc_value exception value if raised in this frame, Nbne
f_globals global namespace seen by this frame
f_lasti index of last attempted instruction in bytecode
f_lineno current line number in Python source code
f_locals local namespace seen by this frame
f_restricted 0 or 1 if frame is in restricted execution mode
f_trace tracing function for this frame, dione
code co_argcount number of arguments (not including * or ** args)
co_code string of raw compiled bytecode
co_consts tuple of constants used in the bytecode
co_filename name of file in which this code object was created
co_firstlineno number of first line in Python source code
co_flags bitmap: 1=optimized 2=newlocald 4=*arg| 8=**arg
co_Inotab encoded mapping of line numbers to bytecode indices
co_name name with which this code object was defined
co_names tuple of names of local variables
co_nlocals number of local variables
co_stacksize virtual machine stack space required
co_varnames tuple of names of arguments and local variables
builtin __doc__ documentation string
__name__ original name of this function or method
__self__ instance to which a method is bound,Nwone

getmembers (objec{, predicatd)

Return all the members of an object in a list of (name, value) pairs sorted by name. If the optexiehte
argument is supplied, only members for which the predicate returns a true value are included.

getmoduleinfo  ( path
Return a tuple of values that describe how Python will interpret the file identifigghtiyif it is a module, or

3.11. inspect — Inspect live objects 49



None if it would not be identified as a module. The return tupl¢ ame suffix mode mtypg , where
nameis the name of the module without the name of any enclosing packaffixis the trailing part of the file
name (which may not be a dot-delimited extensionpdeis theopen() mode that would be used’( or

rb’ ), andmtypeis an integer giving the type of the modulatypewill have a value which can be compared
to the constants defined in tl@p module; see the documentation for that module for more information on
module types.

getmodulename ( path)
Return the name of the module named by thegfdéh, without including the names of enclosing packages. This
uses the same algortihm as the interpreter uses when searching for modules. If the name cannot be matched
according to the interpreter’s ruldspne is returned.

ismodule (objec)
Return true if the object is a module.

isclass ( objec)
Return true if the object is a class.

ismethod ( objec)
Return true if the object is a method.

isfunction (objec)
Return true if the object is a Python function or unnamed (lambda) function.

istraceback  ( objec)
Return true if the object is a traceback.

isframe ( objec)
Return true if the object is a frame.

iscode (objec)
Return true if the object is a code.

isbuiltin (objech
Return true if the object is a built-in function.

isroutine  (objec)
Return true if the object is a user-defined or built-in function or method.

3.11.2 Retrieving source code

getdoc ( objec)
Get the documentation string for an object. All tabs are expanded to spaces. To clean up docstrings that are
indented to line up with blocks of code, any whitespace than can be uniformly removed from the second line
onwards is removed.

getcomments ( objec)
Return in a single string any lines of comments immediately preceding the object’s source code (for a class,
function, or method), or at the top of the Python source file (if the object is a module).

getfile  (objec)
Return the name of the (text or binary) file in which an object was defined. This will fail wiypaError if
the object is a built-in module, class, or function.

getmodule ( objec)
Try to guess which module an object was defined in.

getsourcefile ( objec)
Return the name of the Python source file in which an object was defined. This will fail WigheError  if
the object is a built-in module, class, or function.

50 Chapter 3. Python Runtime Services



getsourcelines ( objec)
Return a list of source lines and starting line number for an object. The argument may be a module, class,
method, function, traceback, frame, or code object. The source code is returned as a list of the lines correspond-
ing to the object and the line number indicates where in the original source file the first line of code was found.
An IOError s raised if the source code cannot be retrieved.

getsource ( objec)
Return the text of the source code for an object. The argument may be a module, class, method, function,
traceback, frame, or code object. The source code is returned as a single stril@Erfor s raised if the
source code cannot be retrieved.

3.11.3 Classes and functions

getclasstree ( classeg, unique])
Arrange the given list of classes into a hierarchy of nested lists. Where a nested list appears, it contains classes
derived from the class whose entry immediately precedes the list. Each entry is a 2-tuple containing a class and
a tuple of its base classes. If thaiqueargument is true, exactly one entry appears in the returned structure
for each class in the given list. Otherwise, classes using multiple inheritance and their descendants will appear
multiple times.

getargspec (fung
Get the names and default values of a function’s arguments. A tuple of four things is refuangsl: varargs
varkw, defaultg . argsis a list of the argument names (it may contain nested ligggargsandvarkware the
names of thé and** arguments oNone. defaultsis a tuple of default argument values; if this tuple mas
elements, they correspond to the laglements listed imargs

getargvalues  ( frameg
Get information about arguments passed into a particular frame. A tuple of four things is ret(argd:
varargs varkw, locals). argsis a list of the argument names (it may contain nested listgyargs and
varkware the names of theand** arguments oNone. localsis the locals dictionary of the given frame.

formatargspec  ( args[, varargs, varkw, defaults, argformat, varargsformat, varkwformat, defaultfo]bnat
Format a pretty argument spec from the four values returnegebgrgspec() . The other four arguments
are the corresponding optional formatting functions that are called to turn names and values into strings.

formatargvalues ( args[, varargs, varkw, locals, argformat, varargsformat, varkwformat, vaIuefoﬂmat
Format a pretty argument spec from the four values returnegttargvalues() . The other four arguments
are the corresponding optional formatting functions that are called to turn names and values into strings.

3.11.4 The interpreter stack

When the following functions return “frame records,” each record is a tuple of six items: the frame object, the filename,
the line number of the current line, the function name, a list of lines of context from the source code, and the index of
the current line within that list. The optionebntextargument specifies the number of lines of context to return, which
are centered around the current line.

getouterframes (framd:, Contexﬂ)
Get a list of frame records for a frame and all higher (calling) frames.

getinnerframes (tracebacl{, contexﬂ)
Get a list of frame records for a traceback’s frame and all lower frames.

currentframe ()
Return the frame object for the caller’s stack frame.

stack ( [contexl])
Return a list of frame records for the stack above the caller’s frame.

3.11. inspect — Inspect live objects 51



trace ( [contexl])
Return a list of frame records for the stack below the current exception.

3.12 traceback — Print or retrieve a stack traceback

This module provides a standard interface to extract, format and print stack traces of Python programs. It exactly
mimics the behavior of the Python interpreter when it prints a stack trace. This is useful when you want to print stack
traces under program control, e.g. in a “wrapper” around the interpreter.

The module uses traceback objects — this is the object type that is stored in the vayasldes _traceback
andsys.last _traceback and returned as the third item frosys.exc _info()

The module defines the following functions:

print _tb (tracebacl{, Iimit[, file]])
Print up tolimit stack trace entries frormaceback If limit is omitted orNone, all entries are printed. file
is omitted orNone, the output goes teys.stderr  ; otherwise it should be an open file or file-like object to
receive the output.

print _exception (type, value, traceba{klimit[, file] ])
Print exception information and up tamit stack trace entries frortracebackto file. This differs from
print _tb() in the following ways: (1) iftracebackis notNone, it prints a headerTraceback (most
recent call last): "> (2) it prints the exceptiortypeandvalueafter the stack trace; (3) ffpeis Syn-
taxError  andvaluehas the appropriate format, it prints the line where the syntax error occurred with a caret
indicating the approximate position of the error.

print _exc ( [limit[, file] ])
This is a shorthand for print _exception(sys.exc _type, sys.exc  _value,
sys.exc _traceback, limit, file)’. (In fact, it usessys.exc _info() to retrieve the same infor-
mation in a thread-safe way.)

print _last ([limit[, file]])
This is a shorthand for print _exception(sys.last _type, sys.last _value,
sys.last _traceback, limit, file)’.

print _stack ([f[, timit[, file]]])
This function prints a stack trace from its invocation point. The optidnatgument can be used to spec-
ify an alternate stack frame to start. The optiofialit and file arguments have the same meaning as for
print _exception()

extract _tb (tracebacl[, Iimit])
Return a list of up tdimit “pre-processed” stack trace entries extracted from the traceback trajeeback
It is useful for alternate formatting of stack traces.litfiit is omitted orNone, all entries are extracted. A
“pre-processed” stack trace entry is a quadrufilename line number function nametexf) representing the
information that is usually printed for a stack trace. Thetis a string with leading and trailing whitespace
stripped; if the source is not available ithne.

extract _stack ([f[,limit]])
Extract the raw traceback from the current stack frame. The return value has the same formatxas for
tract _tb() . The optionaf andlimit arguments have the same meaning apfont  _stack()

format _list (list)
Given a list of tuples as returned Iextract _tb() orextract _stack() , return a list of strings ready
for printing. Each string in the resulting list corresponds to the item with the same index in the argument list.
Each string ends in a newline; the strings may contain internal newlines as well, for those items whose source
text line is notNone.

format _exception _only (type, valug

52 Chapter 3. Python Runtime Services



Format the exception part of a traceback. The arguments are the exception type and value such as given by
sys.last _type andsys.last _value . The return value is a list of strings, each ending in a newline.
Normally, the list contains a single string; however, 8mntaxError  exceptions, it contains several lines

that (when printed) display detailed information about where the syntax error occurred. The message indicating
which exception occurred is the always last string in the list.

format _exception (type, value, t[J, Iimit])
Format a stack trace and the exception information. The arguments have the same meaning as the corresponding
arguments t@rint _exception() . The return value is a list of strings, each ending in a newline and some
containing internal newlines. When these lines are concatenated and printed, exactly the same text is printed as
doesprint _exception()

format _tb ( tb[, limit])

A shorthand foformat _list(extract _tb( tb, limit)) .
format _stack ([f[,limit]])
A shorthand foformat _list(extract _stack( f, limit)) .

tb _lineno (tb)
This function returns the current line number set in the traceback object. This is normally the same as the
tb.tb _lineno field of the object, but when optimization is used (the -O flag) this field is not updated correctly;
this function calculates the correct value.

3.12.1 Traceback Example

This simple example implements a basic read-eval-print loop, similar to (but less useful than) the standard Python
interactive interpreter loop. For a more complete implementation of the interpreter loop, refectaléhenodule.

import sys, traceback

def run_user_code(envdir):
source = raw_input(">>> ")

try:
exec source in envdir
except:
print "Exception in user code:"
print ’-*60
traceback.print_exc(file=sys.stdout)
print ’-*60
envdir = {}
while 1:

run_user_code(envdir)

3.13 linecache — Random access to text lines

Thelinecache  module allows one to get any line from any file, while attempting to optimize internally, using a
cache, the common case where many lines are read from a single file. This is usedrbgd¢bhack module to
retrieve source lines for inclusion in the formatted traceback.

Thelinecache  module defines the following functions:

getline ( filename, linenp
Get linelinenofrom file namedfilename This function will never throw an exception — it will retuth on

3.13. linecache — Random access to text lines 53



errors (the terminating newline character will be included for lines that are found).
If a file namedfilenameis not found, the function will look for it in the module search pays.path

clearcache ()
Clear the cache. Use this function if you no longer need lines from files previously readyesling()

checkcache ()
Check the cache for validity. Use this function if files in the cache may have changed on disk, and you require
the updated version.

Example:

>>> jmport linecache
>>> linecache.getline('/etc/passwd’, 4)
'sys:x:3:3:sys:/dev:/bin/sh\n’

3.14 pickle — Python object serialization

The pickle  module implements a basic but powerful algorithm for “pickling” (a.k.a. serializing, marshalling or
flattening) nearly arbitrary Python objects. This is the act of converting objects to a stream of bytes (and back:
“unpickling”). This is a more primitive notion than persistence — althopigtkle reads and writes file objects, it

does not handle the issue of naming persistent objects, nor the (even more complicated) area of concurrent access to
persistent objects. Thackle module can transform a complex object into a byte stream and it can transform the
byte stream into an object with the same internal structure. The most obvious thing to do with these byte streams is to
write them onto a file, but it is also conceivable to send them across a network or store them in a database. The module
shelve provides a simple interface to pickle and unpickle objects on DBM-style database files.

Note: Thepickle module is rather slow. A reimplementation of the same algorithm in C, which is up to 1000 times
faster, is available as thePickle  module. This has the same interface except®ieitler andUnpickler are
factory functions, not classes (so they cannot be used as base classes for inheritance).

Although thepickle module can use the built-in modutearshal internally, it differs frommarshal in the way
it handles certain kinds of data:

e Recursive objects (objects containing references to themselpaRle keeps track of the objects it has
already serialized, so later references to the same object won'’t be serialized agairmafEhel module
breaks for this.)

e Object sharing (references to the same object in different places): This is similar to self-referencing objects;
pickle stores the object once, and ensures that all other references point to the master copy. Shared objects
remain shared, which can be very important for mutable objects.

e User-defined classes and their instanaesrshal does not support these at all, pitkle  can save and
restore class instances transparently. The class definition must be importable and live in the same module as
when the object was stored.

The data format used Ipickle is Python-specific. This has the advantage that there are no restrictions imposed by
external standards such as XDR (which can't represent pointer sharing); however it means that non-Python programs
may not be able to reconstruct pickled Python objects.

By default, thepickle data format uses a printablescii representation. This is slightly more voluminous than a
binary representation. The big advantage of using printablell (and of some other characteristicsptkle s
representation) is that for debugging or recovery purposes it is possible for a human to read the pickled file with a
standard text editor.

54 Chapter 3. Python Runtime Services



A binary format, which is slightly more efficient, can be chosen by specifying a nonzero (true) value fonthe
argument to théickler  constructor or thelump() anddumps() functions. The binary format is not the default
because of backwards compatibility with the Python 1.4 pickle module. In a future version, the default may change to
binary.

Thepickle module doesn’t handle code objects, whichitmershal module does. | suppogeckle could, and
maybe it should, but there’s probably no great need for it right now (as lomgaashal continues to be used for
reading and writing code objects), and at least this avoids the possibility of smuggling Trojan horses into a program.

For the benefit of persistence modules written ugingle , it supports the notion of a reference to an object outside
the pickled data stream. Such objects are referenced by a name, which is an arbitrary string of pysttable
characters. The resolution of such names is not defined hyitkke module — the persistent object module will
have to implement a methgursistent  _load() . To write references to persistent objects, the persistent module
must define a methaggersistent  _id()  which returns eitheNone or the persistent ID of the object.

There are some restrictions on the pickling of class instances.

First of all, the class must be defined at the top level in a module. Furthermore, all its instance variables must be
picklable.

When a pickled class instance is unpickled, itsinit __() method is normallynot invoked. Note: This is a
deviation from previous versions of this module; the change was introduced in Python 1.5b2. The reason for the
change is that in many cases it is desirable to have a constructor that requires arguments; it is a (minor) nuisance to
have to provide a_getinitargs _ () method.

If it is desirable that the__init __() method be called on unpickling, a class can define a method
__getinitargs __() , which should return &uple containing the arguments to be passed to the class construc-
tor (__init __() ). This method is called at pickle time; the tuple it returns is incorporated in the pickle for the
instance.

Classes can further influence how their instances are pickled — if the class  defines the mefbistate __()

it is called and the return state is pickled as the contents for the instance, and if the class defines the method
__setstate __() , itis called with the unpickled state. (Note that these methods can also be used to implement
copying class instances.) If there is nogetstate () method, the instance’s_dict __ is pickled. If there
isno__setstate __() method, the pickled object must be a dictionary and its items are assigned to the new in-
stance’s dictionary. (If a class defines bathgetstate __() and__setstate __() , the state object needn’t be

a dictionary — these methods can do what they want.) This protocol is also used by the shallow and deep copying
operations defined in theopy module.

Note that when class instances are pickled, their class’s code and data are not pickled along with them. Only the
instance data are pickled. This is done on purpose, so you can fix bugs in a class or add methods and still load objects
that were created with an earlier version of the class. If you plan to have long-lived objects that will see many versions
of a class, it may be worthwhile to put a version number in the objects so that suitable conversions can be made by the
class’s__setstate __() method.

When a class itself is pickled, only its name is pickled — the class definition is not pickled, but re-imported by the
unpickling process. Therefore, the restriction that the class must be defined at the top level in a module applies to
pickled classes as well.

The interface can be summarized as follows.
To pickle an objeck onto a filef , open for writing:

p = pickle.Pickler(f)
p.dump(x)

A shorthand for this is:
pickle.dump(x, f)

3.14. pickle — Python object serialization 55



To unpickle an object from a filef , open for reading:

u = pickle.Unpickler(f)
x = u.load()

A shorthand is:
x = pickle.load(f)

ThePickler  class only calls the methddwrite() with a string argument. Thenpickler calls the meth-
odsf.read() (with an integer argument) arfdeadline() (without argument), both returning a string. It is
explicitly allowed to pass non-file objects here, as long as they have the right methods.

The constructor for th@ickler class has an optional second argumeéi, If this is present and true, the binary
pickle format is used; if it is absent or false, the (less efficient, but backwards compatible) text pickle format is used.
The Unpickler  class does not have an argument to distinguish between binary and text pickle formats; it accepts
either format.

The following types can be pickled:

e None

e integers, long integers, floating point numbers

e normal and Unicode strings

e tuples, lists and dictionaries containing only picklable objects

e functions defined at the top level of a module (by name reference, not storage of the implementation)
e built-in functions

e classes that are defined at the top level in a module

e instances of such classes whasalict __ or __setstate __() is picklable

Attempts to pickle unpicklable objects will raise tRecklingError exception; when this happens, an unspecified
number of bytes may have been written to the file.

It is possible to make multiple calls to tllump() method of the samPickler instance. These must then be
matched to the same number of calls toltheed() method of the correspondindnpickler  instance. If the same

object is pickled by multiplelump() calls, theload()  will all yield references to the same objetdarning this

is intended for pickling multiple objects without intervening modifications to the objects or their parts. If you modify

an object and then pickle it again using the sa&iekler  instance, the object is not pickled again — a reference to

it is pickled and theJnpickler  will return the old value, not the modified one. (There are two problems here: (a)
detecting changes, and (b) marshalling a minimal set of changes. | have no answers. Garbage Collection may also
become a problem here.)

Apart from thePickler andUnpickler classes, the module defines the following functions, and an exception:

dump( object, fild, bin])
Write a pickled representation abjectto the open file objecfile. This is equivalent toPickler( file,
bin).dump( objec) . If the optionalbin argument is present and nonzero, the binary pickle format is used; if
it is zero or absent, the (less efficient) text pickle format is used.

load ( file)
Read a pickled object from the open file objéld. This is equivalent toUnpickler(  file).load()

56 Chapter 3. Python Runtime Services



dumps( objec{, bin])
Return the pickled representation of the object as a string, instead of writing it to a file. If the offtional
argument is present and nonzero, the binary pickle format is used; if it is zero or absent, the (less efficient) text
pickle format is used.

loads ( string)
Read a pickled object from a string instead of a file. Characters in the string past the pickled object’s represen-
tation are ignored.

exceptionPicklingError
This exception is raised when an unpicklable object is passBatkber.dump()

See Also:

Modulecopy _reg (section 3.16):
Pickle interface constructor registration for extension types.

Moduleshelve (section 3.17):
Indexed databases of objects; upekle

Modulecopy (section 3.18):
Shallow and deep object copying.

Modulemarshal (section 3.19):
High-performance serialization of built-in types.

3.14.1 Example

Here’s a simple example of how to modify pickling behavior for a class. ThéReader class opens a text file, and
returns the line number and line contents each timeeislline() method is called. If &extReader instance

is pickled, all attributegxcepthe file object member are saved. When the instance is unpickled, the file is reopened,
and reading resumes from the last location. Theetstate __() and__getstate __() methods are used to
implement this behavior.

3.14. pickle — Python object serialization 57



# illustrate __ setstate_ and __ getstate_  methods
# used in pickling.

class TextReader:
"Print and number lines in a text file."
def __init__ (self/file):
self.file = file
self.th = open(file,’r’)
self.lineno = 0

def readline(self):
self.lineno = self.lineno + 1
line = self.fh.readline()
if not line:
return None
return "%d: %s" % (self.lineno,line[:-1])

# return data representation for pickled object

def __ getstate_ (self):
odict = self.__dict__ # get attribute dictionary
del odict['fh] # remove filehandle entry
return odict

# restore object state from data representation generated
# by _ getstate
def __ setstate__ (self,dict):
fh = open(dict[file’]) # reopen file
count = dict[lineno’] # read from file...
while count: # until line count is restored
fh.readline()
count = count - 1
dict['fh’] = fh # create filehandle entry
self.__dict__ = dict # make dict our attribute dictionary

A sample usage might be something like this:

>>> jmport TextReader

>>> obj = TextReader.TextReader("TextReader.py")
>>> obj.readline()

'1: #!/usr/local/bin/python’

>>> # (more invocations of obj.readline() here)

. obj.readline()

'7: class TextReader:’

>>> import pickle

>>> pickle.dump(obj,open('save.p’,’'w’))

(start another Python session)

>>> import pickle

>>> reader = pickle.load(open('save.p’))

>>> reader.readline()

'8: "Print and number lines in a text file."

58 Chapter 3.

Python Runtime Services



3.15 cPickle — Alternate implementation of pickle

ThecPickle module provides a similar interface and identical functionality aptblele  module, but can be up
to 1000 times faster since it is implemented in C. The only other important difference to noteReciat() and
Unpickler() are functions and not classes, and so cannot be subclassed. This should not be an issue in most cases.

The format of the pickle data is identical to that produced usingttide  module, so it is possible to ugéckle
andcPickle interchangeably with existing pickles.

(Since the pickle data format is actually a tiny stack-oriented programming language, and there are some freedoms in
the encodings of certain objects, it's possible that the two modules produce different pickled data for the same input
objects; however they will always be able to read each other’s pickles back in.)

3.16 copy _reg — Register pickle support functions

Thecopy _reg module provides support for thckle andcPickle modules. Theopy module is likely to use
this in the future as well. It provides configuration information about object constructors which are not classes. Such
constructors may be factory functions or class instances.

constructor  (objec)
Declaresobjectto be a valid constructor. Wbjectis not callable (and hence not valid as a constructor), raises
TypeError

pickle (type, functimﬁ, constructoﬂ)
Declares thatunctionshould be used as a “reduction” function for objects of tiyme typeshould not a class
object. functionshould return either a string or a tuple. The optioo@hstructorparameter, if provided, is a
callable object which can be used to reconstruct the object when called with the tuple of arguments returned by
functionat pickling time.TypeError  will be raised ifobjectis a class oconstructoris not callable.

3.17 shelve — Python object persistence

A “shelf” is a persistent, dictionary-like object. The difference with “dbm” databases is that the values (not the keys!)

in a shelf can be essentially arbitrary Python objects — anything thatithee module can handle. This includes

most class instances, recursive data types, and objects containing lots of shared sub-objects. The keys are ordinary
strings.

To summarize the interfac&dy is a string,data is an arbitrary object):

import shelve
d = shelve.open(flename) # open, with (g)dbm filename -- no suffix

dlkey] = data  # store data at key (overwrites old data if
# using an existing key)

data = d[key] # retrieve data at key (raise KeyError if no
# such key)

del d[key] # delete data stored at key (raises KeyError
# if no such key)

flag = d.has_key(key) # true if the key exists

list = d.keys() # a list of all existing keys (slow!)

d.close() # close it

3.15. cPickle — Alternate implementation of pickle 59



Restrictions:

e The choice of which database package will be used (g&mor gdbm) depends on which interface is available.
Therefore it is not safe to open the database directly usiimy The database is also (unfortunately) subject to
the limitations ofdbm, if it is used — this means that (the pickled representation of) the objects stored in the
database should be fairly small, and in rare cases key collisions may cause the database to refuse updates.

e Dependent on the implementation, closing a persistent dictionary may or may not be necessary to flush changes
to disk.

e Theshelve module does not supparbncurrentread/write access to shelved objects. (Multiple simultaneous
read accesses are safe.) When a program has a shelf open for writing, no other program should have it open
for reading or writing. Wix file locking can be used to solve this, but this differs acrossXJversions and
requires knowledge about the database implementation used.

See Also:

Moduleanydbm (section 7.8):
Generic interface tdbm-style databases.

Moduledbhash (section 7.10):
BSD db database interface.

Moduledbm (section 8.6):
Standard WX database interface.

Moduledumbdbm(section 7.9):
Portable implementation of thdbminterface.

Modulegdbm (section 8.7):
GNU database interface, based ondlbeninterface.

Modulepickle  (section 3.14):
Obiject serialization used tshelve .

ModulecPickle  (section 3.15):
High-performance version gifickle

3.18 copy — Shallow and deep copy operations

This module provides generic (shallow and deep) copying operations.

Interface summary:

import copy

X
X

copy.copy(y) # make a shallow copy of y
copy.deepcopy(y) # make a deep copy of y

For module specific errorsppy.error is raised.

The difference between shallow and deep copying is only relevant for compound objects (objects that contain other
objects, like lists or class instances):

e A shallow copyconstructs a new compound object and then (to the extent possible) ieferémcesnto it to
the objects found in the original.

60 Chapter 3. Python Runtime Services



e A deep copyonstructs a new compound object and then, recursively, insgptesinto it of the objects found
in the original.

Two problems often exist with deep copy operations that don't exist with shallow copy operations:

e Recursive objects (compound objects that, directly or indirectly, contain a reference to themselves) may cause a
recursive loop.

e Because deep copy copiegerythingit may copy too much, e.g., administrative data structures that should be
shared even between copies.

Thedeepcopy() function avoids these problems by:

e keeping a “memo” dictionary of objects already copied during the current copying pass; and

e letting user-defined classes override the copying operation or the set of components copied.

This version does not copy types like module, class, function, method, stack trace, stack frame, file, socket, window,
array, or any similar types.

Classes can use the same interfaces to control copying that they use to control pickling: they can define methods called
__getinitargs _() ,__getstate __() and__setstate __() . See the description of modubéckle for
information on these methods. Thepy module does not use tlepy _reg registration module.

In order for a class to define its own copy implementation, it can define special methadpy () and
__deepcopy __() . The former is called to implement the shallow copy operation; no additional arguments are
passed. The latter is called to implement the deep copy operation; it is passed one argument, the memo dictionary. If
the__deepcopy __() implementation needs to make a deep copy of a component, it should cadiepeopy()

function with the component as first argument and the memo dictionary as second argument.

See Also:

Modulepickle  (section 3.14):
Discussion of the special methods used to support object state retrieval and restoration.

3.19 marshal — Alternate Python object serialization

This module contains functions that can read and write Python values in a binary format. The format is specific to
Python, but independent of machine architecture issues (e.g., you can write a Python value to a file on a PC, transport
the file to a Sun, and read it back there). Details of the format are undocumented on purpose; it may change between
Python versions (although it rarely doés).

This is not a general “persistence” module. For general persistence and transfer of Python objects through RPC calls,
see the modulepickle andshelve . Themarshal module exists mainly to support reading and writing the
“pseudo-compiled” code for Python modules gi/c’ files.

Not all Python object types are supported; in general, only objects whose value is independent from a particular
invocation of Python can be written and read by this module. The following types are suppdded; integers,

long integers, floating point numbers, strings, Unicode objects, tuples, lists, dictionaries, and code objects, where it
should be understood that tuples, lists and dictionaries are only supported as long as the values contained therein are
themselves supported; and recursive lists and dictionaries should not be written (they will cause infinite loops).

1The name of this module stems from a bit of terminology used by the designers of Modula-3 (amongst others), who use the term “marshalling”
for shipping of data around in a self-contained form. Strictly speaking, “to marshal” means to convert some data from internal to external form (in
an RPC buffer for instance) and “unmarshalling” for the reverse process.

3.19. marshal — Alternate Python object serialization 61



Caveat: On machines where Cleng int  type has more than 32 bits (such as the DEC Alpha), it is possible to
create plain Python integers that are longer than 32 bits. Since the conaesttal module uses 32 bits to transfer

plain Python integers, such values are silently truncated. This particularly affects the use of very long integer literals
in Python modules — these will be accepted by the parser on such machines, but will be silently be truncated when
the module is read from thepyc’ instead?

There are functions that read/write files as well as functions operating on strings.
The module defines these functions:

dump( value, fil§
Write the value on the open file. The value must be a supported type. The file must be an open file object such
assys.stdout  or returned byopen() or posix.popen() . It must be opened in binary mod&vp’ or
‘w+b' ).
If the value has (or contains an object that has) an unsupported tyfady@Error  exception is raised — but
garbage data will also be written to the file. The object will not be properly read baldab()

load ( file)
Read one value from the open file and return it. If no valid value is read, E&)é$eError , ValueError  or
TypeError . The file must be an open file object opened in binary maté ( or’r+b’ ).

Warning: If an object containing an unsupported type was marshalledduithp() , load()  will substitute
None for the unmarshallable type.

dumps( value
Return the string that would be written to a file Bymp(value file) . The value must be a supported type.
Raise avalueError  exception if value has (or contains an object that has) an unsupported type.

loads ( string)
Convert the string to a value. If no valid value is found, réi8@FError , ValueError  or TypeError
Extra characters in the string are ignored.

3.20 warnings — Warning control

New in version 2.1.

Warning messages are typically issued in situations where it is useful to alert the user of some condition in a program,
where that condition (normally) doesn’t warrant raising an exception and terminating the program. For example, one
might want to issue a warning when a program uses an obsolete module.

Python programmers issue warnings by callingwen() function defined in this module. (C programmers use
PyErr _Warn() ; see thePython/C API Reference Manualr details).

Warning messages are normally writtersys.stderr  , but their disposition can be changed flexibly, from ignoring

all warnings to turning them into exceptions. The disposition of warnings can vary based on the warning category (see
below), the text of the warning message, and the source location where it is issued. Repetitions of a particular warning
for the same source location are typically suppressed.

There are two stages in warning control: first, each time a warning is issued, a determination is made whether a
message should be issued or not; next, if a message is to be issued, it is formatted and printed using a user-settable
hook.

The determination whether to issue a warning message is controlled by the warning filter, which is a sequence of
matching rules and actions. Rules can be added to the filter by céltergvarnings() and reset to its default
state by callingesetwarnings()

2A solution would be to refuse such literals in the parser, since they are inherently non-portable. Another solution would beratshiie
module raise an exception when an integer value would be truncated. At least one of these solutions will be implemented in a future version.

62 Chapter 3. Python Runtime Services



The printing of warning messages is done by calshgwwarning() , which may be overidden; the default imple-
mentation of this function formats the message by callorghatwarning() , which is also available for use by
custom implementations.

3.20.1 Warning Categories

There are a number of built-in exceptions that represent warning categories. This categorization is useful to be able to
filter out groups of warnings. The following warnings category classes are currently defined:

Class Description

Warning This is the base class of all warning category classes. It itself a subclass of Exception.
UserWarning The default category fawarn() .

DeprecationWarning Base category for warnings about deprecated features.

SyntaxWarning Base category for warnings about dubious syntactic features.

RuntimeWarning Base category for warnings about dubious runtime features.

While these are technically built-in exceptions, they are documented here, because conceptually they belong to the
warnings mechanism.

User code can define additional warning categories by subclassing one of the standard warning categories. A warning
category must always be a subclass of\i&rning class.

3.20.2 The Warnings Filter

The warnings filter controls whether warnings are ignored, displayed, or turned into errors (raising an exception).

Conceptually, the warnings filter maintains an ordered list of filter specifications; any specific warning is matched
against each filter specification in the list in turn until a match is found; the match determines the disposition of the
match. Each entry is a tuple of the foracfion messagecategory module lineno), where:

e actionis one of the following strings:

Value Disposition

"error" turn matching warnings into exceptions

"ignore" never print matching warnings

"always" always print matching warnings

"default" print the first occurrence of matching warnings for each location where the warning is issued
"module” print the first occurrence of matching warnings for each module where the warning is issued
"once" print only the first occurrence of matching warnings, regardless of location

messagés a compiled regular expression that the warning message must match (the match is case-insensitive)

categoryis a class (a subclass¥dfarning ) of which the warning category must be a subclass in order to match

moduleis a compiled regular expression that the module name must match

linenois an integer that the line number where the warning occurred must matehe anatch all line numbers

Since thewarning class is derived from the built-iBxception  class, to turn a warning into an error we simply
raisecategory(message)

The warnings filter is initialized byW options passed to the Python interpreter command line. The interpreter saves
the arguments for alW options without interpretation isys.warnoptions ; thewarnings module parses these
when it is first imported (invalid options are ignored, after printing a messagpstetderr ).

3.20. warnings — Warning control 63



3.20.3 Available Functions

warn ( messag[a categor)[, stackleve] ])
Issue a warning, or maybe ignore it or raise an exception.caltegoryargument, if given, must be a warning
category class (see above); it defaultddserWarning . This function raises an exception if the particular
warning issued is changed into an error by the warnings filter see abovestadkdevebrgument can be used
by wrapper functions written in Python, like this:

def deprecation(message):
warnings.warn(message, DeprecationWarning, level=2)

This makes the warning refer teprecation() 's caller, rather than to the source a@éprecation()
itself (since the latter would defeat the purpose of the warning message).

warn _explicit  ( message, category, filename, Iinénmodule[, registry]])
This is a low-level interface to the functionality afflarn() , passing in explicitly the message, cate-
gory, filename and line number, and optionally the module name and the registry (which should be the
__warningregistry __ dictionary of the module). The module name defaults to the filename.pyth
stripped; if no registry is passed, the warning is never suppressed.

showwarning ( message, category, flename, IinEnﬁie])
Write a warning to a file. The default implementation calt®wwarning( message category filename
lineno) and writes the resulting string fd